Unveiling Economic Synchrony: Analyzing Lag Dynamics between GDP Growth and Construction Activity in Poland and Other EU Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cross-Correlation Function
Lag Positive Max and Correlation Positive Max
- -
- is the cross-correlation function between the GDP growth (X) and various proxies for construction activity (such as construction production, building permits, and construction operating time by backlog) (Y) time series at .
- -
- denotes the at which the cross-correlation function is maximized.
- -
- is the value of the cross-correlation function at the Lag Positive Max.
- -
- is the cross-correlation function between the GDP (X) and various proxies for construction activity (such as construction production, building permits, and construction operating time by backlog) (Y) time series at .
- -
- denotes the at which the cross-correlation function is minimized.
- -
- is the value of the cross-correlation function at the Lag Negative Max.
2.2. Toda–Yamamoto Granger Causality Analysis
- -
- is the vector of variables at time t.
- -
- are the autoregressive coefficients.
- -
- are the lagged values of the variables.
- -
- is the error term.
- -
- are the estimated autoregressive coefficients.
- -
- are the true autoregressive coefficients.
2.3. Variables and Data
3. Results
3.1. EU Countries (Panel Data Analysis)
3.2. Poland
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Lag Positive Max | Corr. Positive Max | Significance, Positive | Lag Negative Max | Corr. Negative Max | Significance, Negative |
---|---|---|---|---|---|---|
Austria | 11 | 0.75034244 | TRUE | 19 | −0.3738843 | TRUE |
Belgium | 10 | 0.64267612 | TRUE | 5 | −0.2871945 | TRUE |
Bulgaria | 11 | 0.71368833 | TRUE | 3 | −0.1316561 | FALSE |
Croatia | 11 | 0.65926824 | TRUE | 21 | 0.16432097 | FALSE |
Cyprus | 10 | 0.68333352 | TRUE | 1 | 0.02799514 | FALSE |
Czechia | 11 | 0.62189964 | TRUE | 6 | −0.1915008 | FALSE |
Denmark | 9 | 0.82618713 | TRUE | 1 | −0.1678132 | FALSE |
Estonia | 11 | 0.80656698 | TRUE | 2 | −0.4859713 | TRUE |
Finland | 10 | 0.80126279 | TRUE | 3 | −0.4295581 | TRUE |
France | 10 | 0.75161016 | TRUE | 5 | −0.3379367 | TRUE |
Germany | 10 | 0.62509243 | TRUE | 18 | −0.4532963 | TRUE |
Greece | 11 | 0.60575408 | TRUE | 1 | −0.162733 | FALSE |
Hungary | 10 | 0.58793913 | TRUE | 4 | −0.1455338 | FALSE |
Ireland | 10 | 0.67383478 | TRUE | 1 | −0.0377104 | FALSE |
Italy | 10 | 0.7780398 | TRUE | 4 | −0.2834003 | TRUE |
Latvia | 11 | 0.73798295 | TRUE | 1 | −0.5475307 | TRUE |
Lithuania | 10 | 0.75643946 | TRUE | 3 | −0.3469586 | TRUE |
Luxembourg | 10 | 0.46703173 | TRUE | 16 | −0.3008562 | TRUE |
Malta | 9 | 0.19544072 | FALSE | 13 | −0.249064 | TRUE |
The Netherlands | 10 | 0.75343036 | TRUE | 3 | −0.2112726 | TRUE |
Poland | 11 | 0.534634 | TRUE | 21 | −0.1941327 | FALSE |
Portugal | 11 | 0.68016029 | TRUE | 1 | −0.1567826 | FALSE |
Romania | 10 | 0.45728038 | TRUE | 19 | −0.4011873 | TRUE |
Slovakia | 11 | 0.72402075 | TRUE | 20 | −0.094215 | FALSE |
Slovenia | 10 | 0.71754757 | TRUE | 3 | −0.1157093 | FALSE |
Spain | 11 | 0.66274066 | TRUE | 1 | −0.132355 | FALSE |
Sweden | 9 | 0.70350688 | TRUE | 16 | −0.5466544 | TRUE |
Country | Lag Positive Max | Corr. Positive Max | Significance, Positive | Lag Negative Max | Corr. Negative Max | Significance, Negative |
---|---|---|---|---|---|---|
Austria | 17 | 0.22791016 | TRUE | 7 | −0.1146977 | FALSE |
Belgium | 18 | 0.16046107 | FALSE | 7 | −0.1097223 | FALSE |
Bulgaria | 10 | 0.52367045 | TRUE | 21 | −0.0290328 | FALSE |
Croatia | 7 | 0.44112948 | TRUE | 21 | −0.1096242 | FALSE |
Cyprus | 2 | 0.53098328 | TRUE | 21 | −0.132341 | FALSE |
Czechia | 11 | 0.41418497 | TRUE | 21 | 0.09788257 | FALSE |
Denmark | 12 | 0.45158535 | TRUE | 1 | −0.0732891 | FALSE |
Estonia | 12 | 0.3033182 | TRUE | 21 | −0.2619799 | TRUE |
Finland | 14 | 0.27693927 | TRUE | 5 | −0.2407054 | TRUE |
France | 11 | 0.38881902 | TRUE | 21 | −0.2247474 | TRUE |
Germany | 15 | 0.17950915 | FALSE | 4 | −0.0947647 | FALSE |
Greece | 4 | 0.4958666 | TRUE | 21 | 0.17054023 | FALSE |
Hungary | 5 | 0.40305581 | TRUE | 21 | −0.040497 | FALSE |
Ireland | 1 | 0.30591193 | TRUE | 21 | −0.3724941 | TRUE |
Italy | 2 | 0.40240938 | TRUE | 21 | 0.03002868 | FALSE |
Latvia | 10 | 0.56279674 | TRUE | 21 | −0.3939313 | TRUE |
Lithuania | 11 | 0.28265177 | TRUE | 20 | −0.3043274 | TRUE |
Luxembourg | 13 | 0.11808563 | FALSE | 1 | −0.2060131 | TRUE |
Malta | 8 | 0.17021196 | FALSE | 19 | −0.1747846 | FALSE |
The Netherlands | 2 | 0.24788428 | TRUE | 21 | −0.0487801 | FALSE |
Poland | 12 | 0.20576696 | TRUE | 19 | −0.0619062 | FALSE |
Portugal | 2 | 0.29438377 | TRUE | 21 | 0.10170547 | FALSE |
Romania | 8 | 0.21342109 | TRUE | 21 | −0.2742964 | TRUE |
Slovakia | 7 | 0.17379266 | FALSE | 15 | −0.1506035 | FALSE |
Slovenia | 8 | 0.3970357 | TRUE | 21 | −0.2498229 | TRUE |
Spain | 9 | 0.4788713 | TRUE | 21 | 0.05619566 | FALSE |
Sweden | 11 | 0.16087669 | FALSE | 20 | −0.1967492 | FALSE |
Country | Lag Positive Max | Corr. Positive Max | Significance, Positive | Lag Negative Max | Corr. Negative Max | Significance, Negative |
---|---|---|---|---|---|---|
Austria | 10 | 0.2448259 | TRUE | 2 | −0.0948503 | FALSE |
Belgium | 10 | 0.2853268 | TRUE | 2 | −0.1313232 | FALSE |
Bulgaria | 20 | 0.3320451 | TRUE | 3 | −0.0663192 | FALSE |
Croatia | 10 | 0.5672142 | TRUE | 4 | 0.1135489 | FALSE |
Cyprus | 10 | 0.4942949 | TRUE | 21 | 0.0512263 | FALSE |
Czechia | 21 | 0.2218827 | TRUE | 1 | −0.009933 | FALSE |
Denmark | 9 | 0.4083496 | TRUE | 1 | −0.1445435 | FALSE |
Estonia | 10 | 0.5488934 | TRUE | 21 | −0.4315475 | TRUE |
Finland | 12 | 0.345124 | TRUE | 6 | −0.2645239 | TRUE |
France | 11 | 0.2777531 | TRUE | 1 | −0.2901737 | TRUE |
Germany | 11 | 0.3029154 | TRUE | 2 | −0.0684419 | FALSE |
Greece | 5 | 0.3821312 | TRUE | 21 | −0.1051868 | FALSE |
Hungary | 11 | 0.2905211 | TRUE | 17 | 0.025763 | FALSE |
Ireland | 4 | 0.2558471 | TRUE | 18 | −0.1182239 | FALSE |
Italy | 11 | 0.2525602 | TRUE | 1 | −0.3293829 | TRUE |
Latvia | 10 | 0.386397 | TRUE | 19 | −0.3400909 | TRUE |
Lithuania | 11 | 0.4954698 | TRUE | 20 | −0.2414501 | TRUE |
Luxembourg | 20 | −0.035216 | FALSE | 2 | −0.2659615 | TRUE |
Malta | 21 | 0.071707 | FALSE | 9 | −0.264233 | TRUE |
The Netherlands | 10 | 0.6306642 | TRUE | 1 | 0.0498787 | FALSE |
Poland | 11 | 0.0032743 | FALSE | 6 | −0.1719839 | FALSE |
Portugal | 11 | 0.2330292 | TRUE | 19 | −0.0929107 | FALSE |
Romania | 21 | 0.2264578 | TRUE | 4 | −0.3041828 | TRUE |
Slovakia | 18 | −0.3316492 | TRUE | 1 | −0.4566369 | TRUE |
Slovenia | 11 | 0.5757825 | TRUE | 1 | 0.0120884 | FALSE |
Spain | 8 | 0.4027834 | TRUE | 17 | −0.1150094 | FALSE |
Sweden | 7 | 0.2001039 | TRUE | 1 | −0.2772852 | TRUE |
Country | Lag Orders (GDP Growth and Construction Production) | Lag Orders (GDP Growth and Building Permits) | Lag Orders (GDP Growth and Construction Operating Time by Backlog) |
---|---|---|---|
Austria | 1 ***, 2 ***, 3 ***, 6 *, 7 ***, 8 ***, 9 **, 10 * | 4˙, 15˙, 16 *, 17 *, 18˙, 19˙, 20˙ | 1˙, 9 *, 19˙, 20˙ |
Belgium | 1 ***, 2 ***, 3 ***, 5˙, 6 **, 7 **, 8 * | 18˙, 19 *, 20˙ | 1 **, 2 *, 3˙, 9 *, 10 *, 11˙, 12 * |
Bulgaria | 1 ***, 2 ***, 3 ***, 4 ** | 1 ***, 2 ***, 3 ***, 4 ***, 5 ***, 6 **, 7 *, 8 * | 13˙, 16˙, 17 *, 18 *, 19˙ |
Croatia | 1 ***, 2 ***, 3 ***, 4 ***, 5 **, 6 **, 7 *, 8 **, 9 *, 10 *, 11 *, 12˙ | 1 ***, 2 ***, 3 ***,…, 20 *** | 1 ***, 2 ***, 3 ***, 4 **, 12˙, 13˙ |
Cyprus | 1 ***, 2 ***, 3 ***, 4 ***, 5 **, 6 *, 7˙, 13˙, 14 *, 15 ***,…, 20 *** | 1 ***, 2 ***, 3 ***,…, 20 *** | 1 ***, 2 ***, 3 ***, 4 *, 5˙, 7˙, 13 *, 14 *, 15 *, 16 *, 17˙ |
Czechia | 1 ***, 2 ***, 5˙, 6˙, | 1 ***, 2 ***, 3 ***, 4 **,…, 15 **, 16 *, 17˙ | 2˙, 7˙, 15 *, 16 **, 17 * |
Denmark | 1 ***, 2 ***, 3 ***, 4 ***, 5 ***, 6 *, 9, 10 *, 11 *, 12 *, 13 *, 14 ***, 15 ***, 16 ***, 17˙ | 1 ***, 2 *, 3 * | 1 ***, 2 ***, 3 ***, 4 ***, 5 ***, 6 *, 9˙, 10 *, 11 * |
Estonia | 1 ***, 2 ***, 3 ***, 4 *, 6 *, 7 ***,…, 11 ***, 12 *, 13˙, 19˙, 20 * | 1 *, 2 *, 3˙ | 1 ***, 2 ***, 3 ***, 4 **, 5 *, 9 *, 10 **, 11 **, 12 **, 13 * |
Finland | 1 ***, 2 ***, 3 ***, 4˙, 6 **, 7 ***, 8 ***, 9 ***, 10 **, 11˙, 16˙ | 3˙, 4˙, 5 *, 6 **, 7 *, 8˙ | 1 *, 4˙, 5 **, 6 *, 7 *, 8 *, 17˙, 18 *, 19 *, 20 * |
France | 1 ***, 2 ***, 3 ***, 5 *, 6 ***, 7 ***, 8 *, 9˙, 15˙, 20˙ | 1 **, 2 *, 3˙, 11˙, 12˙, 15˙, 16˙, 17 ***, 18 ***, 19 ***, 20 *** | 8˙, 9 ***, 10 ***, 11 ***, 12 **, 13 **, 14 *, 15 *, 16 **, 17 *, 18 **, 19 **, 20 * |
Germany | 1 ***, 2 ***, 3 ***, 6 *, 7 ***, 8 ***, 9 ***, 10 ***, 11 **, 12˙ | 20˙ | 1 **, 2 **, 3 *, 4˙ |
Greece | 1 ***, 2 ***, 3 ***, 4 *, 12 *, 13 **, 14 **, 15 **, 16 ***,…, 20 *** | 1 ***, 2 ***, 3 ***,…, 20 *** | 1 **, 2 **, 3 **, 4 **, 5 ***,…, 20 *** |
Hungary | 1 ***, 2 ***, 3 ***, 12 *, 13 *, 14 **, 15˙ | 1 ***, 2 ***, 3 ***,…, 16 ***, 17 **, 18 **, 19 **, 20 * | 1 **, 2 *, 3 *, 4 *, 5 * |
Ireland | 1 ***, 2 ***, 3 ***, 4 ***, 5 **, 6 * | 5˙, 6 *, 7 *, 8 *, 9 **,…, 14 **, 15 ***,…, 20 *** | 7˙ |
Italy | 1 ***, 2 ***, 3 ***, 6 *, 7 **, 8 *, 9 *, 10˙ | 1 **,…, 5 **, 6 ***,…, 20 *** | 1 *, 2˙, 9 **, 10 ***, 11 ***, 12 ***, 13˙ |
Latvia | 1 ***, 2 ***, 3 ***, 4˙, 6 *, 7 ***,…, 13 ***, 14 **, 15 * | 1 ***,…, 6 ***, 7 **, 8 * | 1 ***, 2 ***, 3 ***, 4 **, 9˙, 10 *, 11 **, 12 **, 13 **, 14 **, 15 *, 16 *, 17˙ |
Lithuania | 1 ***, 2 ***, 3 ***, 4 **, 7 ***, 8 ***, 9 ***, 10 **, 11 * | 1 **, 2 *, 3˙, 14˙, 15 *, 16˙, 17˙ | 1 ***, 2 ***, 3 **, 4˙, 14˙, 15 *, 16 *, 17 **, 18 **, 19 **, 20 * |
Luxembourg | 1 ***, 2 ***, 7 *, 8 *, 9 **, 10 *, 17 *, 18 * | 10 *, 11 **, 12 *, 13 *, 20˙ | 7˙, 8 *, 9 **, 10 **, 11 **, 12 *, 13 *, 14 * |
Malta | 2˙, 18 *, 19 **, 20 ***, 21 *** | 3˙, 14 *, 15 *, 16 *, 17 **, 18 *, 19˙, 20 * | 2˙, 4˙, 13˙, 18˙, 19˙, 20 * |
The Netherlands | 1 ***, 2 ***, 3 ***, 4 *, 7 *, 8 *, 9˙ | 1 *, 2 *, 3˙, 4˙, 5 *,…, 8 *, 9 **,…, 12 **, 13 ***,…, 15 ***, 16 **,…, 18 **, 19 * | 1 ***, 2 ***, 3 ***, 4 ***, 5 ***, 6 ***, 7 **, 8˙ |
Poland | 1 ***, 2 ***, 6˙, 7˙ | 17˙, 18 *, 19,**, 20 * | 5˙, 20 *, 21 ** |
Portugal | 1 ***, 2 ***, 3 ***, 4˙, 10˙, 11˙, 17˙, 18 *, 19 ***, 20 *** | 1 ***, 2 ***, 3 ***,…, 20 *** | 1 **, 2 *, 3˙, 7˙, 8˙, 10˙, 11 *, 12 **, 13 ***,…, 20 *** |
Romania | 1 ***, 2 ***, 3 **, 4 *, 5 *, 6˙, 17 *, 18 *, 19 **, 20 * | 1 *,…, 10 *, 11 **, 12 *, 13 *, 18˙, 19 *, 20 ** | 8˙, 3 *, 4 **, 5 **, 6 ***, 7 ***, 8 **, 9 *, 10 **, 11 **, 12 **, 13 ***, 14 *, 15 **, 16 ***,…, 20 *** |
Slovakia | 1 ***, 2 ***, 3 ***, 4 *, 12˙, 13 *, 14 ***, 15 ***, 16 ***, 17 * | 16˙, 17 *, 18 *, 19 *, 20 ** | 1 **, 2 **, 3 ***,…, 20 *** |
Slovenia | 1 ***, 2 ***, 3 ***, 4 *, 18˙, 19 *, 20 ** | 1 ***,…, 15 ***, 16 **,…, 20 ** | 1 ***, 2 ***, 3 ***, 4 ***, 5 **, 6 *, 7˙ |
Spain | 1 ***, 2 ***, 3 ***, 13˙, 14˙, 15˙, 16 *, 17 **, 18 **, 19 ***, 20 *** | 1 ***, 2 ***, 3 ***,…, 20 *** | 2 *, 3 ***, 4 ***, 5 ***, 6 **, 7 *, 8˙, 13 *, 14 **, 15 **, 16 **, 17 *, 18˙ |
Sweden | 1 ***, 2 ***, 3 ***, 4 ***, 7 *, 8 **, 9 ***, 10 ***, 11 **, 12 **, 13 * | 7˙, 8˙ | 4˙, 10 *, 11 **, 12 **, 13˙ |
References
- Sloate, P.L. The Construction Industry: Focus on Forecasting. Available online: https://www.contractingbusiness.com/hvacrdb/article/20859154/the-construction-industry-focus-on-forecasting (accessed on 20 November 2023).
- BCAnalytics, Construction Cycle. Available online: https://bcanalytics.co.za/services/business-cycle-analysis/sectors/construction-cycle/ (accessed on 20 November 2023).
- Vasilopoulos, K.; Tayler, W. Real Estate and Construction Sector Dynamics in the Business Cycle; Department of Economics, Lancaster University Management School: Lancaster, UK, 2018. [Google Scholar]
- Pheng, L.S.; Hou, L.S. The Economy and the Construction Industry. In Construction Quality and the Economy; Springer: Singapore, 2019; pp. 21–54. [Google Scholar]
- Millar, J.N.; Oliner, S.D.; Sichel, D.E. Time-to-plan lags for commercial construction projects. Reg. Sci. Urban Econ. 2016, 59, 75–89. [Google Scholar] [CrossRef]
- Foldvary, F.E. Real Estate and Business Cycles: Henry George’s Theory of the Trade Cycle. In Proceedings of the Lafayette College Henry George Conference, Fort Lauderdale, FL, USA, 13–14 June 1991. [Google Scholar]
- Sobieraj, J. Investment Project Management on the Housing Construction Market; Universidad de Granada: Granada, Spain, 2020. [Google Scholar]
- 26.3 Balancing Keynesian and Neoclassical Models. Principles of Economics, Pressbooks. Available online: https://pressbooks-dev.oer.hawaii.edu/principlesofeconomics/chapter/26-3-balancing-keynesian-and-neoclassical-models/ (accessed on 27 November 2023).
- Sobieraj, J.; Metelski, D. Application of the Bayesian New Keynesian DSGE Model to Polish Macroeconomic Data. Eng. Econ. 2021, 32, 140–153. [Google Scholar] [CrossRef]
- OECD. Business Cycle Dynamics in OECD Countries: Evidence, Causes and Policy Implications. Available online: https://www.oecd.org/economy/growth/35125435.pdf (accessed on 24 November 2023).
- King, R.G.; Rebelo, S.T. Resuscitating real business cycles. Handb. Macroecon. 1999, 1, 927–1007. [Google Scholar]
- Sobieraj, J.; Metelski, D. Economic determinants of total factor productivity growth: The Bayesian modelling averaging approach. Entrep. Bus. Econ. Rev. 2021, 9, 147–171. [Google Scholar] [CrossRef]
- Mankiw, N.; Taylor, M. Macroeconomics; PWE: Warsaw, Poland, 2009. [Google Scholar]
- Huang, Y.; Li, Q.; Liow, K.H.; Zhou, X. Is housing the business cycle? A multiresolution analysis for OECD countries. J. Hous. Econ. 2020, 49, 101692. [Google Scholar] [CrossRef]
- Iacoviello, M.; Neri, S. Housing market spillovers: Evidence from an estimated DSGE model. Am. Econ. J. Macroecon. 2010, 2, 125–164. [Google Scholar] [CrossRef]
- Burfisher, M.E. Introduction to Computable General Equilibrium Models; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Anantsuksomsri, S.; Tontisirin, N. Computable General Equilibrium of Real Estate and Financial Crisis Vulnerability. Int. J. Build. Urban Inter. Landsc. Technol. (BUILT) 2018, 11, 29–42. [Google Scholar]
- Bryx, M. Real Estate Market. System and Functioning; Poltext: Warsaw, Poland, 2008. [Google Scholar]
- Sobieraj, J.; Metelski, D. Project Risk in the Context of Construction Schedules—Combined Monte Carlo Simulation and Time at Risk (TaR) Approach: Insights from the Fort Bema Housing Estate Complex. Appl. Sci. 2022, 12, 1044. [Google Scholar] [CrossRef]
- Bryx, M.; Matkowski, R. Investing in Real Estate; Poltext: Warsaw, Poland, 2001. [Google Scholar]
- Zhu, D.; Yi, X.; Wang, Y.; Sabra, K. Structural damage detection through cross correlation analysis of mobile sensing data. In Proceedings of the 5th World Conference on Structural Control and Monitoring, Tokyo, Japan, 12–14 July 2010. [Google Scholar]
- Idrovo-Aguirre, B.J.; Contreras-Reyes, J.E. Backcasting cement production and characterizing cement’s economic cycles for Chile 1991–2015. Empir. Econ. 2019, 57, 1829–1852. [Google Scholar] [CrossRef]
- Moraffah, R.; Sheth, P.; Karami, M.; Bhattacharya, A.; Wang, Q.; Tahir, A.; Liu, H. Causal inference for time series analysis: Problems, methods and evaluation. Knowl. Inf. Syst. 2021, 63, 3041–3085. [Google Scholar] [CrossRef]
- Castro, M.; Mendes Júnior, P.R.; Soriano-Vargas, A.; de Oliveira Werneck, R.; Moreira Gonçalves, M.; Lusquino Filho, L.; Rocha, A. Time series causal relationships discovery through feature importance and ensemble models. Sci. Rep. 2023, 13, 11402. [Google Scholar] [CrossRef] [PubMed]
- Runge, J.; Gerhardus, A.; Varando, G.; Eyring, V.; Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ. 2023, 4, 487–505. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. J. Econ. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Ekeke, S. How to Conduct/run a Toda Yamamoto Granger Causality Analysis; Pukyong National University: Busan, Republic of Korea, 2020. [Google Scholar]
- Metelski, D.; Mihi-Ramirez, A. The economic impact of remittances and foreign trade on migration. Granger-Causality approach. Eng. Econ. 2015, 26, 364–372. [Google Scholar] [CrossRef]
- Asamoah, R.O.; Baiden, B.K.; Nani, G.; Kissi, E. Review of exogenous economic indicators influencing construction industry. Adv. Civ. Eng. 2019, 1, 6073289. [Google Scholar] [CrossRef]
- Eurostat. Construction Production (Volume) Index Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Construction_production_%28volume%29_index_overview (accessed on 20 November 2023).
- Bacchini, F.; Gennari, P.; Annaccone, R. A New Index of Production for the Construction Sector Based on Input Data; Dipartimento delle Statistiche Economiche Istituto Nazionale di Statistica: Roma, Italy, 2002. [Google Scholar]
- Lovell, J. What Construction Contractors Need to Know about Backlog. Available online: https://www.gma-cpa.com/blog/backlog-construction (accessed on 20 November 2023).
- What Is a Backlog in Construction? Available online: https://blog.bluebeam.com/uk/construction-backlogs-managing-expectations/ (accessed on 28 November 2023).
- Scalisi, T. Managing a Construction Backlog: Strategies for Contractors. Available online: https://www.levelset.com/blog/managing-a-construction-backlog/ (accessed on 28 November 2023).
- Eurostat. Construction Quarterly Data. Available online: https://ec.europa.eu/eurostat/databrowser/explore/all/general? (accessed on 20 November 2023).
- Rhye, R.C. The Influence of the Backlog of Work on Construction Company Operations; Ohio State University: Columbus, OH, USA, 1980. [Google Scholar]
- Sun, M.Y.; Mitra, M.P.; Simone, M.A. The Driving Force behind the Boom and Bust in Construction in Europe; International Monetary Fund: Washington, DC, USA, 2013; pp. 1–36. [Google Scholar]
- Dlamini, S. The Relationship of the Construction Sector to Economic Growth: Analysis of South African and UK Construction Sectors. Ph.D. Thesis, School of Construction Management and Engineering, University of Reading, Reading, UK, 2014. [Google Scholar]
- European Labour Authority. Construction Sector: Issues in Information Provision, Enforcement of Labour Mobility Law, Social Security Coordination Regulations, and Cooperation between Member States (ELA Strategic Analysis); Publications Office of the European Union: Luxembourg, 2023; pp. 1–88.
- Ulibarri, N.; Cain, B.E.; Ajami, N.K. A framework for building efficient environmental permitting processes. Sustainability 2017, 9, 180. [Google Scholar] [CrossRef]
- McKinsey & Company. The Next Normal in Construction; McKinsey & Company: London, UK, 2020. [Google Scholar]
- Davis, M.A.; Heathcote, J. Housing and the business cycle. Int. Econ. Rev. 2005, 46, 751–784. [Google Scholar] [CrossRef]
- Vosman, L.; Coenen, T.B.; Volker, L.; Visscher, K. Collaboration and innovation beyond project boundaries: Exploring the potential of an ecosystem perspective in the infrastructure sector. Constr. Manag. Econ. 2023, 41, 457–474. [Google Scholar] [CrossRef]
- Leamer, E.E. Housing really is the business cycle: What survives the lessons of 2008–09? J. Money Credit Bank. 2015, 47, 43–50. [Google Scholar] [CrossRef]
- Boldrin, M.; Garriga, C.; Peralta-Alva, A.; Sánchez, J.M. Reconstructing the Great Recession; Federal Reserve Bank of St. Louis, Research Division: St. Louis, MO, USA, 2013. [Google Scholar]
- Case, K.E.; Glaeser, E.L.; Parker, J.A. Real estate and the macroeconomy. Brook. Pap. Econ. Act. 2000, 2, 119–162. [Google Scholar] [CrossRef]
- Head, A.; Lloyd-Ellis, H.; Sun, H. Search, liquidity, and the dynamics of house prices and construction. Am. Econ. Rev. 2014, 104, 1172–1210. [Google Scholar] [CrossRef]
- Sobieraj, J. Wpływ Polityki Gospodarczej, Srodowiskowej i Prawnej na Zarządzanie Procesem Inwestycyjnym w Budownictwie Przemysłowym; ITE-PIB: Radom, Poland, 2019.
- Wheaton, W.C. Real estate “cycles”: Some fundamentals. Real Estate Econ. 1999, 27, 209–230. [Google Scholar] [CrossRef]
- Leamer, E.E. Housing Is the Business Cycle; National Bureau of Economic Research: Cambridge, MA, USA, 2007. [Google Scholar]
- Roback, J. Wages, Rents and the Quality of Life. J. Political Econ. 1982, 90, 1257–1278. [Google Scholar] [CrossRef]
- Gyourko, J. Understanding Commercial Real Estate: How Different from Housing Is It? J. Portf. Manag. 2009, 35, 23. [Google Scholar] [CrossRef]
- Davis, J.S.; Huang, K.X.; Sapci, A. Land price dynamics and macroeconomic fluctuations with imperfect substitution in real estate markets. J. Econ. Dyn. Control 2022, 134, 104274. [Google Scholar] [CrossRef]
- Chaney, T.; Sraer, D.; Thesmar, D. The collateral channel: How real estate shocks affect corporate investment. Am. Econ. Rev. 2012, 102, 2381–2409. [Google Scholar] [CrossRef]
- Bahaj, S.; Foulis, A.; Pinter, G. Home values and firm behavior. Am. Econ. Rev. 2020, 110, 2225–2270. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, P.; Zha, T. Land-price dynamics and macroeconomic fluctuations. Econometrica 2013, 81, 1147–1184. [Google Scholar]
- Sobieraj, J.; Metelski, D. Testing Housing Markets for Episodes of Exuberance: Evidence from Different Polish Cities. J. Risk Financ. Manag. 2021, 14, 412. [Google Scholar] [CrossRef]
- Siemińska, E. Risk management of a developer in the real estate market. In Financing of Development Activity. Practical Aspects; ZBP: Warsaw, Poland, 2006. [Google Scholar]
- Siemińska, E.; Rymarzak, M. Development conditions of Polish housing market during economic crisis. Real Estate Manag. Valuat. 2014, 22, 68–80. [Google Scholar] [CrossRef]
- Brzezicka, J.; Wisniewski, R.; Figurska, M. Disequilibrium in the real estate market: Evidence from Poland. Land Use Policy 2018, 78, 515–531. [Google Scholar] [CrossRef]
- Brzezicka, J.; Łaszek, J.; Olszewski, K.; Wisniewski, R. The missing asymmetry in the Polish house price cycle: An analysis of the behaviour of house prices in 17 major cities. J. Hous. Built Environ. 2021, 37, 1029–1056. [Google Scholar] [CrossRef]
- Trojanek, P.R. House price cycles–the case of Poland. J. Int. Stud. 2011, 4, 9–17. [Google Scholar] [CrossRef]
- Bryx, M.; Sobieraj, J.; Metelski, D.; Rudzka, I. Buying vs. Renting a Home in View of Young Adults in Poland. Land 2021, 10, 1183. [Google Scholar] [CrossRef]
- Sobieraj, J.; Bryx, M.; Metelski, D. Preferences of Young Polish Renters: Findings from the Mediation Analysis. Buildings 2023, 13, 920. [Google Scholar] [CrossRef]
- Bryx, M.; Rudzka, I.; Sobieraj, J.; Metelski, D. Wybór Pomiędzy Wynajmem a Posiadaniem Własnego Mieszkania w Oczac “Młodych Dorosłych” w Polsce: Wnioski z Analizy Opartej na Modelu Mediacji; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Polska, 2023; pp. 1–102. [Google Scholar]
- Foster, L.; Grim, C.; Haltiwanger, J. Reallocation in the great recession: Cleansing or not? J. Labor Econ. 2016, 34, S293–S331. [Google Scholar] [CrossRef]
- Economic Cycle: Definition and 4 Stages of the Business Cycle, Investopedia. Available online: https://www.investopedia.com/terms/e/economic-cycle.asp (accessed on 10 November 2023).
- US Business Cycle Expansions and Contractions, National Bureau of Economic Research. Available online: https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions. (accessed on 25 November 2023).
- Crowley, P.M.; Hallett, A.H. What causes business cycles to elongate, or recessions to intensify? J. Macroecon. 2018, 57, 338–349. [Google Scholar] [CrossRef]
- Business Cycle: What It Is, How to Measure It, the 4 Phases, Investopedia. Available online: https://www.investopedia.com/terms/b/businesscycle.asp (accessed on 10 November 2023).
- Kamiński, M. The Theoretical Model of Polish Housing Policy between 2002 and 2016. Folia Oeconomica Stetin. 2019, 19, 20–30. [Google Scholar] [CrossRef]
- Cellmer, R.; Jasiński, J. Analysis of housing development activity in Poland from 2005–2014. Real Estate Manag. Valuat. 2016, 24, 47–58. [Google Scholar] [CrossRef]
- Leszczyński, R.; Olszewski, K. An analysis of the primary and secondary housing market in Poland: Evidence from the 17 largest cities. Balt. J. Econ. 2017, 17, 136–151. [Google Scholar] [CrossRef]
- Balcerowicz, E. The Impact of Poland’s EU Accession on Its Economy (CASE Report 335); Center for Social and Economic Research: Warsaw, Poland, 2007. [Google Scholar]
- AMRON-SARFiN Report. Available online: https://konferencje.bank.pl/wp-content/uploads/2018/12/Raport-AMRON-SARFiN-3-kw-J.Ptaszynski.pdf (accessed on 15 November 2023).
Country | Construction Production | Building Permits | Construction Operating Time by Backlog | |||
---|---|---|---|---|---|---|
Pos. Lag Max | Corr. Pos. Max | Pos. Lag Max | Corr. Pos. Max | Pos. Lag Max | Corr. Pos. Max | |
Austria | 11 * | 0.75 | 17 * | 0.23 | 10 * | 0.24 |
Belgium | 10 * | 0.64 | 18 | 0.16 | 10 * | 0.29 |
Bulgaria | 11 * | 0.71 | 10 * | 0.52 | 20 * | 0.33 |
Croatia | 11 * | 0.66 | 7 * | 0.44 | 10 * | 0.57 |
Cyprus | 10 * | 0.68 | 2 * | 0.53 | 10 * | 0.49 |
Czechia | 11 * | 0.62 | 11 * | 0.41 | 21 * | 0.22 |
Denmark | 9 * | 0.83 | 12 * | 0.45 | 9 * | 0.41 |
Estonia | 11 * | 0.81 | 12 * | 0.30 | 10 * | 0.55 |
Finland | 10 * | 0.80 | 14 * | 0.28 | 12 * | 0.35 |
France | 10 * | 0.75 | 11 * | 0.39 | 11 * | 0.28 |
Germany | 10 * | 0.63 | 15 | 0.18 | 11 * | 0.30 |
Greece | 11 * | 0.61 | 4 * | 0.50 | 5 * | 0.38 |
Hungary | 10 * | 0.59 | 5 * | 0.40 | 11 * | 0.29 |
Ireland | 10 * | 0.67 | 1 * | 0.31 | 4 * | 0.26 |
Italy | 10 * | 0.78 | 2 * | 0.40 | 11 * | 0.25 |
Latvia | 11 * | 0.74 | 10 * | 0.56 | 10 * | 0.39 |
Lithuania | 10 * | 0.76 | 11 * | 0.28 | 11 * | 0.50 |
Luxembourg | 10 * | 0.47 | 13 | 0.12 | 20 | −0.04 |
Malta | 9 | 0.20 | 8 | 0.17 | 21 | 0.07 |
The Netherlands | 10 * | 0.75 | 2 * | 0.25 | 10 * | 0.63 |
Poland | 11 * | 0.53 | 12 * | 0.21 | 11 | 0.00 |
Portugal | 11 * | 0.68 | 2 * | 0.29 | 11 * | 0.23 |
Romania | 10 * | 0.46 | 8 * | 0.21 | 21 * | 0.23 |
Slovakia | 11 * | 0.72 | 7 | 0.17 | 18 * | −0.33 |
Slovenia | 10 * | 0.72 | 8 * | 0.40 | 11 * | 0.58 |
Spain | 11 * | 0.66 | 9 * | 0.48 | 8 * | 0.40 |
Sweden | 9 * | 0.70 | 11 | 0.16 | 7 * | 0.20 |
Country | Construction Production | Building Permits | Construction Operating Time by Backlog | |||
---|---|---|---|---|---|---|
Neg. Max Lag | Corr. Neg. Max | Neg. Max Lag | Corr. Neg. Max | Neg. Max Lag | Corr. Neg. Max | |
Austria | 19 * | −0.37 | 7 | −0.11 | 2 | −0.09 |
Belgium | 5 * | −0.29 | 7 | −0.11 | 2 | −0.13 |
Bulgaria | 3 | −0.13 | 21 | −0.03 | 3 | −0.07 |
Croatia | 21 | 0.16 | 21 | −0.11 | 4 | 0.11 |
Cyprus | 1 | 0.03 | 21 | −0.13 | 21 | 0.05 |
Czechia | 6 | −0.19 | 21 | 0.10 | 1 | −0.01 |
Denmark | 1 | −0.17 | 1 | −0.07 | 1 | −0.14 |
Estonia | 2 * | −0.49 | 21 * | −0.26 | 21 * | −0.43 |
Finland | 3 * | −0.43 | 5 * | −0.24 | 6 * | −0.26 |
France | 5 * | −0.34 | 21 * | −0.22 | 1 * | −0.29 |
Germany | 18 * | −0.45 | 4 | −0.09 | 2 | −0.07 |
Greece | 1 | −0.16 | 21 | 0.17 | 21 | −0.11 |
Hungary | 4 | −0.15 | 21 | −0.04 | 17 | 0.03 |
Ireland | 1 | −0.04 | 21 * | −0.37 | 18 | −0.12 |
Italy | 4 * | −0.28 | 21 | 0.03 | 1 * | −0.33 |
Latvia | 1 * | −0.55 | 21 * | −0.39 | 19 * | −0.34 |
Lithuania | 3 * | −0.35 | 20 * | −0.30 | 20 * | −0.24 |
Luxembourg | 16 * | −0.30 | 1 * | −0.21 | 2 * | −0.27 |
Malta | 13 * | −0.25 | 19 | −0.17 | 9 * | −0.26 |
The Netherlands | 3 * | −0.21 | 21 | −0.05 | 1 | 0.05 |
Poland | 21 | −0.19 | 19 | −0.06 | 6 | −0.17 |
Portugal | 1 | −0.16 | 21 | 0.10 | 19 | −0.09 |
Romania | 19 * | −0.40 | 21 * | −0.27 | 4 * | −0.30 |
Slovakia | 20 | −0.09 | 15 | −0.15 | 1 * | −0.46 |
Slovenia | 3 | −0.12 | 21 * | −0.25 | 1 | 0.01 |
Spain | 1 | −0.13 | 21 | 0.06 | 17 | −0.12 |
Sweden | 16 * | −0.55 | 20 | −0.20 | 1 * | −0.28 |
Construction Production | Building Permits | Construction Operating Time by Backlog | |||||||
---|---|---|---|---|---|---|---|---|---|
Country | Toda–Yamamoto Test | Estimate | p-Value | Toda–Yamamoto Test | Estimate | p-Value | Toda–Yamamoto Test | Estimate | p-Value |
Austria | Causality | −162 | 0.0204 | Causality | −1124 | 0.0304 | NO | −24.0 | 0.164 |
Belgium | NO | −16.6 | 0.813 | Causality | −969 | 0.0204 | Causality | −10.9 | 0.0206 |
Bulgaria | NO | −38.7 | 0.508 | NO | 1231 | 0.126 | NO | −12.6 | 0.173 |
Croatia | Causality | 74.7 | 0.0369 | Causality | 2667 | 0.00003 | NO | 13.1 | 0.337 |
Cyprus | NO | 23.0 | 0.743 | Causality | 4816 | 0.00036 | Causality | 15.7 | 0.343 |
Czechia | NO | −7.33 | 0.820 | Causality | 590 | 0.00545 | NO | −6.92 | 0.258 |
Denmark | Causality | −147 | 0.05 | NO | −210 | 0.780 | Causality | −21.2 | 0.049 |
Estonia | Causality | −185 | 0.00048 | NO | 307 | 0.42 | Causality | −13.9 | 0.00374 |
Finland | Causality | −184 | 0.00273 | NO | −186 | 0.698 | NO | −3.21 | 0.809 |
France | NO | −87.7 | 0.139 | Causality | 501 | 0.05 | Causality | −39.7 | 0.00039 |
Germany | Causality | −328 | 0.00009 | NO | 295 | 0.547 | NO | 0.374 | 0.98 |
Greece | Causality | −103 | 0.05 | Causality | 256 | 0.00000 | Causality | 89.6 | 0.00006 |
Hungary | NO | 14.6 | 0.691 | Causality | 2691 | 0.00015 | NO | 10.0 | 0.19 |
Ireland | NO | −30.6 | 0.574 | NO | 343 | 0.783 | NO | 8.26 | 0.359 |
Italy | Causality | −169 | 0.0224 | Causality | 6500 | 0.00294 | Causality | −86.4 | 0.00053 |
Latvia | Causality | −154 | 0.00000 | NO | 759 | 0.272 | Causality | −8.94 | 0.0239 |
Lithuania | Causality | −131 | 0.00425 | NO | −44.6 | 0.831 | NO | −3.40 | 0.452 |
Luxembourg | Causality | −99.9 | 0.0339 | Causality | −785 | 0.0366 | NO | −29.8 | 0.187 |
Malta | NO | 32.9 | 0.438 | NO | 393 | 0.616 | NO | 10.67 | 0.729 |
The Netherlands | NO | −45.4 | 0.259 | Causality | 1020 | 0.0251 | NO | 7.82 | 0.682 |
Poland | NO | −9.73 | 0.695 | NO | 111 | 0.569 | NO | −2.76 | 0.859 |
Portugal | Causality | −74.7 | 0.050 | Causality | 12,660 | 0.00011 | Causality | 20.3 | 0.0150 |
Romania | NO | 22.1 | 0.343 | Causality | 473 | 0.0237 | Causality | −25.2 | 0.00442 |
Slovakia | NO | 42.6 | 0.391 | NO | 224 | 0.436 | Causality | −56.7 | 0.00000 |
Slovenia | NO | −67.1 | 0.290 | Causality | 3023 | 0.00009 | NO | 1.29 | 0.91 |
Spain | NO | −75.1 | 0.142 | Causality | 30,400 | 0.00000 | Causality | 28.8 | 0.05 |
Sweden | Causality | −104 | 0.00058 | NO | −237 | 0.354 | NO | 12.4 | 0.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobieraj, J.; Metelski, D. Unveiling Economic Synchrony: Analyzing Lag Dynamics between GDP Growth and Construction Activity in Poland and Other EU Countries. Buildings 2024, 14, 310. https://doi.org/10.3390/buildings14020310
Sobieraj J, Metelski D. Unveiling Economic Synchrony: Analyzing Lag Dynamics between GDP Growth and Construction Activity in Poland and Other EU Countries. Buildings. 2024; 14(2):310. https://doi.org/10.3390/buildings14020310
Chicago/Turabian StyleSobieraj, Janusz, and Dominik Metelski. 2024. "Unveiling Economic Synchrony: Analyzing Lag Dynamics between GDP Growth and Construction Activity in Poland and Other EU Countries" Buildings 14, no. 2: 310. https://doi.org/10.3390/buildings14020310
APA StyleSobieraj, J., & Metelski, D. (2024). Unveiling Economic Synchrony: Analyzing Lag Dynamics between GDP Growth and Construction Activity in Poland and Other EU Countries. Buildings, 14(2), 310. https://doi.org/10.3390/buildings14020310