Improving Project Estimates at Completion through Progress-Based Performance Factors
Abstract
:1. Introduction
2. Literature Review
2.1. EVM and ES
2.2. Performance-Factor-Based Forecasting Methods
2.3. Other Forecasting Methods
2.4. Research Gap
3. Research Methodology
3.1. Progress-Based Performance Factors
3.2. Benchmarking
3.2.1. Data Collection
3.2.2. Data Scaling
3.2.3. Data Interpolation
3.2.4. Forecast Evaluation
3.2.5. Performance Assessment
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Area |
Actual Cost | |
Actual Duration | |
AI | Artificial Intelligence |
Budget at Completion | |
CA | Cumulative Average |
Cost Estimate at Completion | |
Cost Estimate To Complete | |
Cost Performance Factor | |
Cost Performance Index | |
Critical Ratio | |
Cost Variance | |
E | Forecast Error |
EAC | Estimate at Completion |
EMA | Exponential Moving Average |
ES | Earned Schedule (Methodology) |
Earned Schedule (Metric) | |
Earned Value | |
EVM | Earned-Value Management |
Interquartile Range | |
Lower Bound | |
MA | Moving Average |
Mean Absolute Error | |
Planned Duration | |
PF | Performance Factor |
Performance Indicator | |
PMB | Performance Measurement Baseline |
Planned Value | |
First Quartile | |
Second Quartile (or Median) | |
Third Quartile | |
Root Mean Square Error | |
Schedule Performance Factor | |
Schedule Performance Index | |
Schedule Variance | |
t | Time Index |
Time Estimate at Completion | |
Time Estimate To Complete | |
Upper Bound | |
Weighted Average | |
Work Performed | |
Work Scheduled | |
y | Target Variable Real Value |
Target Variable Forecast |
References
- Rezakhani, P. Hybrid fuzzy-Bayesian decision support tool for dynamic project scheduling and control under uncertainty. Int. J. Constr. Manag. 2020, 22, 2864–2876. [Google Scholar] [CrossRef]
- Kwon, H.; Kang, C.W. Improving Project Budget Estimation Accuracy and Precision by Analyzing Reserves for Both Identified and Unidentified Risks. Proj. Manag. J. 2019, 50, 86–100. [Google Scholar] [CrossRef]
- Project Management Institute. Practice Standard for Project Risk Management, 1st ed.; Project Management Institute: Newton Square, PA, USA, 2009; p. 116. [Google Scholar]
- Abdel-Monem, M.; Alshaer, K.T.; El–Dash, K. Assessing Risk Factors Affecting the Accuracy of Conceptual Cost Estimation in the Middle East. Buildings 2022, 12, 950. [Google Scholar] [CrossRef]
- Project Management Institute. Practice Standard for Earned Value Management, 2nd ed.; Project Management Institute: Newton Square, PA, USA, 2012; p. 135. [Google Scholar]
- Lipke, W. Schedule is Different. Meas News 2003, 2, 31–34. [Google Scholar]
- Mayo-Alvarez, L.; Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Sekar, M.C.; Yañez, J.A. A Systematic Review of Earned Value Management Methods for Monitoring and Control of Project Schedule Performance: An AHP Approach. Sustainability 2022, 14, 5259. [Google Scholar] [CrossRef]
- Du, J.; Kim, B.C.; Zhao, D. Cost Performance as a Stochastic Process: EAC Projection by Markov Chain Simulation. J. Constr. Eng. Manag. 2016, 142, 4016009. [Google Scholar] [CrossRef]
- Barrientos, A.; Barrientos-Orellana, A.; Ballesteros-Pérez, P.; Mora-Melia, D.; González-Cruz, M.C.; Vanhoucke, M. Stability and accuracy of deterministic project duration forecasting methods in earned value management. Eng. Constr. Arch. Manag. 2021, 29, 1449–1469. [Google Scholar] [CrossRef]
- Aramali, V.; Gibson, G.E.; El Asmar, M.; Cho, N. Earned Value Management System State of Practice: Identifying Critical Subprocesses, Challenges, and Environment Factors of a High-Performing EVMS. J. Manag. Eng. 2021, 37, 04021031. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Zhang, R. A Dynamic Measurement Model of Equipment Procurement Progress for Nuclear Power Project Based on EVM. In Proceedings of the ASME 2017 Power Conference Joint with ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum, Charlotte, NC, USA, 26–30 June 2017; p. V002T07A003. [Google Scholar] [CrossRef]
- Fleming, Q.W.; Koppelman, J.M. Earned Value Project Management; Project Management Institute: Newton Square, PA, USA, 2016. [Google Scholar] [CrossRef]
- Batselier, J.; Vanhoucke, M. Empirical Evaluation of Earned Value Management Forecasting Accuracy for Time and Cost. J. Constr. Eng. Manag. 2015, 141, 5015010. [Google Scholar] [CrossRef]
- Kim, D.B.; White, E.D.; Ritschel, J.D.; Millette, C.A. Revisiting reliability of estimates at completion for department of defense contracts. J. Public Procure 2019, 19, 186–200. [Google Scholar] [CrossRef]
- Khamooshi, H.; Golafshani, H. EDM: Earned Duration Management, a new approach to schedule performance management and measurement. Int. J. Proj. Manag. 2014, 32, 1019–1041. [Google Scholar] [CrossRef]
- Chang, H.K.; Yu, W.D.; Cheng, T.M. A Quantity-Based Method to Predict More Accurate Project Completion Time. KSCE J. Civ. Eng. 2020, 24, 2861–2875. [Google Scholar] [CrossRef]
- Henderson, K. Further Developments in Earned Schedule. Meas News 2004, 2004, 15–22. [Google Scholar]
- Colin, J.; Martens, A.; Vanhoucke, M.; Wauters, M. A multivariate approach for top-down project control using earned value management. Decis. Support Syst. 2015, 79, 65–76. [Google Scholar] [CrossRef]
- Ballesteros-Pérez, P.; Sanz-Ablanedo, E.; Mora-Melià, D.; González-Cruz, M.; Fuentes-Bargues, J.L.; Pellicer, E. Earned Schedule min-max: Two new EVM metrics for monitoring and controlling projects. Autom. Constr. 2019, 103, 279–290. [Google Scholar] [CrossRef]
- Ngo, K.A.; Lucko, G.; Ballesteros-Pérez, P. Continuous earned value management with singularity functions for comprehensive project performance tracking and forecasting. Autom. Constr. 2022, 143, 104583. [Google Scholar] [CrossRef]
- Zwikael, O.; Globerson, S.; Raz, T. Evaluation of Models for Forecasting the Final Cost of a Project. Proj. Manag. J. 2000, 31, 53–57. [Google Scholar] [CrossRef]
- Anbari, F.T. Earned Value Project Management Method and Extensions. Proj. Manag. J. 2003, 34, 12–23. [Google Scholar] [CrossRef]
- Lipke, W. Independent estimates at completion—Another method. Meas. News 2004, 11, 10–14. [Google Scholar]
- Koke, B.; Moehler, R.C.R.C. Earned Green Value management for project management: A systematic review. J. Clean. Prod. 2019, 230, 180–197. [Google Scholar] [CrossRef]
- Barrientos-Orellana, A.; Ballesteros-Pérez, P.; Mora-Meliá, D.; Cerezo-Narváez, A. Comparison of the Accuracy of Cost Prediction Methods with Earned Value Analysis. In Proceedings of the 26 th International Congress on Project Management and Engineering, Terrassa, Spain, 5–8 July 2022; pp. 12–21. [Google Scholar]
- Henderson, K. Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data. Meas News 2003, 1, 13–23. [Google Scholar]
- Lipke, W.; Zwikael, O.; Henderson, K.; Anbari, F. Prediction of project outcome. Int. J. Proj. Manag. 2009, 27, 400–407. [Google Scholar] [CrossRef]
- Christensen, D.S. The estimate at completion problem: A review of three studies. Proj. Manag. J. 1993, 24, 37–42. [Google Scholar]
- Christensen, D.S.; Antolini, R.C.; McKinney, J.W. A Review of Estimate at Completion Research. J. Cost. Anal. 1995, 12, 41–62. [Google Scholar] [CrossRef]
- Batselier, J.; Vanhoucke, M. Improving project forecast accuracy by integrating earned value management with exponential smoothing and reference class forecasting. Int. J. Proj. Manag. 2017, 35, 28–43. [Google Scholar] [CrossRef]
- Martens, A.; Vanhoucke, M. Integrating Corrective Actions in Project Time Forecasting Using Exponential Smoothing. J. Manag. Eng. 2020, 36, 4020044. [Google Scholar] [CrossRef]
- Zhao, M.; Zi, X. Using Earned Value Management with exponential smoothing technique to forecast project cost. J. Phys. Conf. Ser. 2021, 1955, 12101. [Google Scholar] [CrossRef]
- Narbaev, T.; De Marco, A. Earned value and cost contingency management: A framework model for risk adjusted cost forecasting. J. Mod. Proj. Manag. 2017, 4, 12–19. [Google Scholar]
- De Marco, A.; Narbaev, T.; Ottaviani, F.M.; Vanhoucke, M. Influence of cost contingency management on project estimates at completion. Int. J. Constr. Manag. 2023, 1–11. [Google Scholar] [CrossRef]
- Warburton, R.D.H.; Cioffi, D.F. Estimating a project’s earned and final duration. Int. J. Proj. Manag. 2016, 34, 1493–1504. [Google Scholar] [CrossRef]
- Warburton, R.D.H.; Ottaviani, F.M.; De Marco, A. Critical Analysis of Linear and Nonlinear Project Duration Forecasting Methods. J. Mod. Proj. Manag. 2023, 11, 186–199. [Google Scholar]
- Zafari, B.; Kettunen, J. Bayesian Methods in Project Management. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Firouzi, A.; Khayyati, M. Bayesian Updating of Copula-Based Probabilistic Project-Duration Model. J. Constr. Eng. Manag. 2020, 146, 4020046. [Google Scholar] [CrossRef]
- Caron, F. Project Control Using a Bayesian Approach. In Encyclopedia of Information Science and Technology, 4th ed.; IGI Global: Berlin/Heidelberg, Germany, 2018; pp. 5679–5689. [Google Scholar] [CrossRef]
- Mostafa, K.; Hegazy, T. Potential of Bayesian networks for forecasting the ripple effect of progress events. In Proceedings of the CSCE Annual Conference Growing with Youth, Laval, QC, Canada, 12–15 June 2019. [Google Scholar]
- Elmousalami, H.H. Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review. J. Constr. Eng. Manag. 2020, 146, 3119008. [Google Scholar] [CrossRef]
- Awada, M.; Srour, F.J.; Srour, I.M. Data-Driven Machine Learning Approach to Integrate Field Submittals in Project Scheduling. J. Manag. Eng. 2021, 37, 4020104. [Google Scholar] [CrossRef]
- Araba, A.M.; Memon, Z.A.; Alhawat, M.; Ali, M.; Milad, A. Estimation at Completion in Civil Engineering Projects: Review of Regression and Soft Computing Models. Knowl.-Based Eng. Sci. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Balali, A.; Valipour, A.; Antucheviciene, J.; Šaparauskas, J. Improving the results of the earned value management technique using artificial neural networks in construction projects. Symmetry 2020, 12, 1745. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Hoang, N.D. Interval estimation of construction cost at completion using least squares support vector machine. J. Civ. Eng. Manag. 2014, 20, 223–236. [Google Scholar] [CrossRef]
- Wauters, M.; Vanhoucke, M. A comparative study of Artificial Intelligence methods for project duration forecasting. Expert Syst. Appl. 2016, 46, 249–261. [Google Scholar] [CrossRef]
- He, S.; Du, J.; Huang, J.Z. Singular-Value Decomposition Feature-Extraction Method for Cost-Performance Prediction. J. Comput. Civ. Eng. 2017, 31, 4017043. [Google Scholar] [CrossRef]
- Wauters, M.; Vanhoucke, M. A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence. Eur. J. Oper. Res. 2017, 259, 1097–1111. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Grilo, A. Bibliometric analysis and review of Building Information Modelling literature published between 2005 and 2015. Autom. Constr. 2017, 80, 118–136. [Google Scholar] [CrossRef]
- Wauters, M.; Vanhoucke, M. Support Vector Machine Regression for project control forecasting. Autom. Constr. 2014, 47, 92–106. [Google Scholar] [CrossRef]
- Santos, J.I.; Pereda, M.; Ahedo, V.; Galán, J.M. Explainable machine learning for project management control. Comput. Ind. Eng. 2023, 180, 109261. [Google Scholar] [CrossRef]
- Liang, A.; Tao, L.; Lei, H. Combined machine-learning and EDM to monitor and predict a complex project with a GERT-type network: A multi-point perspective. Comput. Ind. Eng. 2023, 180, 109256. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Chang, Y.H.; Korir, D. Novel Approach to Estimating Schedule to Completion in Construction Projects Using Sequence and Nonsequence Learning. J. Constr. Eng. Manag. 2019, 145, 4019072. [Google Scholar] [CrossRef]
- Al Hares, E.F.T.; Budayan, C. Estimation at completion simulation using the potential of soft computing models: Case study of construction engineering projects. Symmetry 2019, 11, 190. [Google Scholar] [CrossRef]
- Kareem Kamoona, K.R.; Budayan, C. Implementation of Genetic Algorithm Integrated with the Deep Neural Network for Estimating at Completion Simulation. Adv. Civ. Eng. 2019, 2019, 7081073. [Google Scholar] [CrossRef]
- Le, T.A.; Huynh, Q.T.; Nguyen, T.H.; Nguyen, N.H.; Cao, P.N. A Method for Project Completion Cost Predicting Using LSTM in Earned Value Management Technique. In Proceedings of the 2020 4th International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Hanoi, Vietnam, 28–29 August 2020; pp. 87–92. [Google Scholar] [CrossRef]
- Aidan, I.A.; Al-Jeznawi, D.; Al-Zwainy, F.M.S.S. Predicting earned value indexes in residential complexes’ construction projects using artificial neural network model. Int. J. Intell. Eng. Syst. 2020, 13, 248–259. [Google Scholar] [CrossRef]
- Mohammed, S.J.; Abdel-khalek, H.A.; Hafez, S.M. Predicting Performance Measurement of Residential Buildings Using Machine Intelligence Techniques (MLR, ANN and SVM). Iran. J. Sci. Technol.-Trans. Civ. Eng. 2021, 46, 3429–3451. [Google Scholar] [CrossRef]
- Dastgheib, S.R.; Feylizadeh, M.R.; Bagherpour, M.; Mahmoudi, A. Improving estimate at completion (EAC) cost of construction projects using adaptive neuro-fuzzy inference system (ANFIS). Can. J. Civ. Eng. 2022, 49, 222–232. [Google Scholar] [CrossRef]
- Vanhoucke, M. The Illusion of Control: Project Data, Computer Algorithms and Human Intuition for Project Management and Control, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2023; p. 330. [Google Scholar] [CrossRef]
Scenario | |||
---|---|---|---|
<1 | =1 | >1 | |
Code | Building Type | #Activities | ||||
---|---|---|---|---|---|---|
C2011-10 | Residential | 32 | 484,398.41 | 39 | 494,947.71 | 41 |
C2011-12 | Commercial | 49 | 3,027,133.19 | 7 | 3,102,395.91 | 7 |
C2011-13 | Industrial | 134 | 21,369,835.51 | 105 | 26,077,764.74 | 120 |
C2012-13 | Civil | 74 | 336,410.15 | 25 | 350,511.31 | 28 |
C2012-17 | Residential | 33 | 241,015.00 | 29 | 314,856.14 | 41 |
C2013-01 | Civil | 42 | 1,069,532.42 | 6 | 1,314,584.58 | 6 |
C2013-02 | Civil | 181 | 1,236,603.66 | 17 | 1,146,444.38 | 17 |
C2013-03 | Institutional | 55 | 15,440,865.89 | 18 | 16,338,027.20 | 18 |
C2013-04 | Institutional | 252 | 2,113,684.00 | 7 | 2,512,524.00 | 11 |
C2013-06 | Institutional | 276 | 19,429,810.51 | 19 | 21,546,846.18 | 18 |
C2013-07 | Residential | 46 | 180,476.47 | 10 | 175,030.65 | 11 |
C2013-08 | Residential | 42 | 501,029.51 | 10 | 576,624.05 | 13 |
C2013-09 | Commercial | 71 | 1,537,398.51 | 8 | 1,696,971.79 | 10 |
C2013-10 | Civil | 197 | 11,421,890.36 | 30 | 15,218,926.38 | 30 |
C2013-11 | Civil | 167 | 5,480,518.91 | 21 | 5,451,028.00 | 20 |
C2013-12 | Institutional | 27 | 818,439.99 | 3 | 879,853.17 | 5 |
C2013-13 | Commercial | 11 | 1,118,496.59 | 10 | 955,929.22 | 9 |
C2013-14 | Commercial | 9 | 85,847.89 | 2 | 75,468.30 | 2 |
C2013-15 | Commercial | 17 | 341,468.11 | 5 | 298,833.81 | 4 |
C2013-16 | Commercial | 7 | 248,203.92 | 6 | 198,567.00 | 5 |
C2013-17 | Commercial | 23 | 244,205.40 | 6 | 203,605.97 | 5 |
C2014-01 | Residential | 52 | 38,697,822.73 | 24 | 39,777,643.30 | 23 |
C2014-04 | Industrial | 24 | 62,385,597.58 | 24 | 65,526,930.04 | 36 |
C2014-05 | Residential | 25 | 532,410.29 | 11 | 591,410.53 | 13 |
C2014-06 | Residential | 29 | 3,486,375.47 | 17 | 3,599,114.11 | 19 |
C2014-07 | Residential | 25 | 1,102,536.78 | 12 | 1,289,696.78 | 14 |
C2014-08 | Residential | 39 | 1,992,222.09 | 11 | 2,380,299.86 | 13 |
C2015-01 | Institutional | 27 | 612,769.44 | 6 | 646,473.65 | 9 |
C2015-02 | Civil | 216 | 1,121,316.94 | 8 | 967,988.79 | 9 |
C2015-03 | Industrial | 135 | 2,244,090.74 | 9 | 1,868,796.28 | 10 |
C2015-04 | Residential | 56 | 2,750,938.00 | 7 | 2,590,796.73 | 8 |
C2015-05 | Residential | 64 | 2,524,765.19 | 4 | 2,563,675.86 | 5 |
C2015-06 | Residential | 184 | 143,673.20 | 9 | 186,107.00 | 10 |
C2015-07 | Industrial | 138 | 5,999,600.00 | 8 | 5,414,544.00 | 9 |
C2015-08 | Commercial | 186 | 467,297.21 | 8 | 461,900.17 | 8 |
C2015-09 | Civil | 348 | 1,457,424.00 | 6 | 2,145,682.26 | 9 |
C2015-27 | Civil | 18 | 22,703.52 | 5 | 25,313.12 | 6 |
C2015-29 | Institutional | 204 | 1,874,496.82 | 8 | 1,887,087.25 | 8 |
C2015-30 | Residential | 40 | 440,940.89 | 14 | 440,940.89 | 14 |
C2015-31 | Residential | 29 | 1,310,723.46 | 16 | 1,282,185.98 | 21 |
C2015-32 | Residential | 53 | 2,509,031.42 | 15 | 2,509,031.42 | 14 |
C2015-33 | Civil | 12 | 214,417.71 | 3 | 224,789.67 | 5 |
C2015-34 | Civil | 13 | 511,325.86 | 4 | 440,394.16 | 7 |
C2015-35 | Residential | 10 | 14,956,314.25 | 38 | 16,068,878.30 | 41 |
C2016-01 | Civil | 28 | 671,383.50 | 12 | 703,703.50 | 14 |
C2016-02 | Civil | 23 | 962,181.56 | 12 | 972,341.56 | 13 |
C2016-03 | Civil | 25 | 926,888.01 | 10 | 910,728.01 | 11 |
C2016-07 | Commercial | 110 | 930,179.09 | 8 | 932,757.25 | 11 |
C2016-11 | Residential | 55 | 162,472.00 | 5 | 163,189.00 | 5 |
C2016-12 | Residential | 59 | 222,858.00 | 5 | 226,285.00 | 5 |
C2016-13 | Residential | 51 | 367,952.00 | 4 | 379,300.00 | 5 |
C2016-14 | Residential | 48 | 218,366.00 | 5 | 222,021.78 | 5 |
C2016-15 | Residential | 13 | 95,694.00 | 4 | 100,763.00 | 4 |
C2016-27 | Residential | 16 | 813,663.06 | 3 | 879,701.06 | 4 |
C2016-28 | Residential | 19 | 569,177.85 | 4 | 586,086.85 | 4 |
C2016-29 | Residential | 19 | 1,797,873.62 | 4 | 1,860,330.62 | 4 |
C2016-30 | Residential | 23 | 1,319,736.29 | 3 | 1,353,361.29 | 4 |
C2016-31 | Residential | 23 | 488,936.00 | 3 | 498,473.00 | 4 |
C2016-32 | Residential | 22 | 477,381.00 | 4 | 496,991.00 | 4 |
C2016-33 | Residential | 23 | 377,282.00 | 3 | 394,829.00 | 4 |
C2016-34 | Residential | 23 | 362,476.00 | 3 | 383,871.00 | 3 |
C2019-01 | Residential | 86 | 1,292,979.00 | 8 | 1,315,819.86 | 10 |
C2019-02 | Residential | 18 | 734,602.11 | 9 | 748,555.80 | 9 |
C2019-03 | Civil | 17 | 967,878.00 | 20 | 1,270,875.82 | 22 |
C2019-04 | Civil | 33 | 4,318,950.00 | 18 | 4,232,553.41 | 24 |
Rank | A | |||
---|---|---|---|---|
1 | 0.8667 | 0.0624 | 0.1220 | |
2 | 0.8758 | 0.0611 | 0.1130 | |
3 | 0.8911 | 0.0628 | 0.1241 | |
4 | 0.8931 | 0.0622 | 0.1170 | |
5 | 0.8962 | 0.0617 | 0.1149 | |
6 | 0.8980 | 0.0617 | 0.1147 | |
7 | 0.9063 | 0.0623 | 0.1200 | |
8 | 0.9096 | 0.0623 | 0.1190 | |
9 | 0.9675 | 0.0626 | 0.1103 | |
10 | 0.9884 | 0.0638 | 0.1121 | |
11 | 0.9994 | 0.0640 | 0.1125 | |
1 | 12 | 1.0270 | 0.0638 | 0.1132 |
13 | 1.0304 | 0.0616 | 0.1091 | |
14 | 1.0693 | 0.0655 | 0.1150 | |
15 | 1.0724 | 0.0625 | 0.1109 | |
16 | 1.0765 | 0.0622 | 0.1098 | |
17 | 1.0879 | 0.0663 | 0.1110 | |
18 | 1.1166 | 0.0668 | 0.1136 | |
19 | 1.1171 | 0.0668 | 0.1135 | |
20 | 1.1435 | 0.0726 | 0.1199 | |
21 | 1.1459 | 0.0680 | 0.1174 | |
22 | 1.1597 | 0.0682 | 0.1093 | |
23 | 1.1761 | 0.0658 | 0.1139 | |
24 | 1.1844 | 0.0779 | 0.1543 | |
25 | 1.1847 | 0.0757 | 0.1456 | |
26 | 1.1853 | 0.0728 | 0.1198 | |
27 | 1.1872 | 0.0768 | 0.1260 | |
28 | 1.1974 | 0.0728 | 0.1200 | |
29 | 1.2201 | 0.0764 | 0.1496 | |
30 | 1.2242 | 0.0776 | 0.1577 | |
31 | 1.2286 | 0.0774 | 0.1526 | |
32 | 1.2332 | 0.0786 | 0.1554 | |
33 | 1.2384 | 0.0782 | 0.1617 | |
34 | 1.2388 | 0.0711 | 0.1182 | |
35 | 1.2458 | 0.0801 | 0.1601 | |
36 | 1.2461 | 0.0811 | 0.1626 | |
37 | 1.2495 | 0.0793 | 0.1662 | |
38 | 1.2537 | 0.0797 | 0.1578 | |
39 | 1.2711 | 0.0719 | 0.1216 | |
40 | 1.3000 | 0.0810 | 0.1561 | |
41 | 1.3084 | 0.0746 | 0.1228 | |
42 | 1.3504 | 0.0731 | 0.1245 | |
43 | 1.3565 | 0.0791 | 0.1301 | |
44 | 1.3580 | 0.0687 | 0.1149 | |
45 | 1.3617 | 0.0772 | 0.1343 | |
46 | 1.3652 | 0.0794 | 0.1308 | |
47 | 1.3674 | 0.0712 | 0.1194 | |
48 | 1.4126 | 0.0851 | 0.1443 | |
49 | 1.4147 | 0.0726 | 0.1215 | |
50 | 1.5436 | 0.0796 | 0.1366 | |
51 | 1.5685 | 0.0866 | 0.1362 | |
52 | 1.5810 | 0.0856 | 0.1337 | |
53 | 1.6351 | 0.0978 | 0.1612 | |
54 | 1.6569 | 0.0836 | 0.1468 | |
55 | 1.7554 | 0.1116 | 0.2235 | |
56 | 3.4251 | 0.1445 | 0.2643 | |
57 | 3.4344 | 0.1670 | 0.2929 | |
58 | 3.4371 | 0.1606 | 0.3470 | |
59 | 3.5705 | 0.1743 | 0.3915 | |
60 | 3.5828 | 0.1592 | 0.2576 | |
61 | 3.6529 | 0.1930 | 0.5223 | |
62 | 3.7078 | 0.1936 | 0.3866 | |
63 | 3.8219 | 0.1735 | 0.3089 | |
64 | 4.0941 | 0.1887 | 0.3603 | |
65 | 4.1227 | 0.2116 | 0.4370 | |
66 | 4.2254 | 0.1900 | 0.2973 | |
67 | 4.2499 | 0.2106 | 0.5122 | |
68 | 4.2571 | 0.2322 | 0.5552 | |
69 | 4.6078 | 0.2144 | 0.3732 | |
70 | 4.8626 | 0.2346 | 0.4331 | |
71 | 4.9789 | 0.2599 | 0.5708 |
Rank | A | |||
---|---|---|---|---|
1 | 3.1647 | 0.1158 | 0.1645 | |
2 | 3.1652 | 0.1159 | 0.1645 | |
3 | 3.1663 | 0.1159 | 0.1645 | |
4 | 3.1705 | 0.1159 | 0.1646 | |
5 | 3.1872 | 0.1210 | 0.1683 | |
1 | 6 | 3.2053 | 0.1180 | 0.1670 |
7 | 3.2083 | 0.1172 | 0.1645 | |
8 | 3.2165 | 0.1166 | 0.1639 | |
9 | 3.2215 | 0.1225 | 0.1707 | |
10 | 3.2223 | 0.1222 | 0.1701 | |
11 | 3.2225 | 0.1163 | 0.1633 | |
12 | 3.2298 | 0.1166 | 0.1636 | |
13 | 3.2410 | 0.1216 | 0.1682 | |
14 | 3.2416 | 0.1226 | 0.1693 | |
15 | 3.2449 | 0.1215 | 0.1680 | |
16 | 3.2618 | 0.1206 | 0.1716 | |
17 | 3.2680 | 0.1269 | 0.1745 | |
18 | 3.2737 | 0.1218 | 0.1706 | |
19 | 3.2903 | 0.1258 | 0.1721 | |
20 | 3.2921 | 0.1218 | 0.1708 | |
21 | 3.2926 | 0.1218 | 0.1707 | |
22 | 3.3066 | 0.1253 | 0.1748 | |
23 | 3.3071 | 0.1226 | 0.1718 | |
24 | 3.3189 | 0.1198 | 0.1698 | |
25 | 3.3217 | 0.1223 | 0.1687 | |
26 | 3.3230 | 0.1197 | 0.1697 | |
27 | 3.4070 | 0.1202 | 0.1702 | |
28 | 3.4219 | 0.1359 | 0.1942 | |
29 | 3.4266 | 0.1272 | 0.1761 | |
30 | 3.4289 | 0.1285 | 0.1862 | |
31 | 3.4344 | 0.1234 | 0.1733 | |
32 | 3.4353 | 0.1282 | 0.1785 | |
33 | 3.4369 | 0.1320 | 0.1820 | |
34 | 3.4800 | 0.1232 | 0.1730 | |
35 | 3.4819 | 0.1270 | 0.1768 | |
36 | 3.4875 | 0.1231 | 0.1727 | |
37 | 3.5227 | 0.1263 | 0.1740 | |
38 | 3.5266 | 0.1251 | 0.1751 | |
39 | 3.5361 | 0.1254 | 0.1722 | |
40 | 3.5525 | 0.1367 | 0.1963 | |
41 | 3.5658 | 0.1263 | 0.1810 | |
42 | 3.5862 | 0.1271 | 0.1774 | |
43 | 3.5891 | 0.1266 | 0.1747 | |
44 | 3.5952 | 0.1272 | 0.1760 | |
45 | 3.6313 | 0.1299 | 0.1769 | |
46 | 3.6314 | 0.1301 | 0.1783 | |
47 | 3.6344 | 0.1276 | 0.1789 | |
48 | 3.6354 | 0.1302 | 0.1774 | |
49 | 3.6448 | 0.1284 | 0.1811 | |
50 | 3.6543 | 0.1285 | 0.1735 | |
51 | 3.6829 | 0.1429 | 0.2189 | |
52 | 3.7241 | 0.1313 | 0.1819 | |
53 | 3.7326 | 0.1310 | 0.1812 | |
54 | 3.7360 | 0.1344 | 0.1852 | |
55 | 3.7738 | 0.1317 | 0.1819 | |
56 | 4.4572 | 0.1854 | 0.3120 | |
57 | 4.6418 | 0.1875 | 0.2760 | |
58 | 4.6660 | 0.2096 | 0.4112 | |
59 | 4.8546 | 0.2228 | 0.4460 | |
60 | 5.0237 | 0.2418 | 0.5618 | |
61 | 5.0523 | 0.1985 | 0.3096 | |
62 | 5.1055 | 0.1981 | 0.3250 | |
63 | 5.1683 | 0.2078 | 0.3432 | |
64 | 5.3570 | 0.2274 | 0.4825 | |
65 | 5.4495 | 0.2306 | 0.4433 | |
66 | 5.6056 | 0.2045 | 0.2937 | |
67 | 5.7082 | 0.2480 | 0.4880 | |
68 | 5.9111 | 0.2687 | 0.5940 | |
69 | 5.9979 | 0.2232 | 0.3426 | |
70 | 6.2270 | 0.2371 | 0.3833 | |
71 | 6.2867 | 0.2589 | 0.5104 |
Code | ||||
---|---|---|---|---|
Score | Score | |||
C2011-10 | 0.0070 | 0.0110 | ||
C2011-12 | 0.0062 | 0.0079 | ||
C2011-13 | 0.0282 | 0.0449 | ||
C2012-13 | 0.0244 | 0.0277 | ||
C2012-17 | 0.0432 | 0.0542 | ||
C2013-01 | 0.1056 | 0.1309 | ||
C2013-02 | 0.0122 | 0.0154 | ||
C2013-03 | 0.0376 | 0.0439 | ||
C2013-04 | 0.0302 | 0.0414 | ||
C2013-06 | 0.0365 | 0.0420 | ||
C2013-07 | 1 | 0.0075 | 0.0093 | |
C2013-08 | 0.0902 | 0.0998 | ||
C2013-09 | 0.0418 | 0.0501 | ||
C2013-10 | 0.3850 | 0.4033 | ||
C2013-11 | 0.0051 | 0.0078 | ||
C2013-12 | 0.0170 | 0.0230 | ||
C2013-13 | 0.0537 | 0.0646 | ||
C2013-14 | 0.0016 | 0.0026 | ||
C2013-15 | 0.0120 | 0.0179 | ||
C2013-16 | 0.1359 | 0.1610 | ||
C2013-17 | 0.1211 | 0.1556 | ||
C2014-01 | 0.0251 | 0.0314 | ||
C2014-04 | 0.0178 | 0.0223 | ||
C2014-05 | 0.0210 | 0.0306 | ||
C2014-06 | 0.0057 | 0.0088 | ||
C2014-07 | 0.0228 | 0.0308 | ||
C2014-08 | 0.0162 | 0.0197 | ||
C2015-01 | 0.0169 | 0.0212 | ||
C2015-02 | 0.0870 | 0.0936 | ||
C2015-03 | 0.0204 | 0.0239 | ||
C2015-04 | 0.0461 | 0.0503 | ||
C2015-05 | 0.0034 | 0.0043 | ||
C2015-06 | 0.0197 | 0.0234 | ||
C2015-07 | 0.0651 | 0.0679 | ||
C2015-08 | 0.0158 | 0.0188 | ||
C2015-09 | 0.0761 | 0.1433 | ||
C2015-27 | 0.0263 | 0.0372 | ||
C2015-29 | 0.0014 | 0.0024 | ||
C2015-30 | 0.0025 | 0.0031 | ||
C2015-31 | 0.0204 | 0.0207 | ||
C2015-32 | 0.0129 | 0.0161 | ||
C2015-33 | 0.0306 | 0.0372 | ||
C2015-34 | 0.0591 | 0.0689 | ||
C2015-35 | 0.0331 | 0.0391 | ||
C2016-01 | 1 | 0.0087 | 1 | 0.0194 |
C2016-02 | 0.0048 | 0.0056 | ||
C2016-03 | 0.0117 | 0.0133 | ||
C2016-07 | 0.0026 | 0.0027 | ||
C2016-11 | 0.0032 | 0.0044 | ||
C2016-12 | 0.0042 | 0.0047 | ||
C2016-13 | 0.0099 | 0.0125 | ||
C2016-14 | 0.0029 | 0.0044 | ||
C2016-15 | 0.0140 | 0.0159 | ||
C2016-27 | 0.0097 | 0.0135 | ||
C2016-28 | 0.0040 | 0.0047 | ||
C2016-29 | 0.0052 | 0.0061 | ||
C2016-30 | 0.0046 | 0.0068 | ||
C2016-31 | 0.0029 | 0.0037 | ||
C2016-32 | 0.0020 | 0.0023 | ||
C2016-33 | 0.0123 | 0.0161 | ||
C2016-34 | 0.0134 | 0.0185 | ||
C2019-01 | 0.0054 | 0.0070 | ||
C2019-02 | 0.0076 | 0.0100 | ||
C2019-03 | 0.0319 | 0.0523 | ||
C2019-04 | 0.0041 | 0.0048 |
Code | ||||
---|---|---|---|---|
Score | Score | |||
C2011-10 | 0.0213 | 0.0282 | ||
C2011-12 | 0.0420 | 0.0541 | ||
C2011-13 | 0.0461 | 0.0516 | ||
C2012-13 | 0.0975 | 0.1055 | ||
C2012-17 | 0.0400 | 0.0561 | ||
C2013-01 | 0.0053 | 0.0073 | ||
C2013-02 | 0.0259 | 0.0305 | ||
C2013-03 | 0.0304 | 0.0457 | ||
C2013-04 | 0.1851 | 0.2153 | ||
C2013-06 | 0.0505 | 0.0533 | ||
C2013-07 | 0.0271 | 0.0367 | ||
C2013-08 | 0.1933 | 0.2220 | ||
C2013-09 | 0.1999 | 0.2112 | ||
C2013-10 | 0.0553 | 0.0722 | ||
C2013-11 | 0.0209 | 0.0303 | ||
C2013-12 | 0.2268 | 0.2511 | ||
C2013-13 | 0.0143 | 0.0166 | ||
C2013-14 | 0.0830 | 0.1002 | ||
C2013-15 | 0.0204 | 0.0214 | ||
C2013-16 | 0.1590 | 0.1622 | ||
C2013-17 | 0.1109 | 0.1324 | ||
C2014-01 | 0.0265 | 0.0401 | ||
C2014-04 | 0.2320 | 0.2736 | ||
C2014-05 | 0.0417 | 0.0516 | ||
C2014-06 | 0.0334 | 0.0380 | ||
C2014-07 | 0.0296 | 0.0347 | ||
C2014-08 | 0.0213 | 0.0265 | ||
C2015-01 | 0.0761 | 0.0957 | ||
C2015-02 | 0.1338 | 0.1460 | ||
C2015-03 | 0.0396 | 0.0484 | ||
C2015-04 | 0.1073 | 0.1164 | ||
C2015-05 | 0.1223 | 0.1312 | ||
C2015-06 | 0.0250 | 0.0342 | ||
C2015-07 | 0.0581 | 0.0702 | ||
C2015-08 | 0.0070 | 0.0144 | ||
C2015-09 | 0.1053 | 0.1727 | ||
C2015-27 | 0.0917 | 0.1088 | ||
C2015-29 | 0.0004 | 0.0011 | ||
C2015-30 | 0.0424 | 0.0527 | ||
C2015-31 | 0.1217 | 0.1561 | ||
C2015-32 | 0.0280 | 0.0358 | ||
C2015-33 | 0.1032 | 0.1223 | ||
C2015-34 | 0.2000 | 0.2436 | ||
C2015-35 | 0.0157 | 0.0217 | ||
C2016-01 | 0.0453 | 0.0704 | ||
C2016-02 | 0.0496 | 0.0595 | ||
C2016-03 | 0.0588 | 0.0734 | ||
C2016-07 | 0.1212 | 0.1549 | ||
C2016-11 | 0.0218 | 0.0289 | ||
C2016-12 | 0.0013 | 0.0037 | ||
C2016-13 | 0.0636 | 0.0833 | ||
C2016-14 | 0.0054 | 0.0104 | ||
C2016-15 | 0.0092 | 0.0219 | ||
C2016-27 | 0.1144 | 0.1250 | ||
C2016-28 | 0.0229 | 0.0490 | ||
C2016-29 | 0.0600 | 0.0771 | ||
C2016-30 | 0.0419 | 0.0572 | ||
C2016-31 | 0.1330 | 0.1487 | ||
C2016-32 | 0.0670 | 0.0819 | ||
C2016-33 | 0.0493 | 0.0655 | ||
C2016-34 | 0.0670 | 0.0886 | ||
C2019-01 | 0.1170 | 0.1443 | ||
C2019-02 | 0.0138 | 0.0202 | ||
C2019-03 | 0.0337 | 0.0434 | ||
C2019-04 | 0.1329 | 0.1861 |
Score | Score | |||
---|---|---|---|---|
.05 | 0.1189 | 0.1909 | ||
.10 | 0.1328 | 0.2085 | ||
.15 | 0.1246 | 0.1953 | ||
.20 | 0.1184 | 0.1948 | ||
.25 | 0.1118 | 0.1892 | ||
.30 | 0.1002 | 0.1816 | ||
.35 | 0.0948 | 0.1761 | ||
.40 | 0.0898 | 0.1663 | ||
.45 | 0.0862 | 0.1604 | ||
.50 | 0.0811 | 0.1564 | ||
.55 | 0.0761 | 0.1463 | ||
.60 | 0.0716 | 0.1437 | ||
.65 | 0.0628 | 0.1318 | ||
.70 | 0.0524 | 0.1131 | ||
.75 | 0.0429 | 0.0975 | ||
.80 | 0.0358 | 0.0913 | ||
.85 | 0.0296 | 0.0878 | ||
.90 | 0.0238 | 0.0846 | ||
.95 | 0.0165 | 0.0642 |
Score | Score | |||
---|---|---|---|---|
.05 | 0.1762 | 0.2429 | ||
.10 | 0.1827 | 0.2490 | ||
.15 | 0.1701 | 0.2194 | ||
.20 | 0.1632 | 0.2068 | ||
.25 | 0.1607 | 0.1998 | ||
.30 | 0.1459 | 0.1853 | ||
.35 | 0.1329 | 0.1761 | ||
.40 | 0.1244 | 0.1639 | ||
.45 | 0.1260 | 0.1685 | ||
.50 | 0.1262 | 0.1735 | ||
.55 | 0.1238 | 0.1728 | ||
.60 | 0.1258 | 0.1769 | ||
.65 | 0.1143 | 0.1541 | ||
.70 | 0.1023 | 0.1426 | ||
.75 | 0.0971 | 0.1362 | ||
.80 | 0.0946 | 0.1296 | ||
.85 | 0.0896 | 0.1242 | ||
.90 | 0.0808 | 0.1139 | ||
.95 | 0.0695 | 0.0927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottaviani, F.M.; De Marco, A.; Narbaev, T.; Rebuglio, M. Improving Project Estimates at Completion through Progress-Based Performance Factors. Buildings 2024, 14, 643. https://doi.org/10.3390/buildings14030643
Ottaviani FM, De Marco A, Narbaev T, Rebuglio M. Improving Project Estimates at Completion through Progress-Based Performance Factors. Buildings. 2024; 14(3):643. https://doi.org/10.3390/buildings14030643
Chicago/Turabian StyleOttaviani, Filippo Maria, Alberto De Marco, Timur Narbaev, and Massimo Rebuglio. 2024. "Improving Project Estimates at Completion through Progress-Based Performance Factors" Buildings 14, no. 3: 643. https://doi.org/10.3390/buildings14030643
APA StyleOttaviani, F. M., De Marco, A., Narbaev, T., & Rebuglio, M. (2024). Improving Project Estimates at Completion through Progress-Based Performance Factors. Buildings, 14(3), 643. https://doi.org/10.3390/buildings14030643