New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method
Abstract
:1. Introduction
2. Basic Equations
3. Results for Frequency Parameters and Deformation Shapes of Plates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Zhang, H.; Li, Z.; Luo, Y.; Xiao, X.; Liu, Y. Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks. Adv. Struct. Eng. 2024, 27, 35–50. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Chen, F.; Zhang, H.; Xiao, X. Numerical simulation on crack–inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals 2023, 13, 1402. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Zhu, X.; Huang, Z. Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method. Compos. Struct. 2024, 329, 117727. [Google Scholar] [CrossRef]
- Zhang, C. The active rotary inertia driver system for flutter vibration control of bridges and various promising applications. Sci. China Technol. Sci. 2023, 66, 390–405. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, T.; Brennan, M.J.; Liu, Z.; Chen, L.-Q. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. J. Appl. Mech. 2017, 84, 021001. [Google Scholar] [CrossRef]
- Lu, Z.; Brennan, M.J.; Yang, T.; Li, X.; Liu, Z. An investigation of a two-stage nonlinear vibration isolation system. J. Sound Vib. 2013, 332, 1456–1464. [Google Scholar] [CrossRef]
- Tran, V.-K.; Pham, Q.-H.; Nguyen-Thoi, T. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng. Comput. 2022, 38, 1465–1490. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Lin, G. Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of large-scale 3D base-isolated nuclear structures. Comput. Geotech. 2023, 162, 105669. [Google Scholar] [CrossRef]
- Deng, E.-F.; Wang, Y.-H.; Zong, L.; Zhang, Z.; Zhang, J.-F. Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies. Thin-Walled Struct. 2024, 197, 111563. [Google Scholar] [CrossRef]
- Sarrami-Foroushani, S.; Azhari, M. On the use of bubble complex finite strip method in the nonlocal buckling and vibration analysis of single-layered graphene sheets. Int. J. Mech. Sci. 2014, 85, 168–178. [Google Scholar] [CrossRef]
- Civalek, Ö.; Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 2022, 38, 489–521. [Google Scholar] [CrossRef]
- Lai, S.K.; Xiang, Y. DSC analysis for buckling and vibration of rectangular plates with elastically restrained edges and linearly varying in-plane loading. Int. J. Struct. Stab. Dyn. 2009, 9, 511–531. [Google Scholar] [CrossRef]
- Wu, W.X.; Shu, C.; Wang, C.M.; Xiang, Y. Free vibration and buckling analysis of highly skewed plates by least squares-based finite difference method. Int. J. Struct. Stab. Dyn. 2010, 10, 225–252. [Google Scholar] [CrossRef]
- Albuquerque, E.L.; Sollero, P.; Fedelinski, P. Free vibration analysis of anisotropic material structures using the boundary element method. Eng. Anal. Bound. Elem. 2003, 27, 977–985. [Google Scholar] [CrossRef]
- Fan, J.; Huang, J.; Ding, J.; Zhang, J. Free vibration of functionally graded carbon nanotube-reinforced conical panels integrated with piezoelectric layers subjected to elastically restrained boundary conditions. Adv. Mech. Eng. 2017, 9, 168781401771181. [Google Scholar] [CrossRef]
- Motezaker, M.; Jamali, M.; Kolahchi, R. Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J. Comput. Appl. Math. 2020, 369, 112625. [Google Scholar] [CrossRef]
- Civalek, Ö. Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 2013, 50, 171–179. [Google Scholar] [CrossRef]
- Sharma, A. Free vibration of moderately thick antisymmetric laminated annular sector plates with elastic edge constraints. Int. J. Mech. Sci. 2014, 83, 124–132. [Google Scholar] [CrossRef]
- Song, Z.; Li, W.; He, X.; Xie, D. Comparisons of matched interface and boundary (MIB) method and its interpolation formulation for free vibration analysis of stepped beams and plates. Appl. Math. Comput. 2021, 394, 125817. [Google Scholar] [CrossRef]
- Papkov, S.O.; Banerjee, J.R. Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. J. Sound Vib. 2019, 458, 522–543. [Google Scholar] [CrossRef]
- Eftekhari, S.A.; Jafari, A.A. High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl. Math. Comput. 2012, 219, 1312–1344. [Google Scholar] [CrossRef]
- Xu, J.; Chang, L.; Chen, T.; Ren, T.; Zhang, Y.; Cai, Z. Study of the bending properties of variable stiffness chain mail fabrics. Compos. Struct. 2023, 322, 117369. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Huang, Y.; Chang, L.; Chen, T.; Ren, T.; Cai, Z. Dynamic response of chain mail fabrics with variable stiffness. Int. J. Mech. Sci. 2024, 264, 108840. [Google Scholar] [CrossRef]
- Zhang, W.; Kang, S.; Liu, X.; Lin, B.; Huang, Y. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. J. Build. Eng. 2023, 71, 106522. [Google Scholar] [CrossRef]
- Arefi, M.; Taghavian, S.H. Dynamic characteristics of composite micro lattice plates comprises of graphene nanoplatelets based on MCST theory. Thin-Walled Struct. 2022, 175, 109200. [Google Scholar] [CrossRef]
- Arefi, M.; Firouzeh, S.; Mohammad-Rezaei Bidgoli, E.; Civalek, Ö. Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 2020, 247, 112391. [Google Scholar] [CrossRef]
- Ruocco, E.; Reddy, J.N. A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures. Compos. Part B Eng. 2019, 169, 258–273. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Shahrany, H.D. Hygrothermal forced vibration of a viscoelastic laminated plate with magnetostrictive actuators resting on viscoelastic foundations. Int. J. Mech. Mater. Des. 2021, 17, 301–320. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Fadaee, M.; Rokni Damavandi Taher, H. Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl. Math. Model. 2011, 35, 708–727. [Google Scholar] [CrossRef]
- Rezaei, A.S.; Saidi, A.R. Exact solution for free vibration of thick rectangular plates made of porous materials. Compos. Struct. 2015, 134, 1051–1060. [Google Scholar] [CrossRef]
- Ray, M.C. Zeroth-Order Shear Deformation Theory for Laminated Composite Plates. J. Appl. Mech. 2003, 70, 374–380. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sonoda, K. Vibration and buckling of tapered rectangular plates with two opposite edges simply supported and the other two edges elastically restrained against rotation. J. Sound Vib. 1991, 146, 323–337. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.; Ge, Y.; Xu, K. A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability. Nonlinear Dyn. 2024, 112, 259–272. [Google Scholar] [CrossRef]
- Cui, W.; Caracoglia, L.; Zhao, L.; Ge, Y. Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker–Planck–Kolmogorov equation. Struct. Saf. 2023, 105, 102369. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.; Ge, Y. Wind-Induced Buffeting Vibration of Long-Span Bridge Considering Geometric and Aerodynamic Nonlinearity Based on Reduced-Order Modeling. J. Struct. Eng. 2023, 149, 04023160. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Ullah, S.; Zhong, Y.; Li, R. Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates. Appl. Math. Lett. 2019, 92, 8–14. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Wang, K.; Zhang, C.; Jing, C.; Qi, W. On the finite integral transform approach for analytic thermal buckling solutions of orthotropic plates. Acta Mech. 2023, 234, 1901–1922. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Wang, X.; Ullah, S.; Zhao, D.; Civalek, Ö.; Xue, C.; Qi, W. New exact analytical thermal buckling solutions of composite thin plates with all edges rotationally-restrained. Mech. Adv. Mater. Struct. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Ullah, S.; Zhong, Y. New analytical free vibration solutions of orthotropic rectangular thin plates using generalized integral transformation. J. Comput. Appl. Math. 2020, 367, 112439. [Google Scholar] [CrossRef]
- Ullah, S.; Zhong, Y.; Zhang, J. Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method. Int. J. Mech. Sci. 2019, 152, 535–544. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Ullah, S.; Zhao, D.; Qi, W.; Civalek, Ö. An Accurate Computational Method for Buckling of Orthotropic Composite Plate with Non-Classical Boundary Restraints. Int. J. Struct. Stab. Dyn. 2023, 23, 2350080. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Ullah, S.; Geng, L.; Civalek, Ö. A new analytical solution of vibration response of orthotropic composite plates with two adjacent edges rotationally-restrained and the others free. Compos. Struct. 2021, 266, 113882. [Google Scholar] [CrossRef]
- Rahbar Ranji, A.; Rostami Hoseynabadi, H. A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions. J. Mech. Sci. Technol. 2010, 24, 357–364. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Zhou, C.; Zheng, X.; Li, R. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates. J. Sound Vib. 2020, 489, 115695. [Google Scholar] [CrossRef]
- Li, R.; Zhou, C.; Zheng, X. On New Analytic Free Vibration Solutions of Doubly Curved Shallow Shells by the Symplectic Superposition Method Within the Hamiltonian-System Framework. J. Vib. Acoust. 2021, 143, 011002. [Google Scholar] [CrossRef]
- Hu, Z.; Zheng, X.; An, D.; Zhou, C.; Yang, Y.; Li, R. New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method. Int. J. Mech. Sci. 2021, 191, 106051. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, J.; Yang, D. Benchmark solutions of stationary random vibration for rectangular thin plate based on discrete analytical method. Probabilistic Eng. Mech. 2017, 50, 17–24. [Google Scholar] [CrossRef]
- Xing, Y.F.; Liu, B. New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. 2009, 89, 567–574. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, X.; Arefi, M. Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching. Eur. Phys. J. Plus 2023, 138, 227. [Google Scholar] [CrossRef]
- Yazdanpanah Moghadam, P.; Tahani, M.; Naserian-Nik, A.M. Analytical solution of piezolaminated rectangular plates with arbitrary clamped/simply-supported boundary conditions under thermo-electro-mechanical loadings. Appl. Math. Model. 2013, 37, 3228–3241. [Google Scholar] [CrossRef]
- Gorman, D.J. Free vibration and buckling of in-plane loaded plates with rotational elastic edge support. J. Sound Vib. 2000, 229, 755–773. [Google Scholar] [CrossRef]
- Kiani, Y.; Bagherizadeh, E.; Eslami, M.R. Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). Z. Angew. Math. Mech. 2011, 91, 581–593. [Google Scholar] [CrossRef]
- Liew, K.M.; Hung, K.C.; Lim, M.K. Vibration of mindlin plates using boundary characteristic orthogonal polynomials. J. Sound Vib. 1995, 182, 77–90. [Google Scholar] [CrossRef]
- Zhou, K.; Su, J.; Hua, H. Free and forced vibration analysis of moderately thick orthotropic plates in thermal environment and resting on elastic supports. Arch. Appl. Mech. 2018, 88, 855–873. [Google Scholar] [CrossRef]
- Peng, X.; Zhong, Y.; Shi, J.; Shi, Z. Free flexural vibration analysis of composite sandwich plate with reentrant honeycomb cores using homogenized plate model. J. Sound Vib. 2022, 529, 116955. [Google Scholar] [CrossRef]
- Rostami, H.; Rahbar Ranji, A.; Bakhtiari-Nejad, F. Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 2016, 115–116, 438–456. [Google Scholar] [CrossRef]
- Tang, X.; Guo, C.; Li, F.; Zhang, R.; Song, D.; Fu, P.; Liu, H. Thermal buckling analysis of rotationally-restrained orthotropic thin plates utilizing a two-dimensional improved Fourier series approach. Meccanica 2023, 58, 1443–1464. [Google Scholar] [CrossRef]
- Tang, X.; Guo, C.; Wang, K.; Song, D.; Zhang, J.; Qi, W. New Fourier expansion for thermal buckling analysis of rectangular thin plates with various edge restraints. Arch. Appl. Mech. 2023, 93, 3411–3426. [Google Scholar] [CrossRef]
- Green, A.E. Double Fourier series and boundary value problems. Math. Proc. Camb. Philos. Soc. 1944, 40, 222–228. [Google Scholar] [CrossRef]
- Latifi, M.; Farhatnia, F.; Kadkhodaei, M. Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. Eur. J. Mech.-A/Solids 2013, 41, 16–27. [Google Scholar] [CrossRef]
b/a | Method | Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||
0.5 | Present | 90.573 | 104.12 | 135.07 | 186.88 | 247.59 | 260.38 | 263.77 | 296.88 | 348.49 | 355.27 |
FEM | 90.528 | 104.07 | 135.01 | 187.03 | 247.49 | 260.31 | 263.66 | 296.75 | 348.33 | 355.16 | |
1 | Present | 23.930 | 40.012 | 63.248 | 76.725 | 80.602 | 116.69 | 122.29 | 134.47 | 140.30 | 172.90 |
FEM | 23.918 | 39.991 | 63.216 | 76.704 | 80.562 | 116.64 | 122.23 | 134.43 | 140.23 | 172.83 | |
1.5 | Present | 11.838 | 29.283 | 29.305 | 47.419 | 55.498 | 67.735 | 74.141 | 84.933 | 90.430 | 109.37 |
FEM | 11.832 | 29.269 | 29.292 | 47.395 | 55.470 | 67.721 | 74.104 | 84.907 | 90.385 | 109.32 | |
2 | Present | 7.7778 | 17.544 | 25.860 | 32.231 | 36.036 | 51.210 | 51.835 | 64.926 | 71.104 | 74.341 |
FEM | 7.7748 | 17.536 | 26.232 | 32.215 | 36.018 | 51.184 | 51.809 | 64.915 | 71.069 | 74.322 | |
2.5 | Present | 6.0112 | 12.179 | 21.526 | 24.386 | 30.850 | 34.042 | 40.666 | 49.708 | 53.519 | 63.697 |
FEM | 6.0094 | 12.173 | 21.516 | 24.375 | 30.835 | 34.025 | 40.646 | 49.682 | 53.493 | 63.688 | |
3 | Present | 5.1190 | 9.3197 | 15.766 | 23.620 | 24.416 | 28.080 | 34.928 | 35.292 | 43.970 | 48.319 |
FEM | 5.1179 | 9.3158 | 15.759 | 23.609 | 24.404 | 28.066 | 34.911 | 35.275 | 43.949 | 48.294 | |
3.5 | Present | 4.6193 | 7.6354 | 12.329 | 18.653 | 23.175 | 26.425 | 26.597 | 31.506 | 36.158 | 38.206 |
FEM | 4.6185 | 7.6326 | 12.324 | 18.643 | 23.165 | 26.413 | 26.584 | 31.491 | 36.140 | 38.188 | |
4 | Present | 4.3164 | 6.5702 | 10.126 | 14.938 | 20.995 | 22.896 | 25.364 | 28.296 | 29.269 | 34.447 |
FEM | 4.3159 | 6.5681 | 10.121 | 14.931 | 20.985 | 22.886 | 25.352 | 28.282 | 29.255 | 34.431 | |
4.5 | Present | 4.1210 | 5.8595 | 8.6357 | 12.412 | 17.176 | 22.708 | 22.923 | 24.646 | 27.735 | 29.656 |
FEM | 4.1207 | 5.8579 | 8.6323 | 12.406 | 17.167 | 22.698 | 22.911 | 24.635 | 27.722 | 29.641 | |
5 | Present | 3.9884 | 5.3648 | 7.5855 | 10.621 | 14.460 | 19.098 | 22.575 | 24.135 | 24.533 | 26.643 |
FEM | 3.9881 | 5.3636 | 7.5827 | 10.616 | 14.453 | 19.089 | 22.565 | 24.124 | 24.521 | 26.630 |
b/a | Method | Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||
0.5 | Present | 62.676 | 73.674 | 103.00 | 155.50 | 171.30 | 184.77 | 211.18 | 230.47 | 257.00 | 324.66 |
FEM | 62.642 | 73.634 | 102.96 | 155.43 | 171.22 | 184.68 | 211.08 | 230.40 | 256.86 | 324.50 | |
1 | Present | 16.330 | 31.326 | 43.269 | 57.299 | 68.858 | 84.012 | 91.278 | 98.204 | 127.30 | 129.56 |
FEM | 16.322 | 31.310 | 43.246 | 57.269 | 68.843 | 83.968 | 91.244 | 98.152 | 127.26 | 129.50 | |
1.5 | Present | 8.1418 | 19.810 | 25.375 | 35.630 | 37.770 | 52.846 | 61.836 | 64.447 | 73.038 | 76.747 |
FEM | 8.1384 | 19.800 | 25.363 | 35.612 | 37.749 | 52.819 | 61.803 | 64.434 | 73.018 | 76.707 | |
2 | Present | 5.5800 | 11.783 | 21.728 | 23.704 | 28.900 | 35.171 | 37.919 | 50.794 | 52.058 | 63.138 |
FEM | 5.5784 | 11.777 | 21.717 | 23.693 | 28.886 | 35.153 | 37.900 | 50.767 | 52.031 | 63.126 | |
2.5 | Present | 4.5790 | 8.2190 | 14.411 | 22.919 | 23.031 | 26.110 | 31.503 | 33.661 | 39.336 | 46.611 |
FEM | 4.5783 | 8.2156 | 14.403 | 22.907 | 23.020 | 26.098 | 31.487 | 33.644 | 39.315 | 46.586 | |
3 | Present | 4.1296 | 6.4037 | 10.527 | 16.335 | 22.697 | 23.730 | 24.720 | 28.258 | 32.674 | 33.433 |
FEM | 4.1292 | 6.4015 | 10.522 | 16.327 | 22.686 | 23.718 | 24.709 | 28.244 | 32.657 | 33.416 | |
3.5 | Present | 3.9037 | 5.3969 | 8.2637 | 12.426 | 17.793 | 22.508 | 23.935 | 24.318 | 26.419 | 30.054 |
FEM | 3.9035 | 5.3956 | 8.2603 | 12.421 | 17.784 | 22.497 | 23.924 | 24.305 | 26.407 | 30.039 | |
4 | Present | 3.7789 | 4.8034 | 6.8588 | 9.9434 | 13.984 | 18.932 | 22.390 | 23.451 | 24.763 | 25.286 |
FEM | 3.7789 | 4.8025 | 6.8563 | 9.9390 | 13.977 | 18.922 | 22.380 | 23.440 | 24.750 | 25.274 | |
4.5 | Present | 3.7043 | 4.4355 | 5.9467 | 8.2879 | 11.412 | 15.273 | 19.845 | 22.312 | 23.131 | 24.540 |
FEM | 3.7043 | 4.4349 | 5.9449 | 8.2846 | 11.407 | 15.266 | 19.835 | 22.302 | 23.121 | 24.529 | |
5 | Present | 3.6569 | 4.1972 | 5.3335 | 7.1437 | 9.6074 | 12.686 | 16.354 | 20.592 | 22.258 | 22.909 |
FEM | 3.6569 | 4.1968 | 5.3322 | 7.1411 | 9.6031 | 12.680 | 16.345 | 20.582 | 22.248 | 22.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, A.; Wu, Y.; Yin, Z.; Ullah, S. New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings 2024, 14, 687. https://doi.org/10.3390/buildings14030687
Wu Z, Li A, Wu Y, Yin Z, Ullah S. New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings. 2024; 14(3):687. https://doi.org/10.3390/buildings14030687
Chicago/Turabian StyleWu, Zhaoying, An Li, Yu Wu, Zhiming Yin, and Salamat Ullah. 2024. "New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method" Buildings 14, no. 3: 687. https://doi.org/10.3390/buildings14030687
APA StyleWu, Z., Li, A., Wu, Y., Yin, Z., & Ullah, S. (2024). New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings, 14(3), 687. https://doi.org/10.3390/buildings14030687