An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures
Abstract
:1. Introduction
- What are the most frequently used waste materials in pavement engineering, especially for surface layer construction?
- What is the evidence so far from structural and functional performance features considering both laboratory and field experiments?
- What are the most common problems or gaps faced by researchers and practitioners in the domain of waste material reuse, and what are the future research trends toward a more holistic utilization of these?
2. Waste Materials for Building Asphalt Pavement Surfaces
2.1. Outline and Methods
2.2. Waste Plastic
2.3. Waste Tires
2.4. Waste Glass
2.5. Steel Slag
2.6. Reclaimed Asphalt Pavement
2.6.1. Overview
2.6.2. Challenges Related to the Use of RAP
2.6.3. Performance Features of RAP Mixtures
2.6.4. RAP Combination with Other Waste Materials
2.6.5. RAP in Airfield Pavement Surfaces
3. Challenges and Perspectives on the Use of Waste Materials
3.1. Conventional Mixtures and Reference Status
3.2. Material Availability and Local Conditions
3.3. Life Cycle Analysis
3.4. Legislative Issues
3.5. Synopsis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gannon, C.R.; Wombles, R.H.; Ramcy, C.A.; Daris, J.P.; Little, W.V. Recycling conventional and rubberized bituminous concrete pavement using recycling agents (a laboratory and field study). In Asphalt Paving Technology; Proceeding Association of Asphalt Technologists: Louisvile, KY, USA, 1980. [Google Scholar]
- Imtiaz, A.; Lowel, C.W. Use of Waste materials in highway construction: State of the practice and evaluation of the selected waste products. J. Transp. Res. Rec. 1992, 1345, 1–9. [Google Scholar]
- Saberi, K.F.; Fakhri, M.; Azami, A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J. Clean. Prod. 2017, 165, 1125–1132. [Google Scholar] [CrossRef]
- Lo Presti, D.; del Barco Carrion, A.J.; Airey, G.; Hajj, E. Towards 100% recycling of reclaimed asphalt in road surface courses: Binder design methodology and case studies. J. Clean. Prod. 2016, 131, 43–51. [Google Scholar] [CrossRef]
- Antunes, V.; Neves, J.; Freire, A.C. Performance Assessment of Reclaimed Asphalt Pavement (RAP) in Road Surface Mixtures. Recycling 2021, 6, 32. [Google Scholar] [CrossRef]
- Di Mino, G.; Vijayan, V.; Eskandarsefat, S.; Venturini, L.; Mantalovas, K. Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures. Infrastructures 2023, 8, 84. [Google Scholar] [CrossRef]
- Grilli, A.; Balzi, A. Methodologic Recommendations to Implement Pavement Management Systems and Eco-Sustainable Solutions for Local Road Administrations. Infrastructures 2023, 8, 25. [Google Scholar] [CrossRef]
- Rathore, M.; Zaumanis, M.; Haritonovs, V. Asphalt Recycling Technologies: A Review on Limitations and Benefits. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012046. [Google Scholar] [CrossRef]
- Kazemi, M.; Karimi, A.; Goli, A.; Hajikarimi, P.; Mohammadi, A.; Doctorsafaei, A.; Fini, E. Biobased Polyurethane: A Sustainable Asphalt Modifier with Improved Moisture Resistance. J. Mater. Civ. Eng. 2023, 36, 04023505. [Google Scholar] [CrossRef]
- Tapsoba, N.; Sauzéat, C.; Di Benedetto, H.; Baaj, H.; Ech, M. Behaviour of asphalt mixtures containing reclaimed asphalt pavement and asphalt shingle. Road Mater. Pavement Des. 2014, 15, 330–347. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Hassani, A.; Ganjidoust, H.; Maghanaki, A.A. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manag. Res. 2005, 23, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhong, J.; Zhu, J.; Wang, D. Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Mater. Pavement Des. 2013, 14, 679–688. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Ruge-Cárdenas, J.C.; Patiño-Sánchez, D.F.; Vacca-Gamez, H.A.; Reyes-Lizcano, F.A.; Muniz de Farias, M. Blast Furnace Slag as a Substitute for the Fine Fraction of Aggregates in an Asphalt Mixture. J. Mater. Civ. Eng. 2018, 30, 04018244. [Google Scholar] [CrossRef]
- Jamshidi, A.; White, G. Evaluation of Performance and Challenges of Use of Waste Materials in Pavement Construction: A Critical Review. Appl. Sci. 2020, 10, 226. [Google Scholar] [CrossRef]
- You, L.; Long, Z.; You, Z.; Ge, D.; Yang, X.; Xu, F.; Hashemi, M.; Diab, A. Review of recycling waste plastics in asphalt paving materials. J. Traffic Transp. Eng. 2022, 9, 742–764. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. [Google Scholar] [CrossRef]
- Meroni, F.; Flintsch, G.W.; Diefenderfer, B.K.; Diefenderfer, S.D. Application of Balanced Mix Design Methodology to Optimize Surface Mixes with High-RAP Content. Materials 2020, 13, 5638. [Google Scholar] [CrossRef] [PubMed]
- Meroni, F.; Flintsch, G.W.; Habbouche, J.; Diefenderfer, B.K.; Giustozzi, F. Three-level performance evaluation of high RAP asphalt surface mixes. Constr. Build. Mater. 2021, 309, 125164. [Google Scholar] [CrossRef]
- Puccini, M.; Leandri, P.; Tasca, A.L.; Pistonesi, L.; Losa, M. Improving the Environmental Sustainability of Low Noise Pavements: Comparative Life Cycle Assessment of Reclaimed Asphalt and Crumb Rubber Based Warm Mix Technologies. Coatings 2019, 9, 343. [Google Scholar] [CrossRef]
- Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy Rev. 2016, 64, 211–236. [Google Scholar] [CrossRef]
- Ullah, S.; Tanyu, B.F.; Dawson, A. Reclaimed Asphalt Pavement (RAP) as an Unbound Base Course Material: A Mechanistic Design Approach Based on Multi-stage Repeated Load Triaxial Tests. Transp. Geotech. 2022, 33, 100729. [Google Scholar] [CrossRef]
- Zaumanis, M.; Cavalli, M.C.; Poulikakos, L.D. Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. Int. J. Pavement Eng. 2020, 21, 507–515. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% Hot Mix Asphalt Recycling: Challenges and Benefits. Transp. Res. Procedia 2016, 14, 3493–3502. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C. Skid Resistance Performance of Asphalt Mixtures Containing Recycled Pavement Materials under Simulated Weather Conditions. Recycling 2022, 7, 47. [Google Scholar] [CrossRef]
- Cadar, R.D.; Boitor, R.M.; Dragomir, M.L. An Analysis of Reclaimed Asphalt Pavement from a Single Source—Case Study: A Secondary Road in Romania. Sustainability 2022, 14, 7057. [Google Scholar] [CrossRef]
- Zapata, P.; Gambatese, J.-A. Energy consumption of asphalt and reinforced concrete pavement materials and construction. J. Infrastruct. Syst. 2005, 11, 9–20. [Google Scholar] [CrossRef]
- Sivilevičius, H.; Martišius, M. The Significance of the Factors Increasing the Asphalt Pavement Recycling Rate in the Country, Determined Using Multiple-Criteria Decision-Making Methods. Appl. Sci. 2023, 13, 12226. [Google Scholar] [CrossRef]
- EPAE. Municipal Solid Waste Generation and Disposal in the United States: Facts and Figures for 2012; Environmental Protection Agency: Washington, DC, USA, 2014; p. 12. [Google Scholar]
- Abdel-Jaber, M.; Al-shamayleh, R.A.; Ibrahim, R.; Alkhrissat, T.; Alqatamin, A. Mechanical properties evaluation of asphalt mixtures with variable contents of reclaimed asphalt pavement (RAP). Results Eng. 2022, 14, 100463. [Google Scholar] [CrossRef]
- Fedrigo, W.; Heller, L.F.; Brito, L.A.T.; Núñez, W.P. Fatigue of Cold Recycled Cement-Treated Pavement Layers: Experimental and Modeling Study. Sustainability 2023, 15, 7816. [Google Scholar] [CrossRef]
- Piao, Z.; Mikhailenko, P.; Rafiq Kakar, M.; Bueno, M.; Hellweg, S.; Poulikakos, L.D. Urban mining for asphalt pavements: A review. J. Clean. Prod. 2021, 280, 124916. [Google Scholar] [CrossRef]
- Nandal, M.; Sood, H.; Gupta, P.K. A review study on sustainable utilisation of waste in bituminous layers of flexible pavement. Case Stud. Constr. Mater. 2023, 19, e02525. [Google Scholar] [CrossRef]
- Franesqui, M.A.; Yepes, J.; Valencia-Díaz, S. Sustainable Pavement Construction in Sensitive Environments: Low-Energy Asphalt with Local Waste Materials and Geomaterials. Buildings 2024, 14, 530. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Baloo, L.; Habib, N.Z.; Usman, A.; Yousafzai, A.K.; Ahmad, A.; Birniwa, A.H.; Jagaba, A.H.; Noor, A. A Comprehensive Overview of the Utilization of Recycled Waste Materials and Technologies in Asphalt Pavements: Towards Environmental and Sustainable Low-Carbon Roads. Processes 2023, 11, 2095. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Sha, A.; Song, R.; Li, C.; Wang, Z. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture. J. Clean. Prod. 2022, 373, 133738. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, X.; Xu, S.; Yang, X.; Tian, Q.; Liu, J. Microwave Heating Healing of Asphalt Mixture with Coal Gangue Powder and Basalt Aggregate. Sustainability 2023, 15, 12986. [Google Scholar] [CrossRef]
- Mashaan, N. Engineering Characterisation of Wearing Course Materials Modified with Waste Plastic. Recycling 2022, 7, 61. [Google Scholar] [CrossRef]
- Chhabra, R.S.; Marik, S. A review literature on the use of waste plastics and waste rubber tyres in pavement. Int. J. Core Eng. Manag. 2014, 1, 1–5. [Google Scholar]
- Punith, V.S.; Veeraragavan, A. Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. J. Mater. Civ. Eng. 2007, 19, 500–507. [Google Scholar] [CrossRef]
- Lastra-Gonzalez, P.; Calzada-Perez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, A.; Indacoechea-Vega, I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Construct. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef]
- Giri, J.P.; Panda, M.; Sahoo, U.C. Performance of bituminous mixes containing treated recycled concrete aggregates and modified by waste polyethylene. J. Mater. Civ. Eng. 2018, 30, 04018184. [Google Scholar] [CrossRef]
- Ameri, M.; Nasr, D. Performance properties of devulcanized waste PET modified asphalt mixtures. Petrol. Sci. Technol. 2017, 35, 99–104. [Google Scholar] [CrossRef]
- Ziari, H.; Nasiri, E.; Amini, A.; Ferdosian, O. The effect of EAF dust and waste PVC on moisture sensitivity, rutting resistance, and fatigue performance of asphalt binders and mixtures. Construct. Build. Mater. 2019, 203, 188–200. [Google Scholar] [CrossRef]
- Kofteci, S. Effect of HDPE based wastes on the performance of modified asphalt mixtures. Procedia Eng. 2016, 161, 1268–1274. [Google Scholar] [CrossRef]
- Nouali, M.; Derriche, Z.; Ghorbel, E.; Li, C. Plastic bag waste modified bitumen a possible solution to the Algerian road pavements. Road Mater. Pavement Des. 2020, 21, 1713–1725. [Google Scholar] [CrossRef]
- Moghadas Nejad, F.; Arabani, M.; Hamedi, G.H.; Azarhoosh, A.R. Influence of using polymeric aggregate treatment on moisture damage in hot mix asphalt. Construct. Build. Mater. 2013, 47, 1523–1527. [Google Scholar] [CrossRef]
- Taherkhani, H.; Arshadi, M.R. Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate. Road Mater. Pavement Des. 2019, 20, 381–398. [Google Scholar] [CrossRef]
- Usman, N.; Masirin, M.I.M.; Ahmad, K.A.; Ali, A.S.B. Application of recycled polyethylene terephthalate fiber in asphaltic mix for fatigue life improvement. In Proceedings of the 1st Global Civil Engineering Conference, Kuala Lumpur, Malaysia, 25–28 July 2017; Pradhan, B., Ed.; Springer: Singapore, 2019; pp. 1401–1413. [Google Scholar]
- Karmakar, S.; Majhi, D.; Roy, T.K.; Chanda, D. Moisture damage analysis of bituminous mix by durability index utilizing waste plastic cup. J. Mater. Civ. Eng. 2018, 30, 04018216. [Google Scholar] [CrossRef]
- Russo, F.; Eskandarsefat, S.; Venturini, L.; Viscione, N. A complete study on an asphalt concrete modified with graphene and recycled hard-plastics: A case study. Case Stud. Constr. Mater. 2022, 17, e01437. [Google Scholar] [CrossRef]
- Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb rubber modifier in road asphalt pavements: State of the art and statistics. Coatings 2019, 9, 384. [Google Scholar] [CrossRef]
- Lo Presti, D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Chavez, F.; Marcobal, J.; Gallego, J. Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process. Constr. Build. Mater. 2019, 205, 164–174. [Google Scholar] [CrossRef]
- Venudharan, V.; Biligiri, K.P.; Sousa, J.B.; Way, G.B. Asphalt-rubber gap-graded mixture design practices: A state-of-the-art research review and future perspective. Road Mater. Pavement Des. 2017, 18, 730–752. [Google Scholar] [CrossRef]
- Kedarisetty, S.; Biligri, K.P.; Sousa, J.B. Advanced rheological characterization of Reacted and Activated Rubber (RAR) modified asphalt binders. Constr. Build. Mater. 2016, 122, 12–22. [Google Scholar] [CrossRef]
- Cong, P.; Xun, P.; Xing, M.; Chen, S. Investigation of asphalt binder containing various crumb rubbers and asphalts. Constr. Build. Mater. 2013, 40, 632–641. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.-J.; Yun, Y.-B.; Kim, K.W. The use of CRM-modified asphalt mixtures in Korea: Evaluation of high and ambient temperature performance. Construct. Build. Mater. 2014, 67, 244–248. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, L.Y.; Xue, L. Effect of crumb rubber modifier on pavement performance of wearing course asphalt mixture. Adv. Mater. Res. 2011, 168–170, 1145–1148. [Google Scholar]
- Kedarisetty, S.; Saha, G.; Biligiri, K.P.; Sousa, J.B. Reacted and activated rubber (RAR)-modified dense-graded asphalt mixtures: Design and performance evaluation. J. Test. Eval. 2018, 46, 2511–2520. [Google Scholar] [CrossRef]
- Moreno, F.; Sol, M.; Rubio, M.C.; Segarra, M. The use of additives for the improvement of the mechanical behavior of high modulus asphalt mixes. Construct. Build. Mater. 2014, 70, 65–70. [Google Scholar] [CrossRef]
- Shirini, B.; Imaninasab, R. Performance evaluation of rubberized and SBS modified porous asphalt mixtures. Construct. Build. Mater. 2016, 107, 165–171. [Google Scholar] [CrossRef]
- Perez, I.; Pasandín, A.R. Moisture damage resistance of hot-mix asphalt made with recycled concrete aggregates and crumb rubber. J. Clean. Prod. 2017, 165, 405–414. [Google Scholar] [CrossRef]
- Kok, B.V.; Çolak, H. Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Construct. Build. Mater. 2011, 25, 3204–3212. [Google Scholar] [CrossRef]
- Navarro, F.M.; Gamez, M.C.R. Influence of crumb rubber on the indirect tensile strength and stiffness modulus of hot bituminous mixes. J. Mater. Civ. Eng. 2012, 24, 715–724. [Google Scholar] [CrossRef]
- Eskandarsefat, S.; Sangiorgi, C.; Dondi, G.; Lamperti, R. Recycling asphalt pavement and tire rubber: A full laboratory and field scale study. Constr. Build. Mater. 2018, 176, 283–294. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C.; Kane, M.; Loizos, A. Polishing behaviour of asphalt surface course containing recycled materials. Int. J. Transp. Sci. Technol. 2022, 11, 711–725. [Google Scholar] [CrossRef]
- Putra, A.D.; Hadiwardoyo, S.P.; Sumabrata, R.J. Skid resistance performance against temperature change of hot-mix recycled asphalt pavement with added crumb rubber. AIP Conf. Proc. 2019, 2114, 04112. [Google Scholar]
- Wang, H.; Liu, X.; Erkens, S.; Skarpas, A. Experimental characterization of storage stability of crumb rubber modified bitumen with warm-mix additives. Constr. Build. Mater. 2020, 249, 118840. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Yun, J.; Jeong, K.-D.; Lee, M.-S.; Lee, S.-J. Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders. Sustainability 2023, 15, 13568. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, T. Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. J. Clean. Prod. 2018, 177, 302–314. [Google Scholar] [CrossRef]
- Rashad, A.M. Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Constr. Build Mater. 2014, 72, 340–357. [Google Scholar] [CrossRef]
- Khmiri, A.; Chaabouni, M.; Samet, B. Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Constr. Build Mater. 2013, 44, 74–80. [Google Scholar] [CrossRef]
- Kalampokis, S.; Kalama, D.; Kesikidou, F.; Stefanidou, M.; Manthos, E. Assessment of Waste Glass Incorporation in Asphalt Concrete for Surface Layer Construction. Materials 2023, 16, 4938. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 1–19. [Google Scholar] [CrossRef]
- Tahmoorian, F.; Samali, B.; Yeaman, J.; Crabb, R. The Use of Glass to Optimize Bitumen Absorption of Hot Mix Asphalt Containing Recycled Construction Aggregates. Materials 2018, 11, 1053. [Google Scholar] [CrossRef]
- Gedik, A. An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction. Constr. Build. Mater. 2021, 300, 123980. [Google Scholar] [CrossRef]
- Hamid, A.; Ahmad, N.; Zaidi, B.; Khalid, R.A.; Hafeez, I.; Hussain, J.; Khitab, A.; Kırgız, M.S. GlasSphalt: A Borosilicate Based Sustainable Engineering Material for Asphalt Pavements. Sustainability 2023, 15, 4277. [Google Scholar] [CrossRef]
- Airey, G.D.; Collop, A.C.; Thom, N.H. Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates. In Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa, Sun City, South Africa, 12–16 September 2004. [Google Scholar]
- Moreno-Navarro, F.; Perez-Martinez, M.; Martín-Marín, J.; Sol-Sanchez, M.; Rubio-Gámez, M.-C. Mechanical performance of asphalt mixes incorporating waste glass. Balt. J. Road Bridge Eng. 2015, 10, 255–261. [Google Scholar] [CrossRef]
- Wu, S.; Yang, W.; Xue, Y. Preparation and Properties of Glass-Asphalt Concrete; Key Laboratory for Silicate Materials Science and Engineering of Ministry of Education, Wuham University of Technology: Wuham, China, 2004. [Google Scholar]
- Arnold, G.; Werkmeister, S.; Alabaster, D. The Effect of Adding Recycled Glass on the Performance of Base Course Aggregate. In NZ Transport Agency Research Report 351; New Zealand Transport Agency: Wellington, New Zealand, 2008. [Google Scholar]
- Shafabakhsh, G.H.; Sajed, Y. Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet. J. Case Stud. Constr. Mater. 2014, 1, 96–103. [Google Scholar] [CrossRef]
- Hughes, C.S. Feasibility of Using Recycled Glass in Asphalt Mixes; Report No. VTRC 90-R3; Virginia Transportation Research Council: Charlottesville, VA, USA, 1990. [Google Scholar]
- Su, N.; Chen, J.S. Engineering properties of asphalt concrete made with recycled glass. Resou.r Conserv. Recycl. 2002, 35, 259–274. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Optimization of electric arc furnace aggregates replacement in dense-graded asphalt wearing courses. Int. J. Pavement Res. Technol. 2021, 14, 309–317. [Google Scholar] [CrossRef]
- EUROSLAG. Position Paper on the Status of Ferrous Slag; The European Slag Association, The European Steel Association: Duisburg, Germany, 2012. [Google Scholar]
- Kehagia, F. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates. Waste Manag. Res. J. A Sustain. Circ. Econ. 2009, 27, 288–294. [Google Scholar] [CrossRef]
- Dondi, G.; Mazzotta, F.; Lantieri, C.; Cuppi, F.; Vignali, V.; Sangiovanni, C. Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements. Materials 2021, 14, 345. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the unexplored potential of European waste materials for road construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Skaf, M.; Manso, J.M.; Aragón, Á.; Fuente-Alonso, J.A.; Ortega-López, V. EAF slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wei, S.-H. Engineering properties and performance of asphalt mixtures incorporating steel slag. Construct. Build. Mater. 2016, 128, 148–153. [Google Scholar] [CrossRef]
- Amelian, S.; Manian, M.; Abtahi, S.M.; Goli, A. Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J. Clean. Prod. 2018, 176, 329–337. [Google Scholar] [CrossRef]
- Oluwasola, E.A.; Hainin, M.R.; Aziz, M.A. Comparative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings. J. Cleaner Prod. 2016, 122, 315–325. [Google Scholar] [CrossRef]
- Pattanaik, M.L.; Choudhary, R.; Kumar, B.; Kumar, A. Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Mater. Pavement Des. 2021, 22, 268–292. [Google Scholar] [CrossRef]
- Ameri, M.; Hesami, S.; Goli, H. Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Constr. Build. Mater. 2013, 49, 611–617. [Google Scholar] [CrossRef]
- Kim, K.; Haeng Jo, S.; Kim, N.; Kim, H. Characteristics of hot mix asphalt containing steel slag aggregate according to temperature and void percentage. Construct. Build. Mater. 2018, 188, 1128–1136. [Google Scholar] [CrossRef]
- Qazizadeh, M.J.; Farhad, H.; Kavussi, A.; Sadeghi, A. Evaluating the fatigue behavior of asphalt mixtures containing electric arc furnace and basic oxygen furnace slags using surface free energy estimation. J. Clean. Prod. 2018, 188, 355–361. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Fatigue behavior characterization of bituminous mixtures made with reclaimed asphalt pavement and steel slag. Procedia Soc. Behav. Sci. 2012, 53, 297–306. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Picado-Santos, L.G.; Capitão, S.D. Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties. Constr. Build. Mater. 2018, 185, 684–696. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Vaiana, R.; Balzano, F.; Iuele, T.; Gallelli, V. Microtexture performance of EAF slags used as aggregate in asphalt mixes: A comparative study with surface properties of natural stones. Appl. Sci. 2019, 9, 3197. [Google Scholar] [CrossRef]
- Sofilic, T.; Maldenovic, A.; Sofilic, U. Characterization of the EAF steel slag as aggregate for use in road construction. Chem. Eng. Trans. 2010, 19, 117–123. [Google Scholar]
- Liapis, I.; Likoydis, S. Use of electric arc furnace slag in thins skid-resistant surfacing. Proc. Soc. Behav. Sci. 2012, 48, 907–918. [Google Scholar] [CrossRef]
- Plati, C.; Pomoni, M.; Stergiou, T. From Mean Texture Depth to Mean Profile Depth: Exploring possibilities. In Proceedings of the 7th International Conference on Bituminous Mixtures and Pavements (ICONFBMP), Thessaloniki, Greece, 12–14 June 2019; pp. 639–644. [Google Scholar] [CrossRef]
- Fakhri, M.; Ahmadi, A. Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Constr. Build. Mater. 2017, 147, 630–638. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Dissipated energy analysis of four-point bending test on asphalt concretes made with steel slag and RAP. Int. J. Pavement Res. Technol. 2017, 10, 446–453. [Google Scholar] [CrossRef]
- Asi, I.M.; Qasrawi, H.Y.; Shalabi, F.I. Use of steel slag aggregate in asphalt concrete mixes. Can. J. Civ. Eng. 2007, 34, 902–911. [Google Scholar] [CrossRef]
- Kavussi, A.; Qazizadeh, M.J. Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Constr. Build. Mater. 2014, 72, 158–166. [Google Scholar] [CrossRef]
- Shiha, M.; El-Badawy, S.; Gabr, A. Modeling and performance evaluation of asphalt mixtures and aggregate bases containing steel slag. Constr. Build. Mater. 2020, 248, 118710. [Google Scholar] [CrossRef]
- Wang, D.; Riccardi, C.; Jafari, B.; Falchetto, A.C.; Wistuba, M.P. Investigation on the effect of high amount of Re-recycled RAP with Warm mix asphalt (WMA) technology. Constr. Build. Mater. 2021, 312, 125395. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Jiao, Y.; Mo, L.; Tan, Y.; Wang, D.; Liang, M. Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L. Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 2015, 104, 224–238. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H. Life cycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspect. J. Clean. Prod. 2018, 187, 148–157. [Google Scholar] [CrossRef]
- Elmagarhe, A.; Lu, Q.; Alharthai, M.; Alamri, M.; Elnihum, A. Performance of Porous Asphalt Mixtures Containing Recycled Concrete Aggregate and Fly Ash. Materials 2022, 15, 6363. [Google Scholar] [CrossRef] [PubMed]
- Montepara, A.; Tebaldi, G.; Marradi, A.; Betti, G. Effect on pavement performance of a subbase layer composed by natural aggregate and RAP. Procedia Soc. Behav. Sci. 2012, 53, 980–989. [Google Scholar] [CrossRef]
- Binte Alam, T.; Abdelrahman, M.; Schram, S.A. Laboratory characterization of recycled asphalt pavement as a base layer. Int. J. Pavement Eng. 2010, 11, 123–131. [Google Scholar] [CrossRef]
- Gkyrtis, K. Pavement Analysis with the Consideration of Unbound Granular Material Nonlinearity. Designs 2023, 7, 142. [Google Scholar] [CrossRef]
- Loizos, A.; Spiliopoulos, K.; Cliatt, B.; Gkyrtis, K. Structural pavement responses using nonlinear finite element analysis of unbound materials. In Proceedings of the 10th International Conference on Bearing Capacity of Roads, Railways and Airfields (BCRRA), Athens, Greece, 28–30 June 2017; pp. 1343–1350. [Google Scholar]
- Loizos, A.; Gkyrtis, K.; Plati, C. Modelling Asphalt Pavement Responses Based on Field and Laboratory Data. In Accelerated Pavement Testing to Transport Infrastructure Innovation; Chabot, A., Hornych, P., Harvey, J., Loria-Salazar, L., Eds.; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2020; Volume 96, pp. 438–447. [Google Scholar]
- Al-Qadi, I.L.; Carpenter, S.H.; Roberts, G.F.; Ozer, H.; Aurangzeb, Q.; Elseifi, M.; Trepanier, J. Determination of Usable Residual Asphalt Binder in RAP; Research Report ICT-09-031; Illinois Center for Transportation: Rantoul, IL, USA, 2009. [Google Scholar]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; No. FHWA-HRT-11-021; Federal Highway Administration: McLean, VA, USA, 2011. [Google Scholar]
- Valdés, G.; Pérez-Jiménez, F.; Miró, R.; Martínez, A.; Botella, R. Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2011, 25, 1289–1297. [Google Scholar] [CrossRef]
- Widyatmoko, I. Mechanistic-empirical mixture design for hot mix asphalt pavement recycling. Constr. Build Mater. 2008, 22, 77–87. [Google Scholar] [CrossRef]
- Li, X.; Marasteanu, M.; Williams, R.; Clyne, T. Effect of RAP (proportion and type) and binder grade on the properties of asphalt mixtures. Transport Res. Rec. J. Transport Res. Board 2008, 2051, 90–97. [Google Scholar] [CrossRef]
- Austroads. Maximising the Re-Use of Reclaimed Asphalt Pavement: Outcomes of Year Two: RAP Mix Design; AP-T286-15; Austroads: Sydney, Australia, 2015. [Google Scholar]
- del Barco Carrión, A.J.; Lo Presti, D.; Airey, G.D. Binder design of high RAP content hot and warm asphalt mixture wearing courses. Road Mater. Pavement Des. 2015, 16, 460–474. [Google Scholar] [CrossRef]
- EN 13108-8; Bituminous Mixtures—Material Specifications—Part 8: Reclaimed Asphalt. BSI: Belgium, The Netherlands, 2006.
- Sedthayutthaphong, N.; Jitsangiam, P.; Nikraz, H.; Pra-ai, S.; Tantanee, S.; Nusit, K. The Influence of a Field-Aged Asphalt Binder and Aggregates on the Skid Resistance of Recycled Hot Mix Asphalt. Sustainability 2021, 13, 10938. [Google Scholar] [CrossRef]
- Lu, D.X.; Saleh, M.; Nguyen, N.H.T. Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content. Constr. Build. Mater. 2019, 197, 792–802. [Google Scholar] [CrossRef]
- Abe, A.A.; Caputo, P.; Eskandarsefat, S.; Loise, V.; Porto, M.; Giorno, E.; Venturini, L.; Oliviero Rossi, C. Rejuvenating Agents vs. Fluxing Agents: Their Respective Mechanisms of Action on Bitumen Subjected to Multiple Aging Cycles. Appl. Sci. 2023, 13, 698. [Google Scholar] [CrossRef]
- Izaks, R.; Haritonovs, V.; Klasa, I.; Zaumanis, M. Hot Mix Asphalt with High RAP Content. Procedia Eng. 2015, 114, 676–684. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. The Effect of the Nature of Rejuvenators on the Rheological Properties of Aged Asphalt Binders. In RILEM 252-CMB-Symposium on Chemo Mechanical Characterization of Bituminous Materials; Springer: Cham, Switzerland, 2018; pp. 220–225. [Google Scholar]
- Tran, N.H.; Taylor, A.; Willis, R. Effect of Rejuvenator on Performance Properties of HMA Mixtures with High RAP and RAS Contents; NCAT Report 12-05; National Center for Asphalt Technology at Auburn University: Auburn, AL, USA, 2012. [Google Scholar]
- Canon Falla, G.; Blasl, A.; Millow, R.; Lo Presti, D. Mix design considerations for asphalt wearing courses with high reclaimed asphalt content. In Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements, Thessaloniki, Greece, 10–12 June 2015. [Google Scholar]
- Stroup-Gardiner, M.; Wagner, C. Use of Reclaimed Asphalt Pavement in Superpave Hot-Mix Asphalt Applications. Transp. Res. Rec. 1999, 1681, 1–9. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Neves, J. Investigating aged binder mobilization and performance of RAP mixtures for surface courses. Constr. Build. Mater. 2021, 271, 121511. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Bennert, T.; Daniel, J.; Bonaquist, R.; Austerman, A.; Booshehrian, A. Performance Characteristics of Plant Produced High RAP Mixtures. Road Mater. Pavement Des. 2012, 13, 183–208. [Google Scholar] [CrossRef]
- Sharma, A.; Rongmei Nuga, G.R.; Kumar, P.; Rai, P. Mix design, development, production and policies of recycled hot mix asphalt: A review. J. Traffic Transp. Eng. Engl. Ed. 2022, 9, 765–794. [Google Scholar] [CrossRef]
- Jamshidi, A.; Hamzah, M.O.; Kurumisawa, K.; Nawa, T.; Samali, B. Evaluation of sustainable technologies that upgrade the binder performance grade in asphalt pavement construction. J. Mater. Des. 2016, 95, 9–20. [Google Scholar] [CrossRef]
- Goh, S.; You, Z. Properties of Asphalt Mixtures with RAP in the Mechanistic-empirical pavement design of flexible pavements: A Preliminary Investigation. In Airfield and Highway Pavements; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 171–181. [Google Scholar]
- Maupin, G.W.; Diefenderfer, S.D.; Gillespie, J.S. Evaluation of Using Higher Percentages of Recycled Asphalt Pavement in Asphalt Mixes in Virginia; Virginia Transportation Research Council: Charlottesville, VA, USA, 2008; p. 29. [Google Scholar]
- Apeagyei, A.K.; Clark, T.M.; Rorrer, T.M. Stiffness of high-RAP asphalt mixtures: Virginia’s experience. J. Mater. Civ. Eng. 2013, 25, 747–754. [Google Scholar] [CrossRef]
- Doyle, J.D.; Howard, I.L. Laboratory Investigation of High RAP Content Pavement Surface Layers; Final Report FHWA/MS-DOT-RD-10-212; Mississippi State University: Oktibbeha, MI, USA, 2010. [Google Scholar]
- Poursoltani, M.; Hesami, S. Performance evaluation of micro-surfacing mixture containing reclaimed asphalt pavement. Int. J. Pavement Eng. 2020, 21, 1491–1504. [Google Scholar] [CrossRef]
- Wang, Y. The effects of using reclaimed asphalt pavements (RAP) on the long-term performance of asphalt concrete overlays. Constr. Build. Mater. 2016, 120, 335–348. [Google Scholar] [CrossRef]
- Gong, H.; Huang, B.; Shu, X. Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data. Constr. Build. Mater. 2018, 176, 118–128. [Google Scholar] [CrossRef]
- Hand, A.J.T.; Ragavan, P.; Elias, N.G.; Hajj, E.Y.; Sebaaly, P.E. Evaluation of Low Volume Roads Surfaced with 100% RAP Millings. Materials 2022, 15, 7462. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Shen, S.; Li, X.; Song, B. Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Constr. Build. Mater. 2019, 201, 303–313. [Google Scholar] [CrossRef]
- Khorashadizadeh, A.; Hajikarimi, P.; Rahi, M.; Maniei, S. Prediction of Rheological Properties of Asphalt Binder and Asphalt Mastic Containing Crumb Rubber Using Generalized Self-Consistent Micromechanical Model (GSCS). J. Transp. Res. 2024, 21, 329–338. [Google Scholar]
- Li, H.; Dong, B.; Wang, W.; Zhao, G.; Guo, P.; Ma, Q. Effect of Waste Engine Oil and Waste Cooking Oil on Performance Improvement of Aged Asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef]
- Jia, X.; Huang, B.; Moore, J.A.; Zhao, S. Influence of Waste Engine Oil on Asphalt Mixtures Containing Reclaimed Asphalt Pavement. J. Mater. Civ. Eng. 2015, 27, 04015042. [Google Scholar] [CrossRef]
- Mangiafico, S.; Di Benedetto, H.; Sauzéat, C.; Olard, F.; Pouget, S.; Planque, L. Relations between Linear Visco-Elastic Behaviour of Bituminous Mixtures Containing Reclaimed Asphalt Pavement and Colloidal Structure of Corresponding Binder Blends. Procedia Eng. 2016, 143, 138–145. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Koting, S.; Katman, H.Y.B.; Ibrahim, M.R.; Babalghaith, A.M.; Asqool, O. Performance of High Content Reclaimed Asphalt Pavement (RAP) in Asphaltic Mix with Crumb Rubber Modifier and Waste Engine Oil as Rejuvenator. Appl. Sci. 2021, 11, 5226. [Google Scholar] [CrossRef]
- Song, W.; Zou, X.; Wu, H.; Zhan, Y. Effect of RAP and glass fiber on mode I fracture behaviors of ultra-thin friction course. Eng. Fract. Mech. 2022, 275, 108868. [Google Scholar] [CrossRef]
- Liu, Z.; Balieu, R.; Kringos, N. Integrating sustainability into pavement maintenance effectiveness evaluation: A systematic review. Transp. Res. Part D 2022, 104, 103187. [Google Scholar] [CrossRef]
- Ahmed, I. Use of Waste Materials in Highway Construction; Elsevier: London, UK, 1993; pp. 1–115. [Google Scholar]
- Gkyrtis, K.; Plati, C.; Loizos, A. A step toward improving management practices for airfield pavement infrastructures: A mechanistic-based analysis approach. Struct. Infrastruct. Eng. 2023. [Google Scholar] [CrossRef]
- White, G. Quantifying the impact of reclaimed asphalt pavement on airport asphalt surfaces. Constr. Build. Mater. 2019, 197, 757–765. [Google Scholar] [CrossRef]
- Su, K.; Hachiya, Y.; Maekawa, R. Study on recycled asphalt concrete for use in surface course in airport pavement. Resour. Conserv. Recycl. 2009, 54, 37–44. [Google Scholar] [CrossRef]
- Gkyrtis, K.; Armeni, A.; Loizos, A. A mechanistic perspective for airfield pavements evaluation focusing on the asphalt layers’ behaviour. Int. J. Pavement Eng. 2023, 14, 5087–5100. [Google Scholar] [CrossRef]
- Garg, N.; Kazmee, H.; Ricalde, L. Use of Recycled Asphalt Pavement (RAP) in Airport Pavements. In Proceedings of the RILEM International Symposium on Bituminous Materials, ISBM 2020, Lyon, France, 8–10 June 2020; RILEM Bookseries. Di Benedetto, H., Baaj, H., Chailleux, E., Tebaldi, G., Sauzéat, C., Mangiafico, S., Eds.; Springer: Cham, Switzerland, 2022; Volume 27, pp. 1909–1916. [Google Scholar]
- Xu, X.; Leng, Z.; Lan, J.; Wang, W.; Yu, J.; Bai, Y.; Sreeram, A.; Hu, J. Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering 2021, 7, 857–867. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, F.; Amirkhanian, S. Recent applications of waste solid materials in pavement engineering. Waste Manag. 2020, 108, 78–105. [Google Scholar] [CrossRef]
- European Tire & Rubber Manufacturer’s Association (ETRMA). The ETRMA Statistics Report; European Tire & Rubber Manufacturer’s Association: Saint-Josse-ten-Noode, Belgium, 2019. [Google Scholar]
- Farina, A.; Zanetti, M.C.; Santagata, E.; Blengini, G.A. Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement. Resour. Conserv. Recycl. 2017, 117, 204–212. [Google Scholar] [CrossRef]
- Mantalovas, K.; Di Mino, G. Integrating Circularity in the Sustainability Assessment of Asphalt Mixtures. Sustainability 2020, 12, 594. [Google Scholar] [CrossRef]
- Buttitta, G.; Giancontieri, G.; Parry, T.; Lo Presti, D. Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe. Sustainability 2023, 15, 14546. [Google Scholar] [CrossRef]
- Medina, T.; Calmon, J.L.; Vieira, D.; Bravo, A.; Vieira, T. Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal. Sustainability 2023, 15, 14892. [Google Scholar] [CrossRef]
- Assaf, H.; Abu Abdo, A. Life cycle assessment of incorporating recycled materials in pavement Design. J. King Saud Univ. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Wang, J.; Sha, C.; Ly, S.; Wang, H.; Sun, Y.; Guo, M. Life Cycle Carbon Emissions and an Uncertainty Analysis of Recycled Asphalt Mixtures. Sustainability 2023, 15, 16368. [Google Scholar] [CrossRef]
- Bizarro, D.E.G.; Steinmann, Z.; Nieuwenhuijse, I.; Keijzer, E.; Hauck, M. Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential. Sustainability 2021, 13, 1382. [Google Scholar] [CrossRef]
- Wang, Q.-Z.; Chen, Z.-D.; Lin, K.-P.; Wang, C.-H. Estimation and Analysis of Energy Conservation and Emissions Reduction Effects of Warm-Mix Crumb Rubber-Modified Asphalts during Construction Period. Sustainability 2018, 10, 4521. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Zhang, L.; Amirkhanian, S.N. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Ozbay, K.; Jawad, D.; Parker, N.A.; Hussain, S. Life-cycle cost analysis: State of the practice versus state of the art. Transp. Res. Rec. 2004, 1864, 62–70. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H.; Hasan, A. Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section. CivilEng 2022, 3, 316–331. [Google Scholar] [CrossRef]
- Anthonissen, J.; Van den bergh, W.; Braet, J. Review and environmental impact assessment of green technologies for base courses in bituminous pavements. Environ. Impact Assess. Rev. 2016, 60, 139–147. [Google Scholar] [CrossRef]
- Azadgoleh, M.A.; Mohammadi, M.M.; Ghodrati, A.; Sharifi, S.S.; Palizban, S.M.M.; Ahmadi, A.; Vahidi, E.; Ayar, P. Characterization of contaminant leaching from asphalt pavements: A critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. Water Res. 2022, 219, 118584. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Silva, H.M.R.D.; Oliveira, J.R.M.; Moura, C.F.N.; Loureiro, C.D.A.; Silvestre, J.D.; Rodrigues, M.M.M. Mechanical and Environmental Performance of Asphalt Concrete with High Amounts of Recycled Concrete Aggregates (RCA) for Use in Surface Courses of Pavements. Sustainability 2024, 16, 248. [Google Scholar] [CrossRef]
Material | Waste Plastic | Waste Tires | Waste Glass | Steel Slag | RAP |
---|---|---|---|---|---|
No. of References | 37 | 28 | 21 | 33 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkyrtis, K.; Pomoni, M. An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures. Buildings 2024, 14, 1571. https://doi.org/10.3390/buildings14061571
Gkyrtis K, Pomoni M. An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures. Buildings. 2024; 14(6):1571. https://doi.org/10.3390/buildings14061571
Chicago/Turabian StyleGkyrtis, Konstantinos, and Maria Pomoni. 2024. "An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures" Buildings 14, no. 6: 1571. https://doi.org/10.3390/buildings14061571
APA StyleGkyrtis, K., & Pomoni, M. (2024). An Overview of the Recyclability of Alternative Materials for Building Surface Courses at Pavement Structures. Buildings, 14(6), 1571. https://doi.org/10.3390/buildings14061571