Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection
Abstract
:1. Introduction
2. Methodology
2.1. Development of Deep Learning Prediction Models for Reflective Cracking in Highways
2.1.1. Overview
2.1.2. Predictive Model and Enhancements for Improved Accuracy
- E: This represents the reflective cracking prediction amount, which is the dependent variable we attempt to estimate.
- to : These are the coefficients of the independent variables in the predictive model. Each coefficient represents the contribution of the corresponding independent variable to the prediction of reflective cracking.
- to : These are the independent variables used in the predictive model. Each variable represents a different environmental or exploitation factor that may influence the occurrence of reflective cracking. Here is a breakdown of what each variable represents:
- ○
- : Mean temperature;
- ○
- : Relative humidity;
- ○
- : Largest amount of fresh snowfall;
- ○
- : Precipitation days;
- ○
- : Traffic volume.
2.1.3. Supervised Learning Methods for Machine Learning Forecasting
2.2. Reflection Cracking Detection Model
2.2.1. Data Collecting and Pre-Processing
2.2.2. Data Labeling
2.2.3. Data Augmentation
2.2.4. Deep Learning-Driven Object Identification
2.2.5. Mask R-CNN
2.2.6. Applications
2.2.7. Hyperparameters
2.2.8. Comparable Architectures
2.2.9. Comparative Analysis and Evaluation
2.2.10. Cross-Entropy Loss Function
- y is the true label (0 for background, 1 for reflective cracking);
- is the predicted probability;
- log denotes the natural logarithm.
- y is the true label (0 for background, 1 for reflective cracking);
- is the predicted probability;
- is the weight assigned to the reflective cracking pixels;
- is the weight assigned to the background pixels;
- log denotes the natural logarithm.
3. Results and Discussions
3.1. Reflection Cracking Prediction Results
3.1.1. Initial Multilinear Regression Analysis
3.1.2. Comparison of Machine Learning Techniques for Model Optimization
3.1.3. Limitations
3.2. Reflective Cracking Categorization
3.3. Reflective Cracking Segmentations
3.3.1. Overall Results
3.3.2. Weather Impact on Training Efficiency
3.3.3. Results of Average Precision at 50%
3.4. Architecture Comparison
3.5. Challenges in Implementation
4. Conclusions
- The refined multilinear regression model exhibited improved predictive performance for reflective cracking occurrences. By integrating data from weather, traffic volume, and reflective cracking surveys spanning 2014 to 2018, the model achieved heightened accuracy. Standardization of variables was crucial for accuracy enhancement, particularly given the diverse ranges in traffic and temperature. Comparative analysis between analytical and empirical approaches further validated the model’s efficacy, as it successfully forecasted reflective cracking numbers for 2019, a period not included in its initial training.
- The comprehensive evaluation of prediction models highlights the competitive performance of both empirical and analytical approaches across the NH19 and NH23 districts. For the NH19 district, the empirical approach yielded RMSE, MAE, and MSE values of 0.5355, 0.4217, and 0.2867, respectively, while the analytical approach demonstrated slightly improved values of 0.5743, 0.4182, and 0.3299, indicating a stronger fit to the data.
- The findings highlight the effectiveness of image classification techniques in categorizing reflective cracking across various pavement types and weather conditions, as evidenced by precision rates derived from extensive datasets. Notably, for concrete pavement, image classification achieved remarkable precision rates of 95.9% under clear weather and 91.4% under various weather scenarios. Conversely, for asphalt pavement, slightly lower but still impressive average precision scores of 92.7% under clear weather and 82.6% under multiple weather conditions were attained. Concrete pavement’s superior detection effectiveness can be attributed to several factors, including its high contrast with cracks against the background, smoother surface texture aiding segmentation, and durability leading to well-defined cracks.
- The Mask R-CNN model showed strong performance in detecting reflective cracking, maintaining a total loss below 0.3 and a precision above 0.9. While convergence typically happens after 2000 iterations, datasets with varied weather conditions may require up to 4000 iterations for optimal training. The impact of climate data on training is significant, with diverse weather conditions correlating with lower results. The model’s effectiveness was validated by achieving over 80% accuracy in all testing scenarios, despite slight performance variations, indicating its reliability across different conditions.
- The AP50 results illustrate segmentation accuracy for reflective cracking identification, revealing varied reliability across contexts. “Clear settings” exhibited the highest reliability, while the “multiple weather” scenario displayed the least reliability. Mean accuracies for these conditions were 94.7% and 82.4%, respectively, for IOU = 0.5 (AP50). The integration of the “black” color of asphalt pavement poses challenges, potentially leading to mistaken identification. These findings underscore the practical difficulty in recognizing reflective cracking.
- Mask R-CNN and Yolov8 exhibited top performance in pavement damage detection, with AP50 scores of 92.5% and 91.3%, respectively, under clear weather conditions for asphalt pavement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhakal, N.; Elseifi, M.A.; Zhang, Z. Mitigation Strategies for Reflection Cracking in Rehabilitated Pavements—A Synthesis. Int. J. Pavement Res. Technol. 2016, 9, 228–239. [Google Scholar] [CrossRef]
- Tam, A.B.; Park, D.W.; Le, T.H.M.; Kim, J.S. Evaluation on Fatigue Cracking Resistance of Fiber Grid Reinforced Asphalt Concrete with Reflection Cracking Rate Computation. Constr. Build. Mater. 2020, 239, 117873. [Google Scholar] [CrossRef]
- Fallah, S.; Khodaii, A. Reinforcing Overlay to Reduce Reflection Cracking; An Experimental Investigation. Geotext. Geomembr. 2015, 43, 216–227. [Google Scholar] [CrossRef]
- Ji, R.Y.; Mandal, T.; Yin, H. Laboratory Characterization of Temperature Induced Reflection Cracks. J. Traffic Transp. Eng. 2020, 7, 668–677. [Google Scholar] [CrossRef]
- Doh, Y.S.; Baek, S.H.; Kim, K.W. Estimation of Relative Performance of Reinforced Overlaid Asphalt Concretes against Reflection Cracking Due to Bending More Fracture. Constr. Build. Mater. 2009, 23, 1803–1807. [Google Scholar] [CrossRef]
- Khodaii, A.; Fallah, S.; Moghadas Nejad, F. Effects of Geosynthetics on Reduction of Reflection Cracking in Asphalt Overlays. Geotext. Geomembr. 2009, 27, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Lin, Z.; Zhou, Y. Building Surface Crack Detection Using Deep Learning Technology. Buildings 2023, 13, 1814. [Google Scholar] [CrossRef]
- Xi, Y.F.; Ren, S.J.; Chen, B.L.; Yang, B.; Lee, J.; Zhu, G.H.; Zhou, T.C.; Xu, H. Application of Steel-Fiber-Reinforced Self-Stressing Concrete in Prefabricated Pavement Joints. Buildings 2023, 13, 2129. [Google Scholar] [CrossRef]
- Lu, X.; Yan, G. A Quasi-2D Exploration of Mixed-Mode Fracture Propagation in Concrete Semi-Circular Chevron-Notched Disks. Buildings 2023, 13, 2633. [Google Scholar] [CrossRef]
- Di Mascio, P.; Moretti, L. Implementation of a Pavement Management System for Maintenance and Rehabilitation of Airport Surfaces. Case Stud. Constr. Mater. 2019, 11, e00251. [Google Scholar] [CrossRef]
- Zhao, Y.; Goulias, D.; Peterson, D. Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics. Sustainability 2021, 13, 8071. [Google Scholar] [CrossRef]
- Moradi, M.; Assaf, G.J. Building an Augmented Reality Experience on Top of a Smart Pavement Management System. Buildings 2022, 12, 1915. [Google Scholar] [CrossRef]
- Shu, X.; Wang, Z.; Basheer, I.A. Large-Scale Evaluation of Pavement Performance Models Utilizing Automated Pavement Condition Survey Data. Int. J. Transp. Sci. Technol. 2022, 11, 678–689. [Google Scholar] [CrossRef]
- Justo-Silva, R.; Ferreira, A.; Flintsch, G. Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models. Sustainability 2021, 13, 5248. [Google Scholar] [CrossRef]
- Pei, L.; Sun, Z.; Xiao, L.; Li, W.; Sun, J.; Zhang, H. Virtual Generation of Pavement Crack Images Based on Improved Deep Convolutional Generative Adversarial Network. Eng. Appl. Artif. Intell. 2021, 104, 104376. [Google Scholar] [CrossRef]
- Que, Y.; Dai, Y.; Ji, X.; Kwan Leung, A.; Chen, Z.; Tang, Y.; Jiang, Z. Automatic Classification of Asphalt Pavement Cracks Using a Novel Integrated Generative Adversarial Networks and Improved VGG Model. Eng. Struct. 2023, 277, 115406. [Google Scholar] [CrossRef]
- Patel, T.; Guo, B.H.W.; van der Walt, J.D.; Zou, Y. Effective Motion Sensors and Deep Learning Techniques for Unmanned Ground Vehicle (UGV)-Based Automated Pavement Layer Change Detection in Road Construction. Buildings 2023, 13, 5. [Google Scholar] [CrossRef]
- Tabatabai, H.; Aljuboori, M. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges. Sensors 2017, 17, 2912. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Park, K.T.; Cho, J.W.; Lee, S.Y. A Study of the Application and the Limitations of Gpr Investigation on Underground Survey of the Korean Expressways. Remote Sens. 2021, 13, 1805. [Google Scholar] [CrossRef]
- Ramanna, S.; Sengoz, C.; Kehler, S.; Pham, D. Near Real-Time Map Building with Multi-Class Image Set Labeling and Classification of Road Conditions Using Convolutional Neural Networks. Appl. Artif. Intell. 2021, 35, 803–833. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE International Conference on Image Processing—ICIP, Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar] [CrossRef]
- Lee, S.Y.; Le, T.H.M.; Kim, Y.M. Prediction and Detection of Potholes in Urban Roads: Machine Learning and Deep Learning Based Image Segmentation Approaches. Dev. Built Environ. 2023, 13, 100109. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A Review of Computer Vision–Based Structural Health Monitoring at Local and Global Levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Recurrent and Convolutional Neural Networks for Traffic Management. Road Traffic Model. Manag. 2022, 197–246. [Google Scholar] [CrossRef]
- Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Road Traffic Modeling and Management; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Hittawe, M.M.; Langodan, S.; Beya, O.; Hoteit, I.; Knio, O. Efficient SST Prediction in the Red Sea Using Hybrid Deep Learning-Based Approach. In Proceedings of the 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), Perth, Australia, 25–28 July 2022; pp. 107–114. [Google Scholar] [CrossRef]
- Hittawe, M.M.; Sidibé, D.; Beya, O.; Mériaudeau, F. Machine Vision for Timber Grading Singularities Detection and Applications. J. Electron. Imaging 2017, 26, 063015. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, S.; Tan, C. Automated Bridge Surface Crack Detection and Segmentation Using Computer Vision-Based Deep Learning Model. Eng. Appl. Artif. Intell. 2022, 115, 105225. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Sekula, P.; Ding, L. Machine Learning in Construction: From Shallow to Deep Learning. Dev. Built Environ. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A Full-Scale Reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Ansari, S.; Rennie, C.D.; Clark, S.P.; Seidou, O. IceMaskNet: River Ice Detection and Characterization Using Deep Learning Algorithms Applied to Aerial Photography. Cold Reg. Sci. Technol. 2021, 189, 103324. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, Z.; Tan, Y.; Xie, Y.; Li, M. Investigation of Pavement Crack Detection Based on Deep Learning Method Using Weakly Supervised Instance Segmentation Framework. Constr. Build. Mater. 2022, 358, 129117. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Wang, L.; Al-Qadi, I.L. Multiple-Type Distress Detection in Asphalt Concrete Pavement Using Infrared Thermography and Deep Learning. Autom. Constr. 2024, 161, 105355. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Ruwanpathirana, G.P.; Doyle, L.; Duckett, M.; Lee, J.; Saenda, J.; Mendis, P. Assessment of Crack Severity of Asphalt Pavements Using Deep Learning Algorithms and Geospatial System. Constr. Build. Mater. 2023, 401, 132684. [Google Scholar] [CrossRef]
- Xiong, X.; Meng, A.; Lu, J.; Tan, Y.; Chen, B.; Tang, J.; Zhang, C.; Xiao, S.; Hu, J. Automatic Detection and Location of Pavement Internal Distresses from Ground Penetrating Radar Images Based on Deep Learning. Constr. Build. Mater. 2024, 411, 134483. [Google Scholar] [CrossRef]
- Al-Huda, Z.; Peng, B.; Algburi, R.N.A.; Al-antari, M.A.; AL-Jarazi, R.; Zhai, D. A Hybrid Deep Learning Pavement Crack Semantic Segmentation. Eng. Appl. Artif. Intell. 2023, 122, 106142. [Google Scholar] [CrossRef]
- Song, Q.; Liu, L.; Lu, N.; Zhang, Y.; Muniyandi, R.C.; An, Y. A Three-Stage Pavement Image Crack Detection Framework with Positive Sample Augmentation. Eng. Appl. Artif. Intell. 2024, 129, 107624. [Google Scholar] [CrossRef]
- Ounpraseuth, S.T. Gaussian Processes for Machine Learning. J. Am. Stat. Assoc. 2008, 103, 429. [Google Scholar] [CrossRef]
- Shai, S.; Shai, B. Understanding Machine Learning from Theory to Algorithm; Cambridge University: Cambridge, UK, 2014. [Google Scholar]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Crack Segmentation Network Using Additive Attention Gate—CSN-II. Eng. Appl. Artif. Intell. 2022, 114, 105130. [Google Scholar] [CrossRef]
- Vishwakarma, R.; Vennelakanti, R. CNN Model Tuning for Global Road Damage Detection. In Proceedings of the 2020 IEEE International Conference on Big Data, Atlanta, GA, USA, 10–13 December 2020; pp. 5609–5615. [Google Scholar] [CrossRef]
- Pham, V.; Pham, C.; Dang, T. Road Damage Detection and Classification with Detectron2 and Faster R-CNN. In Proceedings of the 2020 IEEE International Conference on Big Data, Atlanta, GA, USA, 10–13 December 2020; pp. 5592–5601. [Google Scholar] [CrossRef]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/detectron2 (accessed on 15 May 2024).
- Mokhtar, M.M.; Morsy, M.; Taha, N.A.; Ahmed, E.M. Investigating the Mechanical Performance of Nano Additives Reinforced High-Performance Concrete. Constr. Build. Mater. 2022, 320, 125537. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeon, J.S.; Le, T.H.M. Feasibility of Automated Black Ice Segmentation in Various Climate Conditions Using Deep Learning. Buildings 2023, 13, 767. [Google Scholar] [CrossRef]
- Singh, J.; Shekhar, S. Road Damage Detection and Classification in Smartphone Captured Images Using Mask R-CNN. arXiv 2018, arXiv:1811.04535. [Google Scholar]
- Ultralytics Ultralytics YOLOv8. Available online: https://docs.ultralytics.com/vi (accessed on 12 June 2024).
- Zhang, Z.; Sabuncu, M.R. Generalized Cross Entropy Loss for Noisy Labels. Available online: https://neurips.cc/media/nips-2018/Slides/12761.pdf (accessed on 12 June 2024).
- Nar, K.; Ocal, O.; Sastry, S.S.; Ramchandran, K. Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples. arXiv 2019, arXiv:1901.08360. [Google Scholar]
- Figiel, Ł.; Kamiński, M. Numerical Probabilistic Approach to Sensitivity Analysis in a Fatigue Delamination Problem of a Two Layer Composite. Appl. Math. Comput. 2009, 209, 75–90. [Google Scholar] [CrossRef]
Pavement Types | Weather Types | Train Data | Validation Data | Test Data | Total |
---|---|---|---|---|---|
Asphalt pavement | Clear | 256 | 32 | 32 | 320 |
Multiple weather | 256 | 32 | 32 | 320 | |
Concrete pavement | Clear | 256 | 32 | 32 | 320 |
Multiple weather | 256 | 32 | 32 | 320 | |
Total | 1024 | 128 | 128 | 1280 |
Model Parameter | Value |
---|---|
cfg.SOLVER.BASE_LR | 0.00027 |
cfg.SOLVER.IMS_PER_BATCH | 5 |
cfg.SOLVER.GAMMA | 0.06 |
cfg.SOLVER.MAX_ITER | 2000 |
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE | 18 |
cfg.MODEL.ROI_HEADS.NUM_CLASSES | 3 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST | 0.6 |
Model | Width × Height | Momentum | Decay | Learning Rate | Activation |
---|---|---|---|---|---|
Yolov4 | 300 × 300 | 0.9 | 0.00005 | 0.0013 | Leaky ReLU |
Yolov5 | 416 × 416 | 0.9 | 0.0005 | 0.001 | ReLU |
Yolov8 | 416 × 416 | 0.85 | 0.0003 | 0.002 | Mish |
Model | R | R2 | RMSE | MPE (%) | Std. Error of the Estimate |
---|---|---|---|---|---|
Regression Equation | 0.858 | 0.731 | 1795.00 | 30.60 | 845.00 |
Rank | Correlation Analysis | Multi-Linear Regression Analysis |
---|---|---|
Correlation Factor | p-Value | |
1 | Precipitation | 0.612 |
2 | Traffic Volume | 0.550 |
3 | Min. Temperature | 0.510 |
4 | Max. Continuous Precipitation Day | 0.505 |
5 | Avg. Temperature | 0.502 |
6 | Precipitation Day | 0.446 |
7 | Max. Snowfall | 0.420 |
8 | Max. New Snowfall | 0.382 |
9 | Relative Humidity | 0.369 |
10 | Min. Relative Humidity | 0.317 |
11 | Max. Temperature | 0.192 |
12 | Evaporation Loss | 0.081 |
Model | Metric | NH19 Empirical | NH19 Analytical | NH23 Empirical | NH23 Analytical |
---|---|---|---|---|---|
Linear Regression | RMSE | 0.278 | 0.295 | 0.238 | 0.248 |
MSE | 0.077 | 0.087 | 0.057 | 0.062 | |
MAE | 0.195 | 0.198 | 0.164 | 0.184 | |
T.V (n/s) | 2000 | 2100 | 2100 | 1800 | |
T.T (s) | 1.467 | 1.563 | 1.476 | 1.524 | |
Stepwise Linear Reg. | RMSE | 4.737 | 0.948 | 2.815 | 0.496 |
MSE | 22.439 | 0.898 | 7.923 | 0.246 | |
MAE | 1.115 | 0.583 | 0.926 | 0.383 | |
T.V (n/s) | 3100 | 2900 | 2800 | 3000 | |
T.T (s) | 101.97 | 110.48 | 113.97 | 114.96 | |
Decision Tree | RMSE | 0.413 | 0.429 | 0.432 | 0.353 |
MSE | 0.171 | 0.184 | 0.186 | 0.125 | |
MAE | 0.298 | 0.323 | 0.318 | 0.244 | |
T.V (n/s) | 4300 | 3600 | 3200 | 3800 | |
T.T (s) | 0.81 | 1.016 | 0.876 | 0.938 | |
Support Vector Machine | RMSE | 0.368 | 0.359 | 0.334 | 0.331 |
MSE | 0.136 | 0.129 | 0.112 | 0.109 | |
MAE | 0.248 | 0.241 | 0.229 | 0.231 | |
T.V (n/s) | 4400 | 3600 | 4700 | 3700 | |
T.T (s) | 0.414 | 0.609 | 0.476 | 0.568 | |
Ensemble | RMSE | 0.379 | 0.405 | 0.365 | 0.325 |
MSE | 0.144 | 0.164 | 0.133 | 0.106 | |
MAE | 0.257 | 0.297 | 0.268 | 0.227 | |
T.V (n/s) | 1400 | 1300 | 1400 | 1600 | |
T.T (s) | 1.532 | 1.8 | 1.45 | 1.34 | |
Gaussian Process Reg. | RMSE | 0.406 | 0.383 | 0.343 | 0.317 |
MSE | 0.165 | 0.146 | 0.118 | 0.1 | |
MAE | 0.28 | 0.263 | 0.252 | 0.214 | |
T.V (n/s) | 3500 | 2100 | 3500 | 1500 | |
T.T (s) | 0.797 | 1.676 | 0.441 | 0.465 |
Empirical Approach | Analytical Approach | |||
---|---|---|---|---|
NH19 Roadway | NH23 Expressway | NH19 Roadway | NH23 Expressway | |
R2 | 0.686 | 0.803 | 0.635 | 0.783 |
MSE | 0.077 | 0.057 | 0.087 | 0.062 |
MAE | 0.195 | 0.164 | 0.198 | 0.184 |
β0 | −1.363 | −2.571 | −1.043 | 1.365 |
β10 | 2.328 | 2.102 | 0.744 | −0.427 |
β20 | −3.154 | −0.711 | −0.813 | 0.608 |
β30 | 0.001 | −3.793 | −0.491 | −0.437 |
β40 | 1.128 | −0.271 | −0.420 | 2.439 |
β50 | 0.473 | −1.635 | −1.000 | 3.224 |
β11 | 0.311 | 0.197 | −0.212 | 0.079 |
β22 | −1.855 | 1.258 | 0.306 | −2.471 |
β33 | 0.862 | −0.728 | −0.247 | 0.327 |
β44 | −0.537 | 0.336 | 0.151 | −0.667 |
β55 | 0.285 | 0.546 | 0.162 | −0.363 |
β12 | 1.271 | −0.815 | 0.389 | −0.633 |
β13 | 1.696 | 0.929 | 0.995 | 0.050 |
β14 | −0.499 | −0.465 | −0.426 | 0.235 |
β15 | −0.100 | 1.542 | −0.007 | 0.143 |
β23 | −1.857 | −0.627 | −1.380 | −0.696 |
β24 | 1.878 | 0.856 | 0.128 | 3.515 |
β25 | 0.571 | −0.962 | 0.010 | 4.274 |
β34 | 0.155 | 0.053 | 0.130 | 0.412 |
β35 | −0.015 | −3.320 | −1.132 | −0.182 |
β45 | 0.133 | −0.521 | −0.391 | −0.218 |
Standardization | ||||||||||
Empirical Approach | Analytical Approach | |||||||||
RMSE | MAE | MSE | R2 | p-Value | RMSE | MAE | MSE | R2 | p-Value | |
NH19 | 0.5355 | 0.4217 | 0.2867 | 0.5612 | 5.81 × 10−6 | 0.5743 | 0.4182 | 0.3299 | 0.7151 | 0.0003 |
NH23 | 0.6138 | 0.4549 | 0.3767 | 0.4314 | 0.4548 | 0.5691 | 0.4619 | 0.3239 | 0.4302 | 9.68 × 10−10 |
Reflective cracking Prediction | ||||||||||
Empirical Approach | Analytical Approach | |||||||||
RMSE | MAE | MSE | R2 | p-Value | RMSE | MAE | MSE | R2 | p-Value | |
NH19 | 344 | 272 | 118,598 | 0.5613 | 0.2495 | 369 | 269 | 136,390 | 0.7148 | 0.0869 |
NH23 | 490 | 363 | 239,995 | 0.4314 | 0.0231 | 454 | 369 | 206,142 | 0.4303 | 0.0040 |
No. | Machine Learning Methods | Pavement Types | Precision Clear (%) | Multiple Weather (%) |
---|---|---|---|---|
1 | Image classification | Concrete pavement | 95.9 | 91.4 |
2 | Image classification | Asphalt pavement | 92.7 | 82.6 |
AP50: the Average Precision at IOU = 0.5 | |||
---|---|---|---|
No. | Pavement Types | Combined Weather Data | |
1st Cond. | 2nd Cond. | ||
Clear | Multiple Weathers | ||
1 | Concrete pavement | 92.5% | 83.7% |
2 | Asphalt pavement and Concrete pavement | 89.1% | 80.3% |
Mask R-CNN | Yolov8 | Yolov5 | Yolov4 | |
---|---|---|---|---|
Time needed per iteration (in seconds) | 0.92 | 0.75 | 0.81 | 0.87 |
AP50 on clear weather | 92.5% | 91.3% | 87.8% | 83.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-P.; Kim, K.; Le, T.H.M. Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection. Buildings 2024, 14, 1808. https://doi.org/10.3390/buildings14061808
Shin S-P, Kim K, Le THM. Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection. Buildings. 2024; 14(6):1808. https://doi.org/10.3390/buildings14061808
Chicago/Turabian StyleShin, Sung-Pil, Kyungnam Kim, and Tri Ho Minh Le. 2024. "Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection" Buildings 14, no. 6: 1808. https://doi.org/10.3390/buildings14061808
APA StyleShin, S. -P., Kim, K., & Le, T. H. M. (2024). Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection. Buildings, 14(6), 1808. https://doi.org/10.3390/buildings14061808