Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Casting of Concrete Specimens
2.3. Exposure Conditions
2.4. Corrosion Studies
2.4.1. Electrochemical Studies
2.4.2. Gravimetric Weight Loss Methods
2.5. Estimation of pH and Chloride Contents
2.6. Characterization Studies
3. Results and Discussions
3.1. Electrochemical Studies
3.2. Weight Loss Methods
3.3. Estimation of Chloride Contents
3.4. Characterization Studies
4. Conclusions
- ➢
- Electrochemical analysis confirmed that the chloride–carbonation system (COClC15) exhibited the most severe corrosion, with icorr reaching 0.4779 µA/cm2, far higher than NC15 (0.0106 µA/cm2).
- ➢
- Gravimetric weight loss showed a similar trend, as the corrosion rate of COClC15 (4.71 × 10−2 mmpy) was ~1.5 times greater than ClC15, ~3.2 times greater than COC15, and nearly 52.4 times higher than NC15 after 120 days.
- ➢
- Chloride profiling revealed that carbonation reduces chloride-binding efficiency; COClC15 retained only 0.06% bound chloride at 5 mm cover compared to 0.43% in ClC15.
- ➢
- Temkin adsorption isotherm analysis supported this finding, with a much lower β value in COClC15 (8.97) compared to ClC15 (16.8) and NC15 (33), indicating reduced chloride immobilization due to C–S–H decalcification and aluminate phase transformation.
- ➢
- Visual inspection and SEM analysis revealed extensive rusting, cracking, and microstructural degradation in COClC15, consistent with electrochemical and gravimetric data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emmons, P.H.; Sordyl, D.J. The state of the concrete repair industry, and a vision for its future. Concr. Repair Bull. 2006, 19, 7–14. [Google Scholar]
- Stewart, M.G.; Wang, X.; Nguyen, M.N. Climate change impact and risks of concrete infrastructure deterioration. Eng. Struct. 2011, 33, 1326–1337. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Lee, H.-S.; Karthick, S.; Saraswathy, V.; Yang, H.-M. Long-term corrosion performance of blended cement concrete in the marine environment–A real-time study. Constr. Build. Mater. 2017, 154, 349–360. [Google Scholar] [CrossRef]
- Fuhaid, A.F.A.; Niaz, A. Carbonation and corrosion problems in reinforced concrete structures. Buildings 2022, 12, 586. [Google Scholar] [CrossRef]
- Tang, H.; Peng, J.; Peng, H.; Yang, Y.; Gao, Q.; Xiao, L.; Li, H.; Zheng, L.; Chen, Z.; Yang, Z. Test and theoretical investigations on flexural behavior of high-performance H-shaped steel beam with local corrosion in pure bending zone. Steel Res. Int. 2025, 96, 2400640. [Google Scholar] [CrossRef]
- Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J. Mater. Civ. Eng. 2015, 27, 04014245. [Google Scholar] [CrossRef]
- Xie, M.; Dangla, P.; Li, K. Reactive transport modelling of concurrent chloride ingress and carbonation in concrete. Mater. Struct. 2021, 54, 177. [Google Scholar] [CrossRef]
- Wang, Y.; Nanukuttan, S.; Bai, Y.; Basheer, P. Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes. Constr. Build. Mater. 2017, 140, 173–183. [Google Scholar] [CrossRef]
- Gustafsson, M.E.; Franzén, L.G. Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden. Atmos. Environ. 1996, 30, 977–989. [Google Scholar] [CrossRef]
- Qiu, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Constr. Build. Mater. 2020, 247, 118503. [Google Scholar] [CrossRef]
- Saillio, M.; Baroghel-Bouny, V.; Barberon, F. Chloride binding in sound and carbonated cementitious materials with various types of binder. Constr. Build. Mater. 2014, 68, 82–91. [Google Scholar] [CrossRef]
- Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Sun, H.; Xing, F.; Liu, W. Electrochemical impedance interpretation of the carbonation behavior for fly ash–slag–cement materials. Constr. Build. Mater. 2015, 93, 933–942. [Google Scholar] [CrossRef]
- Backus, J.; McPolin, D.; Basheer, M.; Long, A.; Holmes, N. Exposure of mortars to cyclic chloride ingress and carbonation. Adv. Cem. Res. 2013, 25, 3–11. [Google Scholar] [CrossRef]
- Kuosa, H.; Ferreira, R.; Holt, E.; Leivo, M.; Vesikari, E. Effect of coupled deterioration by freeze–thaw, carbonation and chlorides on concrete service life. Cem. Concr. Compos. 2014, 47, 32–40. [Google Scholar] [CrossRef]
- Mi, T.; Li, Y.; Liu, W.; Dong, Z.; Gong, Q.; Min, C.; Xing, F.; Wang, Y.; Chu, S. The effect of carbonation on chloride redistribution and corrosion of steel reinforcement. Constr. Build. Mater. 2023, 363, 129641. [Google Scholar] [CrossRef]
- Miron, L.E.R.D.; Koleva, D.A.; Miron, L.E.R.D. Concrete Durability; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Lee, M.K.; Jung, S.H.; Oh, B.H. Effects of carbonation on chloride penetration in concrete. ACI Mater. J. 2013, 110, 559. [Google Scholar] [CrossRef]
- Zhu, X.; Zi, G.; Cao, Z.; Cheng, X. Combined effect of carbonation and chloride ingress in concrete. Constr. Build. Mater. 2016, 110, 369–380. [Google Scholar] [CrossRef]
- Montemor, M.F.; Cunha, M.; Ferreira, M.; Simões, A. Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cem. Concr. Compos. 2002, 24, 45–53. [Google Scholar] [CrossRef]
- Revert, A.B.; De Weerdt, K.; Hornbostel, K.; Geiker, M.R. Carbonation-induced corrosion: Investigation of the corrosion onset. Constr. Build. Mater. 2018, 162, 847–856. [Google Scholar] [CrossRef]
- Montemor, M.; Simoes, A.; Ferreira, M. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cem. Concr. Compos. 2003, 25, 491–502. [Google Scholar] [CrossRef]
- Page, C.L. Initiation of chloride-induced corrosion of steel in concrete: Role of the interfacial zone. Mater. Corros. 2009, 60, 586–592. [Google Scholar] [CrossRef]
- Heiyantuduwa, R.; Alexander, M.; Mackechnie, J. Performance of a penetrating corrosion inhibitor in concrete affected by carbonation-induced corrosion. J. Mater. Civ. Eng. 2006, 18, 842–850. [Google Scholar] [CrossRef]
- Hussain, R.R.; Ishida, T. Critical carbonation depth for initiation of steel corrosion in fully carbonated concrete and development of electrochemical carbonation induced corrosion model. Int. J. Electrochem. Sci. 2009, 4, 1178–1195. [Google Scholar] [CrossRef]
- Pang, C.; Gao, M.; Xu, J.; Wang, L.; Liu, G.; Qin, H. Influence of test methods and carbonation on chloride ion diffusion coefficient of concrete. J. Southeast Univ. Nat. Sci. Ed. 2011, 41, 1313–1318. [Google Scholar]
- Anik, D.; Jacques, M.; Jean-Pierre, O.; Simone, J.; Kati, H. Chloride binding capacity of various hydrated cement systems. Adv. Cem. Based Mater. 1997, 6, 28–35. [Google Scholar] [CrossRef]
- Yoon, I.-S.; Çopuroğlu, O.; Park, K.-B. Effect of global climatic change on carbonation progress of concrete. Atmos. Environ. 2007, 41, 7274–7285. [Google Scholar]
- Delnavaz, A.; Ramezanianpour, A.A. The assessment of carbonation effect on chloride diffusion in concrete based on artificial neural network model. Mag. Concr. Res. 2012, 64, 877–884. [Google Scholar] [CrossRef]
- Zhu, X.; Zi, G.; Lee, W.; Kim, S.; Kong, J. Probabilistic analysis of reinforcement corrosion due to the combined action of carbonation and chloride ingress in concrete. Constr. Build. Mater. 2016, 124, 667–680. [Google Scholar] [CrossRef]
- Gong, B.; Li, H. A couple Voronoi-RBSM modeling strategy for RC structures. Struct. Eng. Mech. Int. J. 2024, 91, 239–250. [Google Scholar]
- Moreno, M.; Morris, W.; Alvarez, M.; Duffó, G. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content. Corros. Sci. 2004, 46, 2681–2699. [Google Scholar] [CrossRef]
- Chávez-Ulloa, E.; Camacho-Chab, R.; Sosa-Baz, M.; Castro-Borges, P.; Pérez-López, T. Corrosion process of reinforced concrete by carbonation in a natural environment and an accelerated test chamber. Int. J. Electrochem. Sci. 2013, 8, 9015–9029. [Google Scholar] [CrossRef]
- Trabanelli, G.; Monticelli, C.; Grassi, V.; Frignani, A. Electrochemical study on inhibitors of rebar corrosion in carbonated concrete. Cem. Concr. Res. 2005, 35, 1804–1813. [Google Scholar] [CrossRef]
- KS L-5201:2016; Portland Cement. Korean Standards Association: Seoul, Republic of Korea, 2016.
- KS F-2526:2007; Concrete Aggregate. Korea Standard Committee: Seoul, Republic of Korea, 2007.
- ASTM G1-03; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2003.
- Lo, Y.; Lee, H. Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build. Environ. 2002, 37, 507–514. [Google Scholar] [CrossRef]
- Vedalakshmi, R.; Dolli, H.; Palaniswamy, N. Embeddable corrosion rate-measuring sensor for assessing the corrosion risk of steel in concrete structures. Struct. Control Health Monit. 2009, 16, 441–459. [Google Scholar] [CrossRef]
- Subbiah, K.; Velu, S.; Kwon, S.-J.; Lee, H.-S.; Rethinam, N.; Park, D.-J. A novel in-situ corrosion monitoring electrode for reinforced concrete structures. Electrochim. Acta 2018, 259, 1129–1144. [Google Scholar] [CrossRef]
- ASTM C1218M-20; Standard Test Method for Water-Soluble Chloride in Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C 1152M-20; Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2020.
- Xie, Y.; Dong, J.; Wu, L.; Wang, W.; Sun, X.; Meng, X.; Huang, Y. Unraveling the relationship between severe plastic deformation and corrosion responses of AZ31 Mg alloys. Corros. Sci. 2025, 250, 112881. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Johnson, W.B.; Raistrick, I.; Franceschetti, D.; Wagner, N.; McKubre, M.; Macdonald, D.; Sayers, B.; Bonanos, N.; Steele, B. Impedance Spectroscopy: Theory, Experiment, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Brug, G.; van den Eeden, A.L.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Subbiah, K.; Lee, H.-S.; Al-Hadeethi, M.R.; Park, T.; Lgaz, H. Assessment of the inhibitive performance of a hydrazone derivative for steel rebar in a simulated concrete medium: Establishing the inhibition mechanism at an experimental and theoretical level. Chem. Eng. J. 2023, 458, 141347. [Google Scholar] [CrossRef]
- Subbiah, K.; Lee, H.-S.; Mandal, S.; Park, T. Conifer cone (Pinus resinosa) as a green corrosion inhibitor for steel rebar in chloride-contaminated synthetic concrete pore solutions. ACS Appl. Mater. Interfaces 2021, 13, 43676–43695. [Google Scholar] [CrossRef] [PubMed]
- Bentiss, F.; Lebrini, M.; Lagrenee, M. Thermodynamic Characterization of Metal Dissolution and Inhibitor Adsorption Processes in Mild Steel/2,5-Bis(n-Thienyl)-1,3,4-Thiadiazoles/Hydrochloric Acid System. Corros. Sci. 2005, 47, 2915. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, S.; Jiang, F.; Feng, Y.; Zhang, X.; Wang, Y.; Zhu, C. Corrosion Inhibition Mechanism and Performance Prediction of Corrosion Inhibitors in Grouting Materials for Anchor Cables in Deep Coal Mines. Rock Mech. Rock Eng. 2025, 1–22. [Google Scholar] [CrossRef]
- Ben-Yair, M. The effect of chlorides on concrete in hot and arid regions. Cem. Concr. Res. 1974, 4, 405–416. [Google Scholar] [CrossRef]
- Karthick, S.; Muralidharan, S.; Saraswathy, V.; Kwon, S.-J. Effect of different alkali salt additions on concrete durability property. J. Struct. Integr. Maint. 2016, 1, 35–42. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, L.; Chen, Y.; Xu, J.; Mo, L. Effect of chloride salt type on chloride binding behavior of concrete. Constr. Build. Mater. 2012, 37, 512–517. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Y. Ability of Hardened Paste of Cementitious Calcium–Aluminophosphate Mineral to Bind with Chloride Ions. J. Mater. Civ. Eng. 2022, 34, 04022054. [Google Scholar] [CrossRef]
- Subbiah, K.; Lee, H.-S.; Park, T.; Annamalai, S. Studies on corrosion monitoring of reinforced concrete in a chloride environment using an embedded solid-state reference electrode. Constr. Build. Mater. 2023, 364, 129964. [Google Scholar] [CrossRef]
- Glass, G.; Reddy, B.; Buenfeld, N. The participation of bound chloride in passive film breakdown on steel in concrete. Corros. Sci. 2000, 42, 2013–2021. [Google Scholar] [CrossRef]
- Bertos, M.F.; Simons, S.; Hills, C.; Carey, P. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef]
- Shao, Y.; Monkman, S. Carbonated cementitious materials and their role in CO2 sequestration. In Proceedings of the Measuring, Monitoring and Modeling Concrete Properties: An International Symposium dedicated to Professor Surendra P. Shah, Northwestern University, USA, Evanston, IL, USA, 16–18 August 2006; pp. 353–359. [Google Scholar]
- Shao, Y.; Mirza, M.S.; Wu, X. CO2 sequestration using calcium-silicate concrete. Can. J. Civ. Eng. 2006, 33, 776–784. [Google Scholar] [CrossRef]
Chemical Compositions | Weight Percentage |
---|---|
Na2O | 0.0506 |
MgO | 1.4911 |
Al2O3 | 3.9637 |
SiO2 | 17.6308 |
P2O5 | 0.0983 |
SO3 | 3.4631 |
K2O | 1.0435 |
CaO | 67.7279 |
TiO2 | 0.277 |
Cr2O3 | 0.0219 |
MnO | 0.0444 |
Fe2O3 | 3.8801 |
NiO | 0.0097 |
CuO | 0.0145 |
ZnO | 0.0823 |
SrO | 0.1034 |
ZrO2 | 0.0111 |
SnO2 | 0.0865 |
Nominal Compressive Strength (MPa) | Slump Flow | OPC (Kg) | Sand (Kg) | Gravel (Kg) | AD (Kg) | Water (Kg) | S/a (%) | Air (%) |
---|---|---|---|---|---|---|---|---|
25 | 150 | 340 | 927 | 857 | 3 | 170 | 51.96 | 4.5 ± 1.5 |
Systems | Carbonation Conditions | 3.5% NaCl Solutions | Laboratory Atmosphere |
---|---|---|---|
NC15 | × | × | ✓ |
ClC15 | × | ✓ | × |
COC15 | ✓ | × | ✓ |
COClC15 | ✓ | ✓ | × |
System | Exposure Time (d) | Rs a (Ω) | ROl b (Ω) | CPEOl | RCT e (Ω) | CPECT | Ceff dl × 10−3 | ||
---|---|---|---|---|---|---|---|---|---|
QOl c × 10−3 (mS.sn) | n1 d | Qdl f × 10−3 (mS.sn) | n2 j | ||||||
NC15 | 1 | 308 | 730 | 0.244 | 0.79 | 28366 | 1.022 | 0.84 | 0.818 |
45 | 700 | 867 | 0.223 | 0.73 | 29856 | 0.883 | 0.83 | 0.796 | |
90 | 736 | 1291 | 0.157 | 0.69 | 31581 | 0.694 | 0.84 | 0.608 | |
120 | 1498 | 2631 | 0.076 | 0.81 | 32314 | 0.467 | 0.88 | 0.442 | |
ClC15 | 1 | 270 | 506 | 0.341 | 0.68 | 18799 | 1.117 | 0.80 | 0.825 |
45 | 244 | 203 | 0.411 | 0.60 | 2918 | 2.321 | 0.69 | 1.734 | |
90 | 235 | 33 | 0.686 | 0.60 | 317 | 5.124 | 0.64 | 4.164 | |
120 | 223 | 53 | 0.656 | 0.60 | 213 | 6.891 | 0.61 | 5.737 | |
COC15 | 1 | 1087 | 246 | 0.355 | 0.79 | 16984 | 1.087 | 0.79 | 1.118 |
45 | 276 | 163 | 0.436 | 0.70 | 10239 | 1.807 | 0.73 | 1.383 | |
90 | 264 | 35 | 0.679 | 0.66 | 7585 | 3.835 | 0.69 | 3.798 | |
120 | 235 | 41 | 0.654 | 0.62 | 2210 | 4.856 | 0.63 | 4.945 | |
COClC15 | 1 | 284 | 230 | 0.359 | 0.69 | 16482 | 1.486 | 0.78 | 1.159 |
45 | 959 | 144 | 0.579 | 0.63 | 2176 | 4.916 | 0.62 | 10.166 | |
90 | 208 | 28 | 0.731 | 0.60 | 129 | 13.53 | 0.60 | 14.218 | |
120 | 206 | 65 | 0.646 | 0.60 | 143 | 14.98 | 0.60 | 17.521 |
System | Ecorr a (mV vs. SCE) | βa b (mV dec−1) | −βc c (mV dec−1) | icorr d (µA cm−2) | Corrosion Rate (mmpy) × 10−3 |
---|---|---|---|---|---|
NC15 | −108 | 23 | 15 | 0.0106 | 0.1236 |
ClC15 | −367 | 41 | 39 | 0.3945 | 4.5840 |
COC15 | −280 | 28 | 30 | 0.0978 | 1.1366 |
COClC15 | −423 | 47 | 46 | 0.4779 | 5.5539 |
System | Weight Loss a (mg) | Corrosion Rate b (mmpy) × 10−2 |
---|---|---|
NC15 | 7.3 | 0.0899 |
ClC15 | 252.6 | 3.1131 |
COC15 | 118.9 | 1.4654 |
COClC15 | 382.6 | 4.7153 |
Systems | Exposure Periods (d) | Cover Depth (mm) | Total Chloride a (%) | Free Chloride b (%) | Bind Chloride c (%) | pH d |
---|---|---|---|---|---|---|
NC15 | 120 | 5 | 0.32 | 0.13 | 0.19 | 12.63 |
10 | 0.18 | 0.12 | 0.06 | 12.64 | ||
15 | 0.09 | 0.058 | 0.032 | 12.67 | ||
ClC15 | 5 | 1.42 | 0.99 | 0.43 | 12.57 | |
10 | 1.23 | 0.84 | 0.39 | 12.59 | ||
15 | 0.39 | 0.25 | 0.14 | 12.63 | ||
COC15 | 5 | 0.39 | 0.34 | 0.05 | 10.05 | |
10 | 0.29 | 0.25 | 0.04 | 10.10 | ||
15 | 0.17 | 0.15 | 0.02 | 10.89 | ||
COClC15 | 5 | 1.45 | 1.39 | 0.06 | 09.20 | |
10 | 1.14 | 1.09 | 0.05 | 09.29 | ||
15 | 0.61 | 0.59 | 0.02 | 09.45 |
Specimens | Temkin Isotherm Coefficient | ||
---|---|---|---|
α | β | R2 | |
NC15 | 99,809 | 33 | 0.99 |
ClC15 | 887 | 16.8 | 0.99 |
COC15 | 6307 | 18.5 | 0.99 |
COClC15 | 5097 | 8.97 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Choi, J.K. Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments. Buildings 2025, 15, 3647. https://doi.org/10.3390/buildings15203647
Kim S, Choi JK. Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments. Buildings. 2025; 15(20):3647. https://doi.org/10.3390/buildings15203647
Chicago/Turabian StyleKim, Sejong, and Jong Kwon Choi. 2025. "Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments" Buildings 15, no. 20: 3647. https://doi.org/10.3390/buildings15203647
APA StyleKim, S., & Choi, J. K. (2025). Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments. Buildings, 15(20), 3647. https://doi.org/10.3390/buildings15203647