Current Status and Prospects of Digital Twin Approaches in Structural Health Monitoring
Abstract
:1. Introduction
2. Damage Detection and Identification
2.1. Data-Driven Approaches
2.2. BIM-Based Approaches
2.3. Bayesian Model Updating and Augmented Reality (AR) Applications
2.4. Finite Element-Based Approaches
2.5. UAV-Based Methods
2.6. 3D Model Reconstruction Using Laser Scanning
Dimension | Optimal Method | Strengths | Weaknesses |
---|---|---|---|
Real-time performance | Data-driven methods (Section 2.1) | Lightweight machine learning models (e.g., DCLSTMNN [39]) enable edge computing | High dependency on data quality, and domain shift issues between simulated and real-world data |
Scalability | BIM-based approaches (Section 2.2) | Standardized BIM supports multi-project integration (e.g., bridge group [42]) | Real-time model update increases complexity; heterogeneous data delays |
Adaptability to complex scenarios | Bayesian model updating and AR applications (Section 2.3) | Dynamically integrates multi-source data (e.g., vibration response and visual data [44]) | High computational resource demands for AR visualization; limited generalizability across structures |
High-precision simulation capability | Finite element method (FEM) (Section 2.4) | Complex boundary conditions and nonlinear analysis (e.g., collapse vulnerability assessment of cable-stayed bridges [46]) and provides response prediction [47] | High computational complexity limits real-time application; requires validated physical parameters |
Cost-effectiveness | UAV-based methods (Section 2.5) | High-resolution imaging (e.g., collect UAV data and apply computer vision algorithms to process UAV images for defect detection [88]) | Computational bottlenecks in processing high-resolution images, limited accuracy in dynamic load scenarios |
Accuracy | 3D laser scanning (Section 2.6) | LiDAR technology provides sub-millimeter geometric accuracy (e.g., concrete surface defect detection [50]), suitable for static structural detail analysis [95] | Real-time integration of dense point clouds is computationally intensive; limited to surface defect detection |
3. Dynamic Response Monitoring and Analysis
- (1)
- Sensor placement issues: sensors are typically placed empirically in critical areas, limiting the monitoring of unsensed components.
- (2)
- Environmental and human influences: contact sensors are vulnerable to environmental factors (e.g., wind, rain, snow, and electromagnetic interference) and human-related issues, leading to gradual declines in accuracy and reliability over time.
- (3)
- Lack of fault prediction: contact sensors lack predictive capabilities, making it difficult to estimate the remaining useful life of a structure.
3.1. Dynamic Response Monitoring and Applications of Digital Twin
3.2. Integration of DT with Other Advanced Technologies
4. Maintenance Management and Decision Support
4.1. Application of Digital Twin in Maintenance Management
4.2. Interdisciplinary Applications of Digital Twin Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Javadnejad, F.; Gillins, D.T.; Higgins, C.C.; Gillins, M.N. BridgeDex: Proposed web GIS platform for managing and interrogating multiyear and multiscale bridge-inspection images. J. Comput. Civ. Eng. 2017, 31, 04017061. [Google Scholar] [CrossRef]
- Wang, S.; Rodgers, C.; Zhai, G.; Matiki, T.N.; Welsh, B.; Najafi, A.; Wang, J.; Narazaki, Y.; Hoskere, V.; Spencer, B.F., Jr. A graphics-based digital twin framework for computer vision-based post-earthquake structural inspection and evaluation using unmanned aerial vehicles. J. Infrastruct. Intell. Resil. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Mahmoodian, M.; Shahrivar, F.; Setunge, S.; Mazaheri, S. Development of digital twin for intelligent maintenance of civil infrastructure. Sustainability 2022, 14, 8664. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Xu, X. Literature review of digital twin technologies for civil infrastructure. J. Infrastruct. Intell. Resil. 2023, 2, 100050. [Google Scholar] [CrossRef]
- Kang, C.; Walker, M.; Marx, S. Advances of Digital Twins in Bridge Structures Maintenance. Procedia Struct. Integr. 2024, 64, 1232–1239. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdiscipl. Perspect. Complex Syst. New Find. Approaches 2017, 85–113. [Google Scholar] [CrossRef]
- Dang, H.V.; Tatipamula, M.; Nguyen, H.X. Cloud-based digital twinning for structural health monitoring using deep learning. IEEE Trans. Ind. Inform. 2021, 18, 3820–3830. [Google Scholar] [CrossRef]
- Callcut, M.; Cerceau Agliozzo, J.P.; Varga, L.; McMillan, L. Digital twins in civil infrastructure systems. Sustainability 2021, 13, 11549. [Google Scholar] [CrossRef]
- Yu, S.; Li, D.; Ou, J. Digital twin-based structure health hybrid monitoring and fatigue evaluation of orthotropic steel deck in cable-stayed bridge. Struct. Control Health Monit. 2022, 29, e2976. [Google Scholar] [CrossRef]
- Kang, J.S.; Chung, K.; Hong, E.J. Multimedia knowledge-based bridge health monitoring using digital twin. Multimed. Tools Appl. 2021, 80, 34609–34624. [Google Scholar] [CrossRef]
- Mousavi, Z.; Varahram, S.; Ettefagh, M.M.; Sadeghi, M.H.; Feng, W.Q.; Bayat, M. A digital twin-based framework for damage detection of a floating wind turbine structure under various loading conditions based on deep learning approach. Ocean Eng. 2024, 292, 116563. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. Ifac-Pap. 2018, 51, 1016–1022. [Google Scholar]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging digital twin technology in model-based systems engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar]
- Deng, T.; Zhang, K.; Shen, Z.J.M. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar]
- Tuegel, E.J.; Ingraffea, A.R.; Eason, T.G.; Spottswood, S. Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 2011, 154798. [Google Scholar]
- Botkina, D.; Hedlind, M.; Olsson, B.; Henser, J.; Lundholm, T. Digital twin of a cutting tool. Procedia Cirp 2018, 72, 215–218. [Google Scholar]
- Levine, N.M.; Spencer, B.F., Jr. Post-earthquake building evaluation using UAVs: A BIM-based digital twin framework. Sensors 2022, 22, 873. [Google Scholar] [CrossRef]
- Shim, C.S.; Dang, N.S.; Lon, S.; Jeon, C.H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar]
- Sacks, R.; Kedar, A.; Borrmann, A.; Ma, L.; Brilakis, I.; Hüthwohl, P.; Daum, S.; Kattel, U.; Yosef, R.; Liebich, T.; et al. SeeBridge as next generation bridge inspection: Overview, information delivery manual and model view definition. Autom. Constr. 2018, 90, 134–145. [Google Scholar]
- Jiang, Y.; Yang, G.; Li, H.; Zhang, T. Knowledge driven approach for smart bridge maintenance using big data mining. Autom. Constr. 2023, 146, 104673. [Google Scholar]
- Wang, D.; Zhang, Y.; Pan, Y.; Peng, B.; Liu, H.; Ma, R. An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access 2020, 8, 94010–94023. [Google Scholar]
- Luleci, F.; Catbas, F.N.; Avci, O. CycleGAN for undamaged-to-damaged domain translation for structural health monitoring and damage detection. Mech. Syst. Signal Process. 2023, 197, 110370. [Google Scholar]
- Teng, S.; Chen, X.; Chen, G.; Cheng, L. Structural damage detection based on transfer learning strategy using digital twins of bridges. Mech. Syst. Signal Process. 2023, 191, 110160. [Google Scholar]
- Ding, W.; Yang, H.; Yu, K.; Shu, J. Crack detection and quantification for concrete structures using UAV and transformer. Autom. Constr. 2023, 152, 104929. [Google Scholar]
- Li, S.; Zhao, X.; Zhou, G. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 616–634. [Google Scholar]
- Kostić, B.; Gül, M. Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks. J. Bridge Eng. 2017, 22, 04017065. [Google Scholar]
- Ghazvineh, S.; Nouri, G.; Lavassani, S.H.H.; Gharehbaghi, V.; Nguyen, A. Application of 2-D convolutional neural networks for damage detection in steel frame structures. arXiv 2021, arXiv:2110.15895. [Google Scholar]
- Hu, Z.; Xiang, Z. Damage detection for continuous beams by using the tap-scan method. Appl. Math. Model. 2024, 135, 524–540. [Google Scholar]
- Zhang, G.Q.; Xu, Y.L.; Dan, D.H.; Jiang, S.J.; Zhu, Q. Simulation and prediction of vortex-induced vibration of a long suspension bridge using SHM-based digital twin technology. J. Wind Eng. Ind. Aerodyn. 2024, 247, 105705. [Google Scholar]
- Potenza, F.; Rinaldi, C.; Ottaviano, E.; Gattulli, V. A robotics and computer-aided procedure for defect evaluation in bridge inspection. J. Civ. Struct. Health Monit. 2020, 10, 471–484. [Google Scholar]
- Shi, G.; Liu, Z.; Lu, D.; Zhang, Q.; Wang, Z.; Zhao, Y. Digital twin-based model updating method for mechanical behaviors analysis of cable truss structure. J. Constr. Steel Res. 2024, 221, 108917. [Google Scholar]
- Zhang, B.; Ding, G.; Zheng, Q.; Zhang, K.; Qin, S. Iterative updating of digital twin for equipment: Progress, challenges, and trends. Adv. Eng. Inform. 2024, 62, 102773. [Google Scholar]
- Feng, K.; Ji, J.C.; Zhang, Y.; Ni, Q.; Liu, Z.; Beer, M. Digital twin-driven intelligent assessment of gear surface degradation. Mech. Syst. Signal Process. 2023, 186, 109896. [Google Scholar]
- Yuan, Y.; Fan, K. Digital twin-driven life health monitoring for motorized spindle. J. Manuf. Process. 2024, 113, 373–387. [Google Scholar]
- Kohtz, S.; Zhao, J.; Renteria, A.; Lalwani, A.; Xu, Y.; Zhang, X.; Haran, S.K.; Senesky, D.; Wang, P. Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach. Reliab. Eng. Syst. Saf. 2024, 242, 109714. [Google Scholar]
- Chen, D.; Kim, C.W.; Yoshida, E.; Sim, C. Enhancing structural damage evaluation of PC girder bridges through digital twinning Bayesian model updating. Eng. Struct. 2024, 321, 118974. [Google Scholar]
- Ye, C.; Butler, L.; Bartek, C.; Iangurazov, M.; Lu, Q.; Gregory, A.; Girolami, M.; Middleton, C. A digital twin of bridges for structural health monitoring. In Proceedings of the 12th International Workshop on Structural Health Monitoring 2019, Stanford, CA, USA, 10–12 September 2019. [Google Scholar]
- Han, C.; Wang, Z.; Fu, Y.; Liu, Y. Transfer-AE: A novel autoencoder-based impact detection model for structural digital twin. Appl. Soft Comput. 2024, 166, 112174. [Google Scholar]
- Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. Digital twin aided vulnerability assessment and risk-based maintenance planning of bridge infrastructures exposed to extreme conditions. Sustainability 2021, 13, 2051. [Google Scholar] [CrossRef]
- Xia, T.; Yang, J.; Chen, L. Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning. Autom. Constr. 2022, 133, 103992. [Google Scholar] [CrossRef]
- Torzoni, M.; Tezzele, M.; Mariani, S.; Manzoni, A.; Willcox, K.E. A digital twin framework for civil engineering structures. Comput. Methods Appl. Mech. Eng. 2024, 418, 116584. [Google Scholar] [CrossRef]
- Mariani, F.; Sconocchia, G.G.; Meoni, A.; Ierimonti, L.; Castellani, M.; Tomassini, E.; Venanzi, I.; Ubertini, F. SHM-based digital twin calibration of a post-tensioned reinforced concrete bridge with vertically prestressed internal joints. Procedia Struct. Integr. 2024, 62, 955–962. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.L.; Lu, X.; Guan, Z.; Li, J. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom. Constr. 2021, 123, 103547. [Google Scholar] [CrossRef]
- Colombo, L.; Oboe, D.; Sbarufatti, C.; Cadini, F.; Russo, S.; Giglio, M. Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions. Mech. Syst. Signal Process. 2021, 148, 107163. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Long, L.; Chun, P.J.; Chen, W.; Chu, H. Cascade refinement extraction network with active boundary loss for segmentation of concrete cracks from high-resolution images. Autom. Constr. 2024, 162, 105410. [Google Scholar] [CrossRef]
- Zhong, X.; Peng, X.; Yan, S.; Shen, M.; Zhai, Y. Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles. Autom. Constr. 2018, 89, 49–57. [Google Scholar] [CrossRef]
- Omer, M.; Margetts, L.; Mosleh, M.H.; Cunningham, L.S. Inspection of concrete bridge structures: Case study comparing conventional techniques with a virtual reality approach. J. Bridge Eng. 2021, 26, 05021010. [Google Scholar] [CrossRef]
- Yan, Y.; Hajjar, J.F. Automated extraction of structural elements in steel girder bridges from laser point clouds. Autom. Constr. 2021, 125, 103582. [Google Scholar] [CrossRef]
- Gharoun, H.; Momenifar, F.; Chen, F.; Gandomi, A.H. Meta-learning approaches for few-shot learning: A survey of recent advances. ACM Comput. Surv. 2024, 56, 1–41. [Google Scholar] [CrossRef]
- Ge, L.; Sadhu, A. Domain adaptation for structural health monitoring via physics-informed and self-attention-enhanced generative adversarial learning. Mech. Syst. Signal Process. 2024, 211, 111236. [Google Scholar] [CrossRef]
- Lim, J.Y.; Lim, K.M.; Lee, C.P.; Tan, Y.X. SSL-ProtoNet: Self-supervised Learning Prototypical Networks for few-shot learning. Expert Syst. Appl. 2024, 238, 122173. [Google Scholar] [CrossRef]
- Li, P. Research on the application of BIM technology in bridge design. J. Phys. Conf. Ser. 2021, 2023, 012002. [Google Scholar] [CrossRef]
- Sai AM, V.V.; Wang, C.; Cai, Z.; Li, Y. Navigating the digital twin network landscape: A survey on architecture, applications, privacy and security. High-Confid. Comput. 2024, 4, 100269. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Xu, X.; Che, W. Domain generalization-based damage detection of composite structures powered by structural digital twin. Compos. Sci. Technol. 2024, 258, 110908. [Google Scholar] [CrossRef]
- Pereira, P.F.; Vidal, J.; Ramos, N.M.M. Enhancing hygrothermal monitoring of wet construction with digital twins. Build. Environ. 2024, 262, 111843. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.L.; Lu, X.; Guan, Z.; Li, J. Cluster computing-aided model updating for a high-fidelity finite element model of a long-span cable-stayed bridge. Earthq. Eng. Struct. Dyn. 2020, 49, 904–923. [Google Scholar] [CrossRef]
- Hielscher, T.; Khalil, S.; Virgona, N.; Hadigheh, S.A. A neural network based digital twin model for the structural health monitoring of reinforced concrete bridges. Structuries 2023, 57, 105248. [Google Scholar] [CrossRef]
- Ritto, T.G.; Rochinha, F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 2021, 155, 107614. [Google Scholar] [CrossRef]
- La, H.M.; Gucunski, N.; Kee, S.H.; Nguyen, L.V. Data analysis and visualization for the bridge deck inspection and evaluation robotic system. Vis. Eng. 2015, 3, 6. [Google Scholar]
- Phillips, S.; Narasimhan, S. Automating data collection for robotic bridge inspections. J. Bridge Eng. 2019, 24, 04019075. [Google Scholar]
- Gucunski, N.; Basily, B.; Kim, J.; Yi, J.; Duong, T.; Dinh, K.; Kee, S.; Maher, A. RABIT: Implementation, performance validation and integration with other robotic platforms for improved management of bridge decks. Int. J. Intell. Robot. Appl. 2017, 1, 271–286. [Google Scholar]
- Giglioni, V.; Poole, J.; Venanzi, I.; Ubertini, F.; Worden, K. A domain adaptation approach to damage classification with an application to bridge monitoring. Mech. Syst. Signal Process. 2024, 209, 111135. [Google Scholar]
- Poole, J.; Gardner, P.; Dervilis, N.; Bull, L.; Worden, K. On statistic alignment for domain adaptation in structural health monitoring. Struct. Health Monit. 2023, 22, 1581–1600. [Google Scholar]
- Liu, C.; Xu, X.; Wu, J.; Zhu, H.; Wang, C. Deep transfer learning-based damage detection of composite structures by fusing monitoring data with physical mechanism. Eng. Appl. Artif. Intell. 2023, 123, 106245. [Google Scholar]
- Huang, Z.; Yin, X.; Liu, Y.; Liu, Y. Damage identification of truss bridges based on feature transferable digital twins. Measurement 2024, 233, 114735. [Google Scholar]
- Kaewunruen, S.; Sresakoolchai, J.; Zhou, Z. Sustainability-based lifecycle management for bridge infrastructure using 6D BIM. Sustainability 2020, 12, 2436. [Google Scholar] [CrossRef]
- Girardet, A.; Boton, C. A parametric BIM approach to foster bridge project design and analysis. Autom. Constr. 2021, 126, 103679. [Google Scholar]
- Honghong, S.; Gang, Y.; Haijiang, L.; Tian, Z.; Annan, J. Digital twin enhanced BIM to shape full life cycle digital transformation for bridge engineering. Autom. Constr. 2023, 147, 104736. [Google Scholar]
- Dayan, V.; Chileshe, N.; Hassanli, R. A scoping review of information-modeling development in bridge management systems. J. Constr. Eng. Manag. 2022, 148, 03122006. [Google Scholar] [CrossRef]
- Pantoja-Rosero, B.G.; Rusnak, A.; Kaplan, F.; Beyer, K. Generation of LOD4 models for buildings towards the automated 3D modeling of BIMs and digital twins. Autom. Constr. 2024, 168, 105822. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Y.; Wang, X.; Wu, P. BIM/GIS integration for web GIS-based bridge management. Ann. GIS 2021, 27, 99–109. [Google Scholar] [CrossRef]
- Sung, K.; Park, K.T.; Lee, H. Landscaping the digital twin technology: Patent-based networks and technology reference model. Technol. Forecast. Soc. Change 2024, 206, 123576. [Google Scholar] [CrossRef]
- Naderi, H.; Shojaei, A. Digital twinning of civil infrastructures: Current state of model architectures, interoperability solutions, and future prospects. Autom. Constr. 2023, 149, 104785. [Google Scholar] [CrossRef]
- Ghahari, F.; Malekghaini, N.; Ebrahimian, H.; Taciroglu, E. Bridge digital twinning using an output-only Bayesian model updating method and recorded seismic measurements. Sensors 2022, 22, 1278. [Google Scholar] [CrossRef]
- Aguero, M.; Doyle, D.; Mascarenas, D.; Moreu, F. Visualization of real-time displacement time history superimposed with dynamic experiments using wireless smart sensors and augmented reality. Earthq. Eng. Eng. Vib. 2023, 22, 573–588. [Google Scholar] [CrossRef]
- Al-Sabbag, Z.A.; Yeum, C.M.; Narasimhan, S. Interactive defect quantification through extended reality. Adv. Eng. Inform. 2022, 51, 101473. [Google Scholar] [CrossRef]
- Kang, T.W.; Mo, Y. A comprehensive digital twin framework for building environment monitoring with emphasis on real-time data connectivity and predictability. Dev. Built Environ. 2024, 17, 100309. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D. A combined finite element and hierarchical Deep learning approach for structural health monitoring: Test on a pin-joint composite truss structure. Mech. Syst. Signal Process. 2021, 157, 107735. [Google Scholar] [CrossRef]
- Titscher, T.; van Dijk, T.; Kadoke, D.; Robens-Radermacher, A.; Herrmann, R.; Unger, J.F. Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator. Eng. Rep. 2023, 5, e12669. [Google Scholar]
- Lu, R.; Brilakis, I. Digital twinning of existing reinforced concrete bridges from labelled point clusters. Autom. Constr. 2019, 105, 102837. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I. A benchmarked framework for geometric digital twinning of slab and beam-and-slab bridges. Proc. Inst. Civ. Eng.-Smart Infrastruct. Constr. 2020, 172, 3–18. [Google Scholar]
- Cheng, Y.; Zhang, J.; Wu, J. Fragility analysis of a self-anchored suspension bridge based on structural health monitoring data. Adv. Civ. Eng. 2019, 2019, 7467920. [Google Scholar]
- Hada, Y.; Nakao, M.; Yamada, M.; Kobayashi, H.; Sawasaki, N.; Yokoji, K.; Kanai, S.; Tanaka, F.; Date, H.; Pathak, S.; et al. Development of a bridge inspection support system using two-wheeled multicopter and 3D modeling technology. J. Disaster Res. 2017, 12, 593–606. [Google Scholar]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV photogrammetry for concrete bridge inspection using object-based image analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Xu, Y.; Turkan, Y. BrIM and UAS for bridge inspections and management. Engineering. Constr. Archit. Manag. 2020, 27, 785–807. [Google Scholar]
- Awadallah, O.; Sadhu, A. Automated multiclass structural damage detection and quantification using augmented reality. J. Infrastruct. Intell. Resil. 2023, 2, 100024. [Google Scholar]
- Ayele, Y.Z.; Aliyari, M.; Griffiths, D.; Droguett, E.L. Automatic crack segmentation for UAV-assisted bridge inspection. Energies 2020, 13, 6250. [Google Scholar] [CrossRef]
- Yiğit, A.Y.; Uysal, M. Virtual reality visualisation of automatic crack detection for bridge inspection from 3D digital twin generated by UAV photogrammetry. Measurement 2025, 242, 115931. [Google Scholar]
- Chu, H.; Chun, P. Fine-grained crack segmentation for high-resolution images via a multiscale cascaded network. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 575–594. [Google Scholar]
- Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 415–430. [Google Scholar]
- Tian, F.; Zhao, Y.; Che, X.; Zhao, Y.; Xin, D. Concrete crack identification and image mosaic based on image processing. Appl. Sci. 2019, 9, 4826. [Google Scholar] [CrossRef]
- Goulias, D.G.; Cafiso, S.; Di Graziano, A.; Saremi, S.G.; Currao, V. Condition assessment of bridge decks through ground-penetrating radar in bridge management systems. J. Perform. Constr. Facil. 2020, 34, 04020100. [Google Scholar]
- Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Autom. Constr. 2020, 117, 103250. [Google Scholar]
- Mohammadi, M.; Rashidi, M.; Mousavi, V.; Karami, A.; Yu, Y.; Samali, B. Quality evaluation of digital twins generated based on UAV photogrammetry and TLS: Bridge case study. Remote Sens. 2021, 13, 3499. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Zhang, F.; Guo, L.; Chen, Z. Spatial structure digital twins: Application in intelligent health monitoring of cable dome structures. Autom. Constr. 2024, 165, 105489. [Google Scholar]
- Broo, D.G.; Bravo-Haro, M.; Schooling, J. Design and implementation of a smart infrastructure digital twin. Autom. Constr. 2022, 136, 104171. [Google Scholar]
- Zhang, Y.; Hao, R.; Niiranen, J.; Yang, Y.; Brühwiler, E.; Su, D.; Nagayama, T. Computational engine for finite element digital twins of structural dynamics via motion data. Eng. Struct. 2024, 316, 118630. [Google Scholar]
- Tsaimou, C.N.; Brouziouti, S.; Sartampakos, P.; Tsoukala, V.K. Enhanced Port Vulnerability Assessment Using Unmanned-Aerial-Vehicle-Based Structural Health Monitoring. Sustainability 2023, 15, 14017. [Google Scholar] [CrossRef]
- Jayasinghe, S.C.; Mahmoodian, M.; Sidiq, A.; Nanayakkara, T.M.; Alavi, A.; Mazaheri, S.; Shahrivar, F.; Sun, Z.; Setunge, S. Innovative digital twin with artificial neural networks for real-time monitoring of structural response: A port structure case study. Ocean Eng. 2024, 312, 119187. [Google Scholar]
- Lee, T.; Jin, S.S.; Kim, S.T.; Min, J. Online anomaly detection for long-term structural health monitoring of caisson quay walls. Eng. Struct. 2025, 323, 119197. [Google Scholar]
- Michael, J.; Blankenbach, J.; Derksen, J.; Finklenburg, B.; Fuentes, R.; Gries, T.; Hendiani, S.; Herlé, S.; Hesseler, S.; Kimm, M.; et al. Integrating models of civil structures in digital twins: State-of-the-Art and challenges. J. Infrastruct. Intell. Resil. 2024, 3, 100100. [Google Scholar]
- Liu, C.; Chen, Y.; Xu, X. Structural digital Twin for damage detection of CFRP composites using meta transfer Learning-based approach. Expert Syst. Appl. 2025, 261, 125458. [Google Scholar]
- Mohammadi, M.; Rashidi, M.; Yu, Y.; Samali, B. Integration of TLS-derived Bridge Information Modeling (BrIM) with a Decision Support System (DSS) for digital twinning and asset management of bridge infrastructures. Comput. Ind. 2023, 147, 103881. [Google Scholar]
- Sun, L.; Sun, H.; Zhang, W.; Li, Y. Hybrid monitoring methodology: A model-data integrated digital twin framework for structural health monitoring and full-field virtual sensing. Adv. Eng. Inform. 2024, 60, 102386. [Google Scholar]
- Kilic, G.; Caner, A. Augmented reality for bridge condition assessment using advanced non-destructive techniques. Struct. Infrastruct. Eng. 2021, 17, 977–989. [Google Scholar]
- Shu, J.; Yu, H.; Liu, G.; Duan, Y.; Hu, H.; Zhang, H. DF-CDM: Conditional diffusion model with data fusion for structural dynamic response reconstruction. Mech. Syst. Signal Process. 2025, 222, 111783. [Google Scholar]
- Febrianto, E.; Butler, L.; Girolami, M.; Cirak, F. Digital twinning of self-sensing structures using the statistical finite element method. Data-Centric Eng. 2022, 3, e31. [Google Scholar]
- Jeon, C.H.; Shim, C.S.; Lee, Y.H.; Schooling, J. Prescriptive maintenance of prestressed concrete bridges considering digital twin and key performance indicator. Eng. Struct. 2024, 302, 117383. [Google Scholar]
- Xin, J.; Tang, Q.; Zhou, J.; Zhou, Y.; Luo, C.; Jiang, Y. A novel method for calculating the ultimate bearing capacity of in-service RC arch bridges using sectional constitutive relation. Appl. Math. Model. 2025, 138, 115829. [Google Scholar]
- Fawad, M.; Salamak, M.; Poprawa, G.; Koris, K.; Jasinski, M.; Lazinski, P.; Piotrowski, D.; Hasnain, M.; Gerges, M. Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development. Sci. Rep. 2023, 13, 13215. [Google Scholar]
- Hu, X.; Olgun, G.; Assaad, R.H. An intelligent BIM-enabled digital twin framework for real-time structural health monitoring using wireless IoT sensing, digital signal processing, and structural analysis. Expert Syst. Appl. 2024, 252, 124204. [Google Scholar]
- Heng, J.; Dong, Y.; Lai, L.; Zhou, Z.; Frangopol, D.M. Digital twins-boosted intelligent maintenance of ageing bridge hangers exposed to coupled corrosion–fatigue deterioration. Autom. Constr. 2024, 167, 105697. [Google Scholar]
- Arsiwala, A.; Elghaish, F.; Zoher, M. Digital twin with Machine learning for predictive monitoring of CO2 equivalent from existing buildings. Energy Build. 2023, 284, 112851. [Google Scholar]
- Yoon, S.; Lee, S.; Kye, S.; Kim, I.H.; Jung, H.J.; Spencer Jr, B.F. Seismic fragility analysis of deteriorated bridge structures employing a UAV inspection-based updated digital twin. Struct. Multidiscip. Optim. 2022, 65, 346. [Google Scholar]
- Xu, J.; Shu, X.; Qiao, P.; Li, S.; Xu, J. Developing a digital twin model for monitoring building structural health by combining a building information model and a real-scene 3D model. Measurement 2023, 217, 112955. [Google Scholar]
- Franciosi, M.; Kasser, M.; Viviani, M. Digital twins in bridge engineering for streamlined maintenance and enhanced sustainability. Autom. Constr. 2024, 168, 105834. [Google Scholar]
- Gao, Y.; Li, H.; Xiong, G.; Song, H. AIoT-informed digital twin communication for bridge maintenance. Autom. Constr. 2023, 150, 104835. [Google Scholar]
- Hu, D.; Hou, F.; Blakely, J.; Li, S. Augmented reality based visualization for concrete bridge deck deterioration characterized by ground penetrating radar. In Proceedings of the Construction Research Congress 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 1156–1164. [Google Scholar]
- Fawad, M.; Salamak, M.; Chen, Q.; Uscilowski, M.; Koris, K.; Jasinski, M.; Lazinski, P.; Piotrowski, D. Development of immersive bridge digital twin platform to facilitate bridge damage assessment and asset model updates. Comput. Ind. 2025, 164, 104189. [Google Scholar]
- Jiang, F.; Ding, Y.; Song, Y.; Geng, F.; Wang, Z. Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen. Eng. Struct. 2021, 241, 112461. [Google Scholar] [CrossRef]
References | Methodologies and Contributions |
---|---|
Wang et al. [98] | DT of spatial structures in smart buildings to address data fragmentation and integration |
Zhang et al. [100] | FEA-based computational engine for real-time simulation of large, complex structures |
Tsaimou et al. [101] | Designed a UAV-based system for port vulnerability assessment, generating 3D models from UAV imagery to identify structural weaknesses in inaccessible areas |
Jayasinghe et al. [102] | Integration of ANN for high-precision real-time response monitoring of port structures |
Lee et al. [103] | Proposed a GMM-PCA algorithm for multi-sensor anomaly detection in slope and settlement monitoring, enabling real-time alerts under varying environmental conditions |
Michael et al. [104] | FEA and ML integration for real-time sensor data fusion and structural state prediction using DNN |
Mohammadi et al. [106] | TLS-BrIM integration with DT for high-precision bridge structure evaluation |
Sun et al. [107] | DT-based SHM integrating physical model simulations with real-time sensor data |
Kilic et al. [108] | Combined AR with advanced NDT methods (GPR, IRT) for comprehensive real-time monitoring, improving defect visualization and decision-making |
Shu et al. [109] | Introduced the DF-CDM model (FEM + sensor data) to reconstruct structural dynamic responses, reducing prediction errors by 42% while enhancing computational efficiency |
Febrianto et al. [110] | Self-sensing structural modeling using SFEM to enhance prediction accuracy |
Approach | Strengths | Weaknesses | Suitable Applications |
---|---|---|---|
IoT-integrated DT [98] | High accuracy in data integration supports lifecycle management | High computational cost; limited real-time performance due to data sync delays | Large bridges, high-rise buildings |
FEA-based DT [100] | Captures complex structural behavior; validated for large-scale models | Requires extensive datasets | Port structures, complex environments |
UAV-DT fusion [101] | Efficient data collection in hard-to-reach areas; cost-effective | Limited to surface defects; image-processing delays in real-time | Post-disaster inspection, coastal infrastructure |
ANN-based DT [102] | Handles environmental uncertainties; high prediction accuracy | Sensitive to data quality; computationally intensive | Self-sensing structures, uncertain environments |
GMM-PCA DT [103] | Robust against environmental variability; real-time anomaly detection | Limited to static parameter monitoring; requires sensor calibration | Slope stability, settlement monitoring |
FEA-ML-integrated DT [104] | Combines physics-based and data-driven insights | Requires extensive training data | Complex dynamic structures, real-time state prediction |
TLS-BrIM-integrated DT [106] | High geometric precision; supports predictive maintenance | Dependent on sensor network reliability; data security risks | Smart buildings, facility management |
Modeling data–DT fusion [107] | Predictive automation; holistic monitoring | High computational demand; complex integration of heterogeneous data | Large infrastructures requiring holistic monitoring (e.g., dams, power plants) |
AR-NDT DT [108] | Enhanced visualization of defects | High hardware costs (e.g., AR headsets); limited field applicability | Critical component inspection |
DF-CDM DT [109] | Reduces prediction errors by 42% and improves computational efficiency | Requires validated FEM parameters; limited to linear dynamic systems | Bridges under dynamic loads |
SFEM-based DT [110] | High-precision uncertainty modeling | Expensive equipment and complex data processing pipelines | Bridge monitoring and maintenance |
References | Methodologies |
---|---|
Kang et al. [10] | Intelligent algorithms for creating DT models from large datasets |
Shim et al. [21] | DT system integrating 3D models, digital inspection, and image processing for prestressed concrete bridges |
Jeon et al. [111] | DT model for bridges incorporating predictive maintenance |
Fawad et al. [113] | Integration of IoT, BIM, FEA, and field tests |
Hu et al. [114] | BIM-based DT with sensors and wireless communication for data transmission and visualization |
Heng et al. [115] | DT-based framework for corrosion–fatigue maintenance in bridge hangers |
Yoon et al. [117] | SDeep learning-based framework for integrating 3D modeling and DT for bridge safety |
Xu et al. [118] | Dynamic Bayesian network-based DT for asset-coupling and real-time diagnosis |
Franciosi et al. [119] | DT model simulating degradation in bridges to support decision-making |
Heng et al. [115] | DT model for intelligent maintenance of aging bridge hangers using monitoring and historical data |
Gao et al. [120] | AIoT-driven DT framework for optimizing data synchronization in bridge maintenance |
Hu et al. [121] | DT framework combining GPR scanning and AR for bridge maintenance |
Fawad et al. [122] | Immersive DT platform integrating BIM, IoT, VR, and AR for bridge monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Huang, B.; Gao, Y.; Jiao, C. Current Status and Prospects of Digital Twin Approaches in Structural Health Monitoring. Buildings 2025, 15, 1021. https://doi.org/10.3390/buildings15071021
Wang Q, Huang B, Gao Y, Jiao C. Current Status and Prospects of Digital Twin Approaches in Structural Health Monitoring. Buildings. 2025; 15(7):1021. https://doi.org/10.3390/buildings15071021
Chicago/Turabian StyleWang, Qiuting, Bo Huang, Yongsheng Gao, and Chaojian Jiao. 2025. "Current Status and Prospects of Digital Twin Approaches in Structural Health Monitoring" Buildings 15, no. 7: 1021. https://doi.org/10.3390/buildings15071021
APA StyleWang, Q., Huang, B., Gao, Y., & Jiao, C. (2025). Current Status and Prospects of Digital Twin Approaches in Structural Health Monitoring. Buildings, 15(7), 1021. https://doi.org/10.3390/buildings15071021