Research on the Coupling Relationship Between Street Built Environment and Thermal Comfort Based on Deep Learning of Street View Images: A Case Study of Chaowai Block in Beijing
Abstract
:1. Introduction
2. Research Methods
2.1. Street View Image Deep Learning and Quantitative Analysis of the Built Environment
2.1.1. Street View Image Acquisition and Processing
2.1.2. Quantification of the Built Environment
- (1)
- Green visibility
- (2)
- Sky visibility
- (3)
- Spatial enclosure
- (4)
- Road patency
- (5)
- Ancillary facilities
- (6)
- Slow traffic rate
- (7)
- Road width
2.2. ENVI-met 5.0 Thermal Comfort Simulation and Numerical Extraction
3. Analysis of the Coupling Relationship Between the Street Built Environment and Thermal Comfort
3.1. Thermal Comfort Simulation Analysis Results
3.2. Correlation Analysis Between Built Environment Elements and Thermal Comfort
3.3. Regression Analysis of the Built Environment Elements and Thermal Comfort
3.4. Result Analysis
4. Optimization Strategies for Street Built Environments to Improve Thermal Comfort
4.1. Promotion of Multi-Level Greening
- (1)
- Enrichment of the level and collocation of greening
- (2)
- Three-dimensional greening
4.2. Optimization of the Street Width and Space Configuration
4.3. Optimization of the Street Layout to Ensure Slow Traffic
- (1)
- Parking layout optimization
- (2)
- Slow-traffic connections
4.4. Optimization of the Architectural Space Form
- (1)
- Optimization of the architectural form
- (2)
- Optimization of the space boundary
4.5. Optimization of Ancillary Facilities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.Y.; Mei, Y.; Kuang, W. Experimental research on correlation between microclimate element and human behavior and perception of residential landscape space in Shanghai. Chin. Landsc. Archit. 2016, 32, 5–9. [Google Scholar]
- Finaeva, O. Role of green spaces in favorable microclimate creating in urban environment (exemplified by Italian cities). IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 012141. [Google Scholar] [CrossRef]
- Suminah, N.; Sulistyantara, B.; Budiarti, T. Analysis of green space characteristic effect to the comfort microclimate in the simple flats in Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2017, 91, 012017. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Fang, Z.; Li, Y.; Lu, F.; Guo, T.; Zhang, X.; Lin, C.; Lu, J. Study on thermal and physiological responses during summer while moving between academic buildings under different walking conditions. Case Stud. Therm. Eng. 2025, 66, 105809. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Y.; Wu, Z.; Luo, X.; Gao, N.; Fang, Z.; Wu, P. Investigation of the outdoor workers’ thermal comfort and improving technology. Energy Build. 2025, 331, 115332. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.; Santamouris, M.; Matzarakis, A. Approaches to outdoor thermal comfort thresholds through public space design: A review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Zhang, Q.; He, S. Thermal Comfort Assessment of the Beijing Historical Town Blocks: Analysis of Indices and Applications. Sci. Program. 2022, 2022, 2381584. [Google Scholar] [CrossRef]
- Kim, Y.; Yu, S.; Li, D.; Gatson, S.N.; Brown, R.D. Linking landscape spatial heterogeneity to urban heat island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index. Sustain. Cities Soc. 2022, 87, 104262. [Google Scholar] [CrossRef]
- Cárdenas-Jirón, L.A.; Graw, K.; Gangwisch, M.; Matzarakis, A. Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Clim. 2023, 47, 101361. [Google Scholar] [CrossRef]
- Deevi, B.; Chundeli, F.A. Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Clim. 2020, 34, 100718. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, Q.; Liu, J. Research on urban geothermal comfort improvement strategy based on ENVI-met. Ecol. Sci. 2021, 40, 144–155. [Google Scholar]
- Lu, X.; Yang, X. Research on Urban Renewal Methods Based on ENVI-met Software Microclimate Simulation and Thermal Comfort Experience: A Case Study of Bei Xin’an Area in Shijingshan in Beijing. Urban Dev. Stud. 2018, 25, 147–152. [Google Scholar]
- Zhu, S.; Gao, M.; Chen, T.; Zhang, G. Simulation and Analysis of Urban Near-Surface Air Temperature Based on ENVI-met Model: A Case Study in Some Areas of Nanjing. Clim. Environ. Res. 2017, 22, 499–507. [Google Scholar]
- Peng, X. study on microclimate adaptation of street space based on dynamic thermal comfort. Build. Sci. 2023, 39, 221–232. [Google Scholar]
- Xiao, H.; Bi, X.; Liu, Y.; Wang, M.; Wu, C.; Li, J. Summer Thermal Comfort and Visitor Thermal Preference of Urban Open Space in Shanghai. Landsc. Archit. Acad. J. 2023, 40, 123–131. [Google Scholar]
- Zheng, J.; Ou, Z.; Xiang, Y.; Li, J.; Zheng, B. How can street interface morphology effect pedestrian thermal comfort: A case study of the old town of Changsha, China. Urban Clim. 2025, 60, 102341. [Google Scholar] [CrossRef]
- Guo, F.; Luo, M.; Zhang, C.; Cai, J.; Zhang, X.; Zhang, H.; Dong, J. The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data. Buildings 2024, 14, 3253. [Google Scholar] [CrossRef]
- Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Chapter 2—Road Traffic Modeling, Road Traffic Modeling and Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 15–63. [Google Scholar]
- Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Chapter 5—Traffic Congestion Detection: Data-Based Techniques, Road Traffic Modeling and Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 141–195. [Google Scholar]
- Yao, Y.; Liang, Z.; Yuan, Z.; Liu, P.; Bie, Y.; Zhang, J.; Wang, R.; Wang, J.; Guan, Q. A human-machine adversarial scoring framework for urban perception assessment using street-view images. Int. J. Geogr. Inf. Sci. 2019, 33, 2363–2384. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 22–25 July 2017; pp. 5122–5130. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K Dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Hu, X.; Li, B.; Chen, H. Research Review and Evaluation Framework of Outdoor Thermal Comfort. Build. Sci. 2020, 36, 53–61. [Google Scholar]
- Li, J. Evaluation and Optimization of Thermal Comfort of Urban Greenways—A Case Study of Greenways in Three Hills and Five Parks in Beijing. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2022. [Google Scholar]
- Tian, M. Research on the Relationship Between Green Model and Green Looking Ratio—Taking Chongqing as an Example. Master’s Thesis, Southwest University, Chongqing, China, 2011. [Google Scholar]
- Yang, C.; Xu, F.; Jiang, L.; Wang, R.; Yin, L.; Zhao, M.; Zhang, X. Approach to Quantify Spatial Comfort of Urban Roads based on Street View Images. J. Inf. Sci. 2021, 23, 785–801. [Google Scholar]
- Zhang, F. Research on the Green Space Design of Beijing Winter Park Based on the Analysis of Human Comfort—Take the Olympic Forest Park as an Example. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2020. [Google Scholar]
- Lai, D. Research on Outdoor Thermal Comfort in Northern China. Master’s Thesis, Tianjin University, Tianjin, China, 2012. [Google Scholar]
- Chen, X.; Han, M.; He, J.; Ma, H.; Han, M.; Liu, Y.; Wu, X. Integrated effect of aspect ratio and tree spacing on pedestrian thermal comfort of street canyon. Int. J. Biometeorol. 2024, 68, 2115–2131. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Jayasooriya, V.; Dassanayake, S.M.; Muthukumaran, S. Effects of street tree configuration and placement on roadside thermal environment within a tropical urban canyon. Int. J. Biometeorol. 2024, 68, 1133–1142. [Google Scholar] [CrossRef]
- Ma, X.; Fukuda, H.; Zhou, D.; Wang, M. Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold-winter region of southern China-a case study of The Taizhou Old Block. Tour. Manag. 2019, 75, 186–205. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Cui, D.; Zhang, Y.; Li, X.; Yuan, L.; Mak, C.M.; Kwok, K. Effects of different vertical façade greenery systems on pedestrian thermal comfort in deep street canyons. Urban For. Urban Green. 2022, 72, 127582. [Google Scholar] [CrossRef]
- Nice, K.A.; Nazarian, N.; Lipson, M.J.; Hart, M.A.; Seneviratne, S.; Thompson, J.; Naserikia, M.; Godic, B.; Stevenson, M. Isolating the impacts of urban form and fabric from geography on urban heat and human thermal comfort. Build. Environ. 2022, 224, 109502. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Dogan, T. How the urban microclimate and outdoor thermal comfort can affect intra-city mobility patterns: Evidence from New York City. In Proceedings of the 2022 Annual Modeling and Simulation Conference (ANNSIM), San Diego, CA, USA, 18–20 July 2022; pp. 523–536. [Google Scholar]
- Li, Z.; Zhang, H.; Juan, Y.-H.; Wen, C.-Y.; Yang, A.-S. Effects of building setback on thermal comfort and air quality in the street canyon. Build. Environ. 2022, 208, 108627. [Google Scholar] [CrossRef]
- van der Velde, R.; de Wit, S.; Pouderoijen, M. Cool Tree Architecture: A Descriptive Framework for a Tree Architecture Typology to Temper Urban Microclimates. Landsc. Archit. Front. 2023, 11, 30–42. [Google Scholar] [CrossRef]
- Ünsal, Ö.; Aksak, P.; Kartum, Ş. Investigation of Surface Urban Heat Island by High-Rise Buildings: Istanbul Levent Region. Pap. Appl. Geogr. 2024, 10, 376–392. [Google Scholar] [CrossRef]
Evaluation Factors of the Built Environment | Elements of the Built Environment | Labels |
---|---|---|
Horizontal interface | Sky | Sky |
Ground | Road, ground, and sidewalk | |
Motor vehicles | Cars, buses, trucks, vans, and small locomotives | |
Non-motor vehicles | Pedestrians and bicycles | |
Vertical interface | Construction | Buildings, houses, walls, and fences |
Plants | Trees, grass, flowers, and other plants | |
Street furniture | Commercial amenities | Signs, screens, and placards |
Amenities | Poles, seats, trash cans, and streetlights | |
Transportation facilities | Bridges, railings, and traffic lights |
UTCI | Pearson Correlation | Significance (Two-Tailed) | Number of Cases |
---|---|---|---|
Green visibility | −476 ** | 0.000 | 246 |
Sky visibility | 349 ** | 0.000 | 246 |
Spatial closeness | 436 ** | 0.000 | 246 |
Road smoothness | −453 ** | 0.000 | 246 |
Road width | 397 ** | 0.000 | 246 |
Ancillary facility rate | 0.003 | 0.958 | 246 |
Slow traffic rate | −0.066 | 0.306 | 246 |
UTCI | Pearson Correlation | Significance (Two-Tailed) | Number of Cases |
---|---|---|---|
Green rate of view | −366 ** | 0.000 | 283 |
Sky visibility | 307 ** | 0.000 | 283 |
Spatial closeness | −257 ** | 0.000 | 283 |
Road smoothness | −146 * | 0.140 | 283 |
Road width | −0.047 | 0.435 | 283 |
Ancillary facility rate | 0.016 | 0.789 | 283 |
Slow traffic rate | −330 ** | 0.000 | 283 |
UTCI | Pearson Correlation | Significance (Two-Tailed) | Number of Cases |
---|---|---|---|
Green visibility | −397 ** | 0.000 | 355 |
Sky visibility | 307 ** | 0.000 | 355 |
Spatial closeness | −0.059 | 0.266 | 355 |
Road patency | −301 ** | 0.000 | 355 |
Road width | −334 ** | 0.000 | 355 |
Ancillary facility rate | −251 ** | 0.000 | 355 |
Slow traffic rate | −119 * | 0.025 | 355 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Saliency | Relevance | Collinearity Statistics | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Order Zero | Partial | Part | Tolerance | VIF | ||||
1 | (constant) | 41.225 | 0.285 | 144.819 | 0.000 | ||||||
Green visibility | −9.962 | 1.178 | −0.476 | −8.461 | 0.000 | −0.476 | −0.476 | −0.476 | 1.000 | 1.000 | |
2 | (constant) | 48.169 | 1.003 | 48.021 | 0.000 | ||||||
Green visibility | −8.439 | 1.093 | −0.403 | −7.721 | 0.000 | −0.476 | −0.444 | −0.396 | 0.962 | 1.039 | |
Road patency | −8.449 | 1.179 | −0.374 | −7.166 | 0.000 | −0.453 | −0.418 | −0.367 | 0.962 | 1.039 | |
3 | (constant) | 45.390 | 1.158 | 39.206 | 0.000 | ||||||
Green visibility | −6.098 | 1.182 | −0.292 | −5.157 | 0.000 | −0.476 | −0.315 | −0.255 | 0.765 | 1.307 | |
Road patency | −8.632 | 1.138 | −0.383 | −7.584 | 0.000 | −0.453 | −0.438 | −0.375 | 0.961 | 1.041 | |
Road width | 9.652 | 2.207 | 0.243 | 4.372 | 0.000 | 0.397 | 0.271 | 0.216 | 0.793 | 1.262 | |
4 | (constant) | 44.008 | 1.262 | 34.867 | 0.000 | ||||||
Green visibility | −5.058 | 1.236 | −0.242 | −4.094 | 0.000 | −0.476 | −0.255 | −0.200 | 0.684 | 1.461 | |
Road patency | −7.911 | 1.159 | −0.351 | −6.828 | 0.000 | −0.453 | −0.403 | −0.334 | 0.906 | 1.104 | |
Road width | 8.563 | 2.222 | 0.215 | 3.854 | 0.000 | 0.397 | 0.241 | 0.188 | 0.764 | 1.308 | |
Space closeness | 5.146 | 1.984 | 0.149 | 2.594 | 0.010 | 0.436 | 0.165 | 0.127 | 0.722 | 1.385 | |
5 | (constant) | 42.870 | 1.357 | 31.584 | 0.000 | ||||||
Green visibility | −3.738 | 1.368 | −0.179 | −2.733 | 0.007 | −0.476 | −0.174 | −0.133 | 0.550 | 1.819 | |
Road patency | −7.879 | 1.150 | −0.349 | −6.852 | 0.000 | −0.453 | −0.404 | −0.332 | 0.905 | 1.104 | |
Road width | 7.996 | 2.220 | 0.201 | 3.601 | 0.000 | 0.397 | 0.226 | 0.175 | 0.754 | 1.327 | |
Space closeness | 5.449 | 1.973 | 0.158 | 2.761 | 0.006 | 0.436 | 0.175 | 0.134 | 0.718 | 1.392 | |
Degree of sky presentation | 4.453 | 2.047 | 0.125 | 2.175 | 0.031 | 0.349 | 0.139 | 0.105 | 0.711 | 1.406 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Saliency | Relevance | Collinearity Statistics | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Order Zero | Partial | Part | Tolerance | VIF | ||||
1 | (constant) | 41.093 | 0.274 | 149.995 | 0.000 | ||||||
Green rate of view | −7.062 | 1.072 | −0.366 | −6.585 | 0.000 | −0.366 | −0.366 | −0.366 | 1.000 | 1.000 | |
2 | (constant) | 39.453 | 0.395 | 99.802 | 0.000 | ||||||
Green visibility | −6.814 | 1.021 | −0.353 | −6.672 | 0.000 | −0.366 | −0.370 | −0.352 | 0.998 | 1.002 | |
Sky visibility | 11.315 | 2.051 | 0.292 | 5.518 | 0.000 | 0.307 | 0.313 | 0.291 | 0.998 | 1.002 | |
3 | (constant) | 40.342 | 0.423 | 95.326 | 0.000 | ||||||
Green visibility | −6.042 | 0.996 | −0.313 | −6.064 | 0.000 | −0.366 | −0.341 | −0.308 | 0.972 | 1.029 | |
Sky visibility | 10.330 | 1.985 | 0.266 | 5.204 | 0.000 | 0.307 | 0.297 | 0.265 | 0.987 | 1.013 | |
Slow traffic rate | −25.254 | 5.258 | −0.249 | −4.803 | 0.000 | −0.330 | −0.276 | −0.244 | 0.962 | 1.039 | |
4 | (constant) | 41.132 | 0.504 | 81.644 | 0.000 | ||||||
Green visibility | −5.842 | 0.987 | −0.302 | −5.921 | 0.000 | −0.366 | −0.335 | −0.297 | 0.967 | 1.034 | |
Sky visibility | 9.163 | 2.004 | 0.236 | 4.572 | 0.000 | 0.307 | 0.264 | 0.230 | 0.945 | 1.058 | |
Slow traffic rate | −23.833 | 5.219 | −0.235 | −4.567 | 0.000 | −0.330 | −0.264 | −0.229 | 0.953 | 1.049 | |
Spatial enclosure | −3.282 | 1.167 | −0.146 | −2.812 | 0.005 | −0.257 | −0.166 | −0.141 | 0.936 | 1.069 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Saliency | Relevance | Collinearity Statistics | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Order Zero | Partial | Part | Tolerance | VIF | ||||
1 | (constant) | 40.689 | 0.257 | 158.398 | 0.000 | ||||||
Green rate of view | −8.456 | 1.041 | −0.397 | −8.127 | 0.000 | −0.397 | −0.397 | −0.397 | 1.000 | 1.000 | |
2 | (constant) | 43.434 | 0.528 | 82.198 | 0.000 | ||||||
Green visibility | −8.052 | 0.997 | −0.378 | −8.077 | 0.000 | −0.397 | −0.395 | −0.377 | 0.995 | 1.005 | |
Road patency | −4.036 | 0.688 | −0.275 | −5.867 | 0.000 | −0.301 | −0.298 | −0.274 | 0.995 | 1.005 | |
3 | (constant) | 44.228 | 0.549 | 80.552 | 0.000 | ||||||
Green visibility | −7.405 | 0.986 | −0.348 | −7.513 | 0.000 | −0.397 | −0.372 | −0.343 | 0.971 | 1.030 | |
Road patency | −3.068 | 0.710 | −0.209 | −4.323 | 0.000 | −0.301 | −0.225 | −0.197 | 0.892 | 1.121 | |
Road width | −8.268 | 1.951 | −0.207 | −4.238 | 0.000 | −0.334 | −0.221 | −0.193 | 0.871 | 1.148 | |
4 | (constant) | 42.870 | 0.627 | 68.351 | 0.000 | ||||||
Green visibility | −5.994 | 1.021 | −0.281 | −5.873 | 0.000 | −0.397 | −0.300 | −0.262 | 0.865 | 1.156 | |
Road patency | −2.946 | 0.694 | −0.200 | −4.243 | 0.000 | −0.301 | −0.221 | −0.189 | 0.891 | 1.123 | |
Road width | −8.617 | 1.908 | −0.216 | −4.516 | 0.000 | −0.334 | −0.235 | −0.201 | 0.869 | 1.150 | |
Sky visibility | 9.061 | 2.167 | 0.198 | 4.181 | 0.000 | 0.307 | 0.218 | 0.186 | 0.888 | 1.126 | |
5 | (constant) | 43.040 | 0.624 | 68.957 | 0.000 | ||||||
Green visibility | −5.860 | 1.012 | −0.275 | −5.791 | 0.000 | −0.397 | −0.296 | −0.256 | 0.863 | 1.158 | |
Road patency | −2.557 | 0.702 | −0.174 | −3.645 | 0.000 | −0.301 | −0.192 | −0.161 | 0.856 | 1.169 | |
Width of the road | −8.258 | 1.894 | −0.207 | −4.360 | 0.000 | −0.334 | −0.227 | −0.192 | 0.865 | 1.156 | |
Sky visibility | 8.524 | 2.155 | 0.186 | 3.956 | 0.000 | 0.307 | 0.207 | 0.175 | 0.881 | 1.135 | |
Ancillary amenity rate | −57.237 | 20.471 | −0.128 | −2.796 | 0.005 | −0.251 | −0.148 | −0.123 | 0.925 | 1.081 |
Roads | Influencing Factors | Regression Equation |
---|---|---|
Main road | Green visibility Road patency Road width Space closeness Degree of sky presentation | Y = 3.738 − 7.879 ** and green rate road unobstructed degree of road broad + 5.449 + 7.996 ** spatial enclosure degree + 4.453 + 42.870 * the sky |
Secondary main road | Green visibility Sky visibility Slow traffic rate Spatial enclosure | Y = −5.842 * green visibility + 9.163 * sky visibility degree − 23.833 * slow traffic rate − 3.282 * spatial enclosure degree + 41.132 |
Branch road | Green visibility Road patency Road width Sky visibility Ancillary amenity rate | Y = −5.860 * green visibility − 2.557 * road patency − 8.258 * road width + 8.524 * sky visibility − 57.237 * ancillary facility rate + 43.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, H.; Ma, X.; Zhang, B. Research on the Coupling Relationship Between Street Built Environment and Thermal Comfort Based on Deep Learning of Street View Images: A Case Study of Chaowai Block in Beijing. Buildings 2025, 15, 1449. https://doi.org/10.3390/buildings15091449
Yang X, Li H, Ma X, Zhang B. Research on the Coupling Relationship Between Street Built Environment and Thermal Comfort Based on Deep Learning of Street View Images: A Case Study of Chaowai Block in Beijing. Buildings. 2025; 15(9):1449. https://doi.org/10.3390/buildings15091449
Chicago/Turabian StyleYang, Xin, Haocheng Li, Xin Ma, and Bo Zhang. 2025. "Research on the Coupling Relationship Between Street Built Environment and Thermal Comfort Based on Deep Learning of Street View Images: A Case Study of Chaowai Block in Beijing" Buildings 15, no. 9: 1449. https://doi.org/10.3390/buildings15091449
APA StyleYang, X., Li, H., Ma, X., & Zhang, B. (2025). Research on the Coupling Relationship Between Street Built Environment and Thermal Comfort Based on Deep Learning of Street View Images: A Case Study of Chaowai Block in Beijing. Buildings, 15(9), 1449. https://doi.org/10.3390/buildings15091449