Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections
Abstract
:1. Introduction
2. Central Nervous System Disease following Congenital HCMV Infections
Histopathologic Findings | Imaging Findings |
---|---|
focal microgliosis/nodular gliosis [14,16,17] | calcifications [19,21,32,33,34,35] |
peri-ependymitis/peri-ventricular calcifications [14]; ependymitis with CD8+ T lymphocyte infiltrates [17] | disordered migration (lissencephaly; pachygyria, polymicrogyria) [19,22,34,35,36,37] |
microglia activation, CD8+ T lymphocyte infiltrates [16,17,18] | cerebellar hypoplasia [22,33,34,36,37] |
infection of neural stem cells, astroglial cells, macrophage/microglia [16,17]; endothelial cells [17] | ventriculomegaly [33,34] |
3. Murine Models of CNS Infections Associated with Congenital HCMV Infection: CNS Development in Humans and Rodents
4. Murine Models of CNS Infections Associated with Congenital HCMV Infection: Murine Models of CNS Infection with HCMV
5. Pathologic and Histopathologic Findings in Murine Models of Congenital HCMV Infections: Clues to Potential Mechanisms of Disease
6. Hearing Loss and Vestibular Dysfunction Following Congenital HCMV Infections
7. Murine Models of Hearing Loss Associated with Congenital HCMV Infection
8. Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BLB | blood/labyrinth barrier |
cCMV | congenital cytomegalovirus |
CNS | central nervous system |
CT | computerized tomography |
EGL | external granular layer |
GNPC | granular neuron precursor cell |
HCMV | human cytomegalovirus |
HSV | herpes simplex virus |
IC | intracerebral |
IP | intraperitoneal |
MCMV | murine cytomegalovirus |
MRI | magnetic resonance imaging |
SNHL | sensorineural hearing loss |
SVZ | subventricular zone |
US | ultrasound |
References
- Fowler, K.B.; Boppana, S.B. Congenital cytomegalovirus infection. Semin Perinatol. 2018, 42, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent“ global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 2013, 26, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef]
- Stagno, S.; Pass, R.F.; Dworsky, M.E.; Alford, C.A. Congenital and perinatal cytomegaloviral infections. Semin. Perinatol. 1983, 7, 31–42. [Google Scholar]
- Boppana, S.B.; Pass, R.F.; Britt, W.J.; Stagno, S.; Alford, C.A. Symptomatic congenital cytomegalovirus infection: Neonatal morbidity and mortality. Pediatr. Infect. Dis. J. 1992, 11, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dreher, A.M.; Arora, N.; Fowler, K.B.; Novak, Z.; Britt, W.J.; Boppana, S.B.; Ross, S.A. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J. Pediatr. 2014, 164, 855–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhondt, C.; Maes, L.; Rombaut, L.; Martens, S.; Vanaudenaerde, S.; Van Hoecke, H.; De Leenheer, E.; Dhooge, I. Vestibular function in children with a congenital cytomegalovirus infection: 3 years of follow-up. Ear Hear. 2020, 42, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Pinninti, S.; Christy, J.; Almutairi, A.; Cochrane, G.; Fowler, K.B.; Boppana, S. Vestibular, gaze, and balance disorders in asymptomatic congenital cytomegalovirus infection. Pediatrics 2021, 147, e20193945. [Google Scholar] [CrossRef] [PubMed]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.E.; Walton, P.D.; Veren, D.A.; Page, F.; Alford, C.A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J. Clin. Virol. 2006, 35, 216–220. [Google Scholar] [CrossRef]
- Enders, G.; Daiminger, A.; Bader, U.; Exler, S.; Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 2011, 52, 244–246. [Google Scholar] [CrossRef]
- Faure-Bardon, V.; Magny, J.F.; Parodi, M.; Couderc, S.; Garcia, P.; Maillotte, A.M.; Benard, M.; Pinquier, D.; Astruc, D.; Patural, H.; et al. Sequelae of congenital cytomegalovirus following maternal primary infections are limited to those acquired in the first trimester of pregnancy. Clin. Infect. Dis. 2019, 69, 1526–1532. [Google Scholar] [CrossRef]
- Boppana, S.B.; Ross, S.A.; Fowler, K.B. Congenital cytomegalovirus infection: Clinical outcome. Clin. Infect. Dis. 2013, 57, S178–S181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becroft, D.M.O. Prenatal cytomegalovirus infection: Epidemiology, pathology, and pathogenesis. In Perspective in Pediatric Pathology; Rosenberg, H.S., Bernstein, J., Eds.; Masson Press: New York, NY, USA, 1981; Volume 6, pp. 203–241. [Google Scholar]
- Arribas, J.R.; Storch, G.A.; Clifford, D.B.; Tselis, A.C. Cytomegalovirus encephalitis. Ann. Intern. Med. 1996, 125, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Teissier, N.; Fallet-Bianco, C.; Delezoide, A.L.; Laquerrière, A.; Marcorelles, P.; Khung-Savatovsky, S.; Nardelli, J.; Cipriani, S.; Csaba, Z.; Picone, O.; et al. Cytomegalovirus-Induced brain malformations in fetuses. J. Neuropathol. Exp. Neurol. 2014, 73, 143–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Petrisli, E.; Dolcetti, R.; Guerra, B.; Piccioli, M.; Lanari, M.; et al. Congenital cytomegalovirus infection: Patterns of fetal brain damage. Clin. Microbiol. Infect. 2012, 18, E419–E427. [Google Scholar] [CrossRef] [Green Version]
- Sellier, Y.; Marliot, F.; Bessières, B.; Stirnemann, J.; Encha-Razavi, F.; Guilleminot, T.; Haicheur, N.; Pages, F.; Ville, Y.; Leruez-Ville, M. Adaptive and Innate immune cells in fetal human cytomegalovirus-infected brains. Microorganisms 2020, 8, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, J.C.; Titelbaum, D.S.; Clancy, R.R.; Zimmerman, R.A. Lissencephaly-Pachygyria associated with congenital cytomegalovirus infection. J. Child Neurol. 1991, 6, 109–114. [Google Scholar] [CrossRef]
- Bale, J.F., Jr.; Bray, P.F.; Bell, W.E. Neuroradiographic abnormalities in congenital cytomegalovirus infection. Pediatr. Neurol. 1985, 1, 42–47. [Google Scholar] [CrossRef]
- Boppana, S.B.; Fowler, K.B.; Vaid, Y.; Hedlund, G.; Stagno, S.; Britt, W.J.; Pass, R.F. Neuroradiographic findings in the newborn period and long-term outcome in children with symptomatic congenital cytomegalovirus infection. Pediatrics 1997, 99, 409–414. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Lindan, C.E. Congenital cytomegalovirus infection of the brain: Imaging analysis and embryologic considerations. Am. J. Neuroradiol. 1994, 15, 703–715. [Google Scholar] [PubMed]
- Sison, S.L.; O’Brien, B.S.; Johnson, A.J.; Seminary, E.R.; Terhune, S.S.; Ebert, A.D. Human cytomegalovirus disruption of calcium signaling in neural progenitor cells and organoids. J. Virol. 2019, 93, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.M.; Rana, P.; Jaeger, H.K.; O’Dowd, J.M.; Balemba, O.B.; Fortunato, E.A. Human cytomegalovirus compromises development of cerebral organoids. J. Virol. 2019, 93, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland, M.; Li, X.; Sellier, Y.; Martin, H.; Perez-Berezo, T.; Rauwel, B.; Benchoua, A.; Bessières, B.; Aziza, J.; Cenac, N.; et al. PPARγ is activated during congenital cytomegalovirus infection and inhibits neuronogenesis from human neural stem cells. PLoS Pathog. 2016, 12, e1005547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland, M.; Martin, H.; Bergamelli, M.; Sellier, Y.; Bessières, B.; Aziza, J.; Benchoua, A.; Leruez-Ville, M.; Gonzalez-Dunia, D.; Chavanas, S. Human cytomegalovirus infection is associated with increased expression of the lissencephaly gene PAFAH1B1 encoding LIS1 in neural stem cells and congenitally infected brains. J. Pathol. 2021, 254, 92–102. [Google Scholar] [CrossRef]
- Luo, M.H.; Hannemann, H.; Kulkarni, A.S.; Schwartz, P.H.; O’Dowd, J.M.; Fortunato, E.A. Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J. Virol. 2010, 84, 3528–3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odeberg, J.; Wolmer, N.; Falci, S.; Westgren, M.; Seiger, A.; Söderberg-Nauclér, C. Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J. Virol. 2006, 80, 8929–8939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, A.; Löfkvist, U.; Verrecchia, L.; Karltorp, E. Identical twins affected by congenital cytomegalovirus infections showed different audio-vestibular profiles. Acta Paediatrica 2021, 110, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, C.P.; Sánchez, P.J.; Xu, Z.; Blankenship, D.; Zeray, F.; Ronchi, A.; Shimamura, M.; Chaussabel, D.; Lee, L.; Owen, K.E.; et al. Blood genome expression profiles in infants with congenital cytomegalovirus infection. Nat. Commun. 2020, 11, 3548. [Google Scholar] [CrossRef]
- Pinninti, S.G.; Rodgers, M.D.; Novak, Z.; Britt, W.J.; Fowler, K.B.; Boppana, S.B.; Ross, S.A. Clinical Predictors of Sensorineural Hearing Loss and Cognitive Outcome in Infants with Symptomatic Congenital Cytomegalovirus Infection. Pediatr. Infect. Dis. J. 2016, 35, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Benoist, G.; Salomon, L.J.; Mohlo, M.; Suarez, B.; Jacquemard, F.; Ville, Y. Cytomegalovirus-related fetal brain lesions: Comparison between targeted ultrasound examination and magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2008, 32, 900–905. [Google Scholar] [CrossRef]
- Doneda, C.; Parazzini, C.; Righini, A.; Rustico, M.; Tassis, B.; Fabbri, E.; Arrigoni, F.; Consonni, D.; Triulzi, F. Early cerebral lesions in cytomegalovirus infection: Prenatal MR imaging. Radiology 2010, 255, 613–621. [Google Scholar] [CrossRef]
- Diogo, M.C.; Glatter, S.; Binder, J.; Kiss, H.; Prayer, D. The MRI spectrum of congenital cytomegalovirus infection. Prenat. Diagn. 2020, 40, 110–124. [Google Scholar] [CrossRef] [Green Version]
- White, A.L.; Hedlund, G.L.; Bale, J.F., Jr. Congenital cytomegalovirus infection and brain clefting. Pediatr. Neurol. 2014, 50, 218–223. [Google Scholar] [CrossRef]
- De Vries, L.S.; Verboon-Maciolek, M.A.; Cowan, F.M.; Groenendaal, F. The role of cranial ultrasound and magnetic resonance imaging in the diagnosis of infections of the central nervous system. Early Hum. Dev. 2006, 82, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Sugita, K.; Ando, M.; Makino, M.; Takanashi, J.; Fujimoto, N.; Niimi, H. Magnetic resonance imaging of the brain in congenital rubella virus and cytomegalovirus infections. Neuroradiology 1991, 33, 239–242. [Google Scholar] [CrossRef]
- Clancy, B.; Darlington, R.B.; Finlay, B.L. Translating developmental time across mammalian species. Neuroscience 2001, 105, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, S.; Buss, C.; Hanganu-Opatz, I.L.; Arck, P.C. Prenatal Immune and endocrine modulators of offspring’s brain development and cognitive functions later in life. Front. Immunol. 2018, 9, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chini, M.; Pöpplau, J.A.; Lindemann, C.; Carol-Perdiguer, L.; Hnida, M.; Oberländer, V.; Xu, X.; Ahlbeck, J.; Bitzenhofer, S.H.; Mulert, C.; et al. Resolving and Rescuing Developmental Miswiring in a Mouse Model of Cognitive Impairment. Neuron 2020, 105, 60–74.e67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldowitz, D.; Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998, 21, 375–382. [Google Scholar] [CrossRef]
- Hatten, M.E. The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 1993, 3, 38–44. [Google Scholar] [CrossRef]
- Leto, K.; Arancillo, M.; Becker, E.B.; Buffo, A.; Chiang, C.; Ding, B.; Dobyns, W.B.; Dusart, I.; Haldipur, P.; Hatten, M.E.; et al. Consensus paper: Cerebellar development. Cerebellum 2016, 15, 789–828. [Google Scholar] [CrossRef]
- Haldipur, P.; Aldinger, K.A.; Bernardo, S.; Deng, M.; Timms, A.E.; Overman, L.M.; Winter, C.; Lisgo, S.N.; Razavi, F.; Silvestri, E.; et al. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science 2019, 366, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Abrahám, H.; Tornóczky, T.; Kosztolányi, G.; Seress, L. Cell formation in the cortical layers of the developing human cerebellum. Int. J. Dev. Neurosci. 2001, 19, 53–62. [Google Scholar] [CrossRef]
- Sereno, M.I.; Diedrichsen, J.; Tachrount, M.; Testa-Silva, G.; d’Arceuil, H.; De Zeeuw, C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc. Natl. Acad. Sci. USA 2020, 117, 19538–19543. [Google Scholar] [CrossRef]
- Butts, T.; Green, M.J.; Wingate, R.J. Development of the cerebellum: Simple steps to make a ‘little brain’. Development 2014, 141, 4031–4041. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Hanganu-Opatz, I.L. Prefrontal cortex development in health and disease: Lessons from rodents and humans. Trends Neurosci. 2021, 44, 227–240. [Google Scholar] [CrossRef]
- Johnson, K.P. Mouse cytomegalovirus: Placental infection. J. Infect. Dis. 1969, 120, 445–450. [Google Scholar] [CrossRef]
- Shinmura, Y.; Aiba-Masago, S.; Kosugi, I.; Li, R.Y.; Baba, S.; Tsutsui, Y. Differential expression of the immediate-early and early antigens in neuronal and glial cells of developing mouse brains infected with murine cytomegalovirus. Am. J. Pathol. 1997, 151, 1331–1340. [Google Scholar]
- Kosugi, I.; Arai, Y.; Baba, S.; Kawasaki, H.; Iwashita, T.; Tsutsui, Y. Prolonged activation of cytomegalovirus early gene e1-promoter exclusively in neurons during infection of the developing cerebrum. Acta Neuropathologica Commun. 2021, 9, 39. [Google Scholar] [CrossRef]
- Li, R.Y.; Tsutsui, Y. Growth retardation and microcephaly induced in mice by placental infection with murine cytomegalovirus. Teratology 2000, 62, 79–85. [Google Scholar] [CrossRef]
- Koontz, T.; Bralic, M.; Tomac, J.; Pernjak-Pugel, E.; Bantug, G.; Jonjic, S.; Britt, W.J. Altered development of the brain after focal herpesvirus infection of the central nervous system. J. Exp. Med. 2008, 205, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, I.; Shinmura, Y.; Kawasaki, H.; Arai, Y.; Li, R.Y.; Baba, S.; Tsutsui, Y. Cytomegalovirus infection of the central nervous system stem cells from mouse embryo: A model for developmental brain disorders induced by cytomegalovirus. Lab. Investig. 2000, 80, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Naruse, I.; Tsutsui, Y. Brain abnormalities induced by murine cytomegalovirus injected into the cerebral ventricles of mouse embryos exo utero. Teratology 1989, 40, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, Y.; Kashiwai, A.; Kawamura, N.; Aiba-Masago, S.; Kosugi, I. Prolonged infection of mouse brain neurons with murine cytomegalovirus after pre- and perinatal infection. Arch. Virol. 1995, 140, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Shinmura, Y.; Kosugi, I.; Aiba-Masago, S.; Baba, S.; Yong, L.R.; Tsutsui, Y. Disordered migration and loss of virus-infected neuronal cells in developing mouse brains infected with murine cytomegalovirus. Acta Neuropathologica 1997, 93, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Schachtele, S.J.; Mutnal, M.B.; Schleiss, M.R.; Lokensgard, J.R. Cytomegalovirus-Induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice. J. Neurovirol. 2011, 17, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Patel, R.; Ren, C.; Taggart, M.G.; Firpo, M.A.; Schleiss, M.R.; Park, A.H. A comparison of different murine models for cytomegalovirus-induced sensorineural hearing loss. Laryngoscope 2013, 123, 2801–2806. [Google Scholar] [CrossRef] [PubMed]
- Mutnal, M.B.; Hu, S.; Lokensgard, J.R. Persistent humoral immune responses in the CNS limit recovery of reactivated murine cytomegalovirus. PLoS ONE 2012, 7, e33143. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Hu, S.; Sheng, W.S.; Singh, A.; Lokensgard, J.R. Tregs modulate lymphocyte proliferation, activation, and resident-memory T-cell accumulation within the brain during MCMV infection. PLoS ONE 2015, 10, e0145457. [Google Scholar] [CrossRef]
- Cheeran, M.C.; Gekker, G.; Hu, S.; Palmquist, J.M.; Lokensgard, J.R. T cell-mediated restriction of intracerebral murine cytomegalovirus infection displays dependence upon perforin but not interferon-gamma. J. Neurovirol. 2005, 11, 274–280. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Kosugi, I.; Kawasaki, H. Neuropathogenesis in cytomegalovirus infection: Indication of the mechanisms using mouse models. Rev. Med. Virol. 2005, 15, 327–345. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Kawasaki, H.; Kosugi, I. Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures. J. Virol. 2002, 76, 7247–7254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Pol, A.N.; Robek, M.D.; Ghosh, P.K.; Ozduman, K.; Bandi, P.; Whim, M.D.; Wollmann, G. Cytomegalovirus induces interferon-stimulated gene expression and is attenuated by interferon in the developing brain. J. Virol. 2007, 81, 332–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantug, G.R.; Cekinovic, D.; Bradford, R.; Koontz, T.; Jonjic, S.; Britt, W.J. CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J. Immunol. 2008, 181, 2111–2123. [Google Scholar] [CrossRef]
- Kosmac, K.; Bantug, G.R.; Pugel, E.P.; Cekinovic, D.; Jonjic, S.; Britt, W.J. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog. 2013, 9, e1003200. [Google Scholar] [CrossRef]
- Kveštak, D.; Juranić Lisnić, V.; Lisnić, B.; Tomac, J.; Golemac, M.; Brizić, I.; Indenbirken, D.; Cokarić Brdovčak, M.; Bernardini, G.; Krstanović, F.; et al. NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection. J. Exp. Med. 2021, 218, e20201503. [Google Scholar] [CrossRef]
- Cheeran, M.C.; Hu, S.; Yager, S.L.; Gekker, G.; Peterson, P.K.; Lokensgard, J.R. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: Antiviral implications. J. Neurovirol. 2001, 7, 135–147. [Google Scholar] [CrossRef]
- Kosugi, I.; Kawasaki, H.; Arai, Y.; Tsutsui, Y. Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. Am. J. Pathol. 2002, 161, 919–928. [Google Scholar] [CrossRef] [Green Version]
- Seleme, M.C.; Kosmac, K.; Jonjic, S.; Britt, W.J. Tumor necrosis factor alpha-induced recruitment of inflammatory mononuclear cells leads to inflammation and altered brain development in murine cytomegalovirus-infected newborn mice. J. Virol. 2017, 91, 8. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.Y.; Anastasio, A.R.T.; Massuda, E.T.; Isaac, M.L.; Manfredi, A.K.S.; Cavalcante, J.M.S.; Carnevale-Silva, A.; Fowler, K.B.; Boppana, S.; Britt, W.J.; et al. Contribution of congenital cytomegalovirus (cCMV) to permanent hearing loss in a highly seropositive population: “The BraCHS study“. Clin. Infect. Dis. 2019, 70, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Hranilovich, J.A.; Park, A.H.; Knackstedt, E.D.; Ostrander, B.E.; Hedlund, G.L.; Shi, K.; Bale, J.F., Jr. Brain magnetic resonance imaging in congenital cytomegalovirus with failed newborn hearing screen. Pediatr. Neurol. 2020, 110, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Wiener-Vacher, S.; Van Den Abbeele, T.; Teissier, N. Vestibular disorders in children with congenital cytomegalovirus infection. Pediatrics 2015, 136, e887–e895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagólski, O. Vestibular-Evoked myogenic potentials and caloric stimulation in infants with congenital cytomegalovirus infection. J. Laryngol. Otol. 2008, 122, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Karltorp, E.; Löfkvist, U.; Lewensohn-Fuchs, I.; Lindström, K.; Westblad, M.E.; Fahnehjelm, K.T.; Verrecchia, L.; Engman, M.L. Impaired balance and neurodevelopmental disabilities among children with congenital cytomegalovirus infection. Acta Paediatrica 2014, 103, 1165–1173. [Google Scholar] [CrossRef]
- McCrary, H.; Sheng, X.; Greene, T.; Park, A. Long-term hearing outcomes of children with symptomatic congenital CMV treated with valganciclovir. Int. J. Pediatr. Otorhinolaryngol. 2019, 118, 124–127. [Google Scholar] [CrossRef]
- Boppana, S.; Britt, W. Cytomegalovirus. In Infection and Hearing Impairment; Newton, V.E., Vallely, P.J., Eds.; John Wiley and Sons: Chichester, UK, 2006; pp. 67–93. [Google Scholar]
- Teissier, N.; Bernard, S.; Quesnel, S.; Van Den Abbeele, T. Audiovestibular consequences of congenital cytomegalovirus infection. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 413–418. [Google Scholar] [CrossRef]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Guerra, B.; Landini, M.P.; Capretti, M.G.; Lanari, M.; Lazzarotto, T. Human fetal inner ear involvement in congenital cytomegalovirus infection. Acta Neuropathologica Commun. 2013, 1, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuprun, V.; Keskin, N.; Schleiss, M.R.; Schachern, P.; Cureoglu, S. Cytomegalovirus-induced pathology in human temporal bones with congenital and acquired infection. Am. J. Otolaryngol. 2019, 40, 102270. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; On, D.; Baker, W.; Collado, M.S.; Corwin, J.T. Over half the hair cells in the mouse utricle first appear after birth, with significant numbers originating from early postnatal mitotic production in peripheral and striolar growth zones. J. Assoc. Res. Otolaryngol. 2012, 13, 609–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, L.; Strong, M.K.; Kaur, T.; Juiz, J.M.; Oesterle, E.C.; Hume, C.; Warchol, M.E.; Palmiter, R.D.; Rubel, E.W. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J. Neurosci. 2015, 35, 7878–7891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juanjuan, C.; Yan, F.; Li, C.; Haizhi, L.; Ling, W.; Xinrong, W.; Juan, X.; Tao, L.; Zongzhi, Y.; Suhua, C. Murine model for congenital CMV infection and hearing impairment. Virol. J. 2011, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Park, A.H.; Gifford, T.; Schleiss, M.R.; Dahlstrom, L.; Chase, S.; McGill, L.; Li, W.; Alder, S.C. Development of cytomegalovirus-mediated sensorineural hearing loss in a Guinea pig model. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roark, H.K.; Jenks, J.A.; Permar, S.R.; Schleiss, M.R. Animal models of congenital cytomegalovirus transmission: Implications for vaccine development. J. Infect. Dis. 2020, 221, S60–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salt, A.N.; Plontke, S.K. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear. Res. 2018, 368, 28–40. [Google Scholar] [CrossRef]
- Stöver, T.; Yagi, M.; Raphael, Y. Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer. Gene Ther. 2000, 7, 377–383. [Google Scholar] [CrossRef]
- Davis, G.L.; Hawrisiak, M.M. Experimental cytomegalovirus infection and the developing mouse inner ear: In vivo and in vitro studies. Lab. Investig. J. Tech. Methods Pathol. 1977, 37, 20–29. [Google Scholar]
- Wan, G.; Corfas, G.; Stone, J.S. Inner ear supporting cells: Rethinking the silent majority. Semin. Cell Dev. Biol. 2013, 24, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Bradford, R.D.; Yoo, Y.G.; Golemac, M.; Pugel, E.P.; Jonjic, S.; Britt, W.J. Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog. 2015, 11, e1004774. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.Y.W.; Seleme, M.C.; Payne, S.; Jonjic, S.; Hirose, K.; Britt, W. Virus-Induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019, 4, e128878. [Google Scholar] [CrossRef]
- Carraro, M.; Almishaal, A.; Hillas, E.; Firpo, M.; Park, A.; Harrison, R.V. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. J. Assoc. Res. Otolaryngol. 2017, 18, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kosugi, I.; Han, G.P.; Kawasaki, H.; Arai, Y.; Takeshita, T.; Tsutsui, Y. Induction of cytomegalovirus-infected labyrinthitis in newborn mice by lipopolysaccharide: A model for hearing loss in congenital CMV infection. Lab. Investig. 2008, 88, 722–730. [Google Scholar] [CrossRef] [PubMed]
Non-Central Nervous System Findings | Central Nervous System Findings |
---|---|
Jaundice | Microcephaly |
Hepatosplenomegaly | Seizures |
Purpura (thrombocytopenia) | Chorioretinitis |
Intrauterine Growth Restriction | Abnormal neurologic findings(seizures, motor and cognitive deficits; delays in neurodevelopment) |
Hearing loss (failed hearing screening) | |
Vestibular disturbances |
Model 1 | Description | Advantages | Limitations |
---|---|---|---|
Placental Injection [52,54] | Placental inoculation E12 |
|
|
Embryo Infection [55,56,57,58,59] | IC injection E15 |
|
|
IC inoculation newborn pup [60,61,62] | IC injection <24 h of age |
|
|
IP inoculation newborn pup [53] | IP injection <24 h of age |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moulden, J.; Sung, C.Y.W.; Brizic, I.; Jonjic, S.; Britt, W. Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections. Pathogens 2021, 10, 1062. https://doi.org/10.3390/pathogens10081062
Moulden J, Sung CYW, Brizic I, Jonjic S, Britt W. Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections. Pathogens. 2021; 10(8):1062. https://doi.org/10.3390/pathogens10081062
Chicago/Turabian StyleMoulden, Jerome, Cathy Yea Won Sung, Ilija Brizic, Stipan Jonjic, and William Britt. 2021. "Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections" Pathogens 10, no. 8: 1062. https://doi.org/10.3390/pathogens10081062
APA StyleMoulden, J., Sung, C. Y. W., Brizic, I., Jonjic, S., & Britt, W. (2021). Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections. Pathogens, 10(8), 1062. https://doi.org/10.3390/pathogens10081062