The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia
Abstract
:1. Introduction
2. Aims
- Identify and characterise microbes inoculated into the skin of humans during tick attachment;
- Characterise the clinical features of tick bite, with and without transmission of microorganisms;
- Describe host haematological, serum chemistry, and immunological responses to tick bite;
- Ascertain if there is a relationship between baseline psychological profiles and the development of symptoms after tick bite; and
- Develop molecular and serological diagnostic tests appropriate to Australian conditions.
3. Hypotheses
- Following a tick bite, some patients will develop acute (within a month post-bite) or later onset (>1 month) symptoms (dermatological, rheumatological, neurological, and cardiac abnormalities); psychological changes (assessed by psychometric testing) or symptoms fulfilling the case definitions of fibromyalgia [37], chronic fatigue syndrome (CFS) [38], or myalgic encephalomyelitis (ME) [39]; and perturbations in routine pathology, serology, and immune profiles.
- Microbial species found consistently in ticks, paired skin biopsies, and/or blood samples of patients developing illness after tick bite, and not in the controls, likely represent candidates for the aetiologic agent(s) of tick-associated illness and, potentially, DSCATT in Australia.
4. Methods
4.1. Study Design Overview
4.2. Study Advertising Campaign
4.3. Participant Enrolment Process Overview
- Identification of an eligible participant (tick killed in situ if still attached);
- Provision of information about the study, consenting, completion of questionnaires;
- Biospecimen collection and couriering; and
- Arrangements for follow-up visits (Gp1 only).
4.4. Participant Enrolment Process: The Troublesome Ticks Study Portal
4.5. Patient Withdrawal
4.6. Management of Missing Data
- Unverified (yellow): All relevant data have been collected and recorded. However, this instrument contains fields with missing data codes such as “ND”. Researchers plan to follow-up with the participant to seek clarification or obtain further information from the patient;
- Complete (green): All participant records within that particular data collection instrument are up to date. Note that the instrument fields may contain some missing data codes such as ND; however, “complete” status indicates follow-up has been attempted or completed and no further action is required;
- Incomplete (red): This status is selected if, A) Participant decided to formally withdraw from the study; B) Participant could not be reached by phone or e-mail (i.e., loss to follow-up); C) Participant attended sampling appointment, however, did not consent to complete the survey.
4.7. Biospecimen Collection and Transport
4.7.1. Gp1 and Gp2 (ED/Clinic Tick-Bitten Patients and Situational Controls)
4.7.2. Gp 3 (Blood Donors)
4.8. Biospecimen Management and Processing
- •
- Tick: Immediately after removal, the tick is placed in a pre-filled tube with 70% ethanol and stored at 4 °C for downstream analysis.
- •
- Biopsy:
- o
- Sectioning: Skin punch biopsies are longitudinally sectioned in the middle, approximately at the site of the tick bite, using a sterile surgical elongated triangular scalpel blade. Half of the skin (~2 mm) is placed in a labelled cryo-resistant tube and stored at −80 °C for metagenomic analysis; the other half is placed in 200µL of sterile phosphate-buffered saline (PBS), homogenised and inoculated into cell cultures (see “Microbial isolation” section).
- o
- Preparation of biopsies for spatial phenotyping analysis (tick bite and control): For this sub-cohort, half of the skin biopsy collected from the patients (~2 mm) are placed in 10% of formalin for fixation in preparation for processing into a formalin-fixed paraffin-embedded (FFPE) format for sectioning prior to spatial analyses; the other half is placed in a labelled cryo-resistant tube and stored at −80 °C until required for metagenomic analysis.
- •
- Blood samples:
- o
- PAXgene® RNA blood: Whole blood is collected by venepuncture directly into RNA PAXgene® vacutainers prefilled with RNA stabilisation reagents. Immediately after collection, the PAXgene® tubes are inverted 10 times and stored at RT in an upright position for at least 2 h (and up to 4 h) before being stored in a −80 °C freezer.
- o
- Lithium heparin blood: Whole blood is collected from participants in LH vacutainers. Upon arrival to the lab, the tube is centrifuged at 1000× g at RT for 10 min. Plasma (top layer) is collected (without aspirating red blood cells), placed into a cryovial labelled as “PLAS1”, and mixed by pipetting up and down 10 times. With a new tip, 200 µL of plasma is drawn from tube “PLAS1” and placed into tube “PLAS2”. This process is repeated by drawing up a second 200 µL of plasma from tube “PLAS1” which is then placed in tube “PLAS3”. All tubes (PLAS1-3) are stored immediately at −80 °C until required for proteomics, metabolomics, and cell-free circulating RNA analysis. The plasma-depleted cells that remain at the bottom of the lithium heparin vacutainer tube are stored in a cryovial at −80 °C for future epigenetic analysis.
- o
- EDTA blood:
- ■
- Whole blood EDTA samples: After venepuncture, the EDTA vacutainer is gently inverted to mix the blood, and three aliquots (200 µL and 2 × 400 µL) are transferred into cryovials and stored at −80 °C to be used for bacterial and protozoal profiling. An additional 500 µL of aliquot is made for viral metagenomic analysis.
- ■
- EDTA blood smears: A total of 5 regular and 3 buffy coat blood smears are prepared using EDTA blood before and after centrifugation, respectively. The films are fixed in 100% methanol and stored in duly labelled, slide mailers.
- ■
- Plasma EDTA samples: After aliquoting of whole blood, the EDTA tubes undergo an initial centrifugation at 1000× g for 15 min at RT. Subsequently, the top 90% of the plasma is slowly aspirated to a fresh 15 mL DNAse/RNase-free falcon tube without touching the buffy coat. An additional centrifugation of the plasma (2500× g for 15 min at RT) is then performed and the top layer of the plasma sample collected after the second centrifugation is stored in a cryovial at −80 °C for downstream cell-free RNA analysis.
- ■
- Buffy coat samples: An additional EDTA blood tube is centrifuged at 5500× g for 5 min at RT. Thereafter, the buffy coat layer is collected and incubated in 5–8 mL of RBC lysis buffer (Cat # 158902) for 15 min at RT, followed by another centrifugation at 5500× g for 5 min. The supernatant is discarded, and the pellet is washed twice in PBS prior to resuspension in 600µL of PBS for immediate culture inoculation.
- o
- SST blood: Blood collected in SST vacutainers is spun down at RT upon arrival to the lab at 2200× g for 15 min for serum separation. Approximately 1 mL of serum is retained for immediate serological testing. One serum aliquot of 500 µL is saved at −80 °C for viral analyses and six aliquots of 200 µL are stored at −80 °C for the study biobank at ARRL.
4.9. Laboratory Analyses: Collaborative Generation of Data
4.9.1. Tick Identification
4.9.2. Microbial Isolation
4.9.3. Microbial Serology
4.9.4. Monoclonal Antibodies to Viral RNA Intermediates in Cells (MAVRIC)
4.9.5. Haematology and Biochemistry
4.9.6. DNA and RNA Extractions from Ticks, Tissue, Blood, and Cultured Cells
4.9.7. Molecular Detection of Tick-Borne Bacterial and Protozoan Pathogens
4.9.8. Next-Generation Sequencing for RNA Virus Detection
4.9.9. Light Microscopy and Fluorescence In Situ Hybridization (FISH)
4.9.10. Transcriptomics
4.9.11. Spatial Phenotyping
4.9.12. Plasma Proteomics Analysis
4.9.13. Plasma Metabolomics Analysis
4.9.14. Whole Blood Epigenetics Analysis
4.9.15. Clinical and Demographics Metadata
- Gp1-T0: sex, age, postcode, details about the present or recent tick bite (e.g., body site, geographic location, approximate duration of tick attachment), tick-killing method (if not still attached), local and generalised symptoms (if any), overseas travel history in the past 6 months, history of tick bites in Australia and overseas and any associated symptoms, health history including any previous diagnosis of neurological, cardiac and mental disorders, previous diagnosis of MMA, and current prescribed medication(s);
- Gp1-T1–3: current (persistent and new) local and generalized symptoms, any new specific diagnosis (e.g., COVID-19), current prescribed medication(s); and
- Gp2 and Gp3: sex, age, postcode, history of tick bites in Australia and overseas, associated symptoms, health history, and current prescribed medication(s).
4.9.16. Psychometric Analyses and Personality Profiling
4.10. Statistical Analyses
5. Expected Outcomes
- Through nationwide patient recruitment, data on the incidence and geographical distribution of tick-associated illness will be generated;
- Clinical information and psychometric profiling will provide a better understanding of the physical and psychological determinants, impacts of tick-associated illness, and the development of DSCATT on patients;
- Investigation of both infectious and non-infectious aetiologies using a holistic multi-omics approach, associated with clinical data, chemistries, and haematological analysis in patients and controls will give insight into the aetiology and pathophysiology of tick-associated illness;
- Molecular testing of blood samples, skin biopsies, and ticks will determine if the transmission of microorganisms is a factor, and the comparison of patients and controls will bring rigour to addressing Koch’s postulates [94] if infection is associated with tick bites; it will also identify links between microorganisms and tick species leading to the knowledge of potential vectors;
- Microbial culture of skin biopsies and blood samples will permit the development of serological assays if tick-associated illness and DSCATT are associated with infectious disease;
- The development of a valuable specimen bank with extensive associated archived clinical data that will be available to researchers in order to evaluate diagnostics tests and treatment efficacy well into the future.
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACDP | Australian Centre for Disease Preparedness |
AGRF | Australian Genome Research Facility |
ARRL | Australian Rickettsial Reference Laboratory |
ASCIA | Australasian Society of Clinical Immunology and Allergy |
BPF | Biospecimen Processing Form |
BTF | Biospecimen Transfer Form |
CART | Classification and Regression Trees |
CBRQ | Cognitive and Behavioural Responses Questionnaire |
CFS | Chronic fatigue syndrome |
CRP | C-reactive protein |
DASS-21 | Depression, Anxiety, and Stress Scales |
DIABLO | Data Integration Analysis for Biomarker discovery using Latent cOmponents |
DSCATT | Debilitating Symptom Complexes Attributed to Ticks |
ED | Emergency department |
EUC | Electrolytes, urea, and creatinine |
FFPE | Formalin-fixed paraffin-embedded |
FBE | Full blood examination |
FISH | Fluorescence in situ hybridization |
GLMM | Generalised Linear Mixed Model |
GP | General practitioner |
Gp | Group |
HIPAA | Health Insurance Portability and Accountability Act |
LD | Lyme disease |
LFT | Liver function test |
LH | Lithium heparin |
MAVRIC | Monoclonal antibodies to viral RNA intermediates in cells |
ME | Myalgic encephalomyelitis |
MMA | Mammalian meat allergy |
MTA | Material Transfer Agreement |
MU | Murdoch University |
NA | Not applicable |
ND | Not done |
NEO-FFI | NEO Five-Factor Inventory |
NGS | Next-generation sequencing |
NSW | New South Wales |
PBS | Phosphate-Buffered Saline |
PC | Pathology Centre |
PCoA | Principal coordinate analysis |
Qld | Queensland |
REDCap | Research Electronic Data Capture |
SHAI | Health Anxiety Inventory |
SOP | Standard Operational Procedures |
SST | Serum-separating tube |
TBDs | Tick-borne diseases |
TKI | Telethon Kids Institute |
UNK | Unknown |
UQ | The University of Queensland |
WA | Western Australia |
References
- de la Fuente, J.; Contreras, M.; Estrada-Pena, A.; Cabezas-Cruz, A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017, 35, 5089–5094. [Google Scholar] [CrossRef] [PubMed]
- Lippi, C.A.; Ryan, S.J.; White, A.L.; Gaff, H.D.; Carlson, C.J. Trends and Opportunities in Tick-Borne Disease Geography. J. Med. Entomol. 2021, 58, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.A.; Bermudez, S.; Banovic, P.; Alvarez, D.O.; Diaz-Sanchez, A.A.; Corona-Gonzalez, B.; Etter, E.M.C.; Rodriguez Gonzalez, I.; Ghafar, A.; Jabbar, A.; et al. Ticks and Tick-Borne Diseases in Central America and the Caribbean: A One Health Perspective. Pathogens 2021, 10, 1273. [Google Scholar] [PubMed]
- Collignon, P.J.; Lum, G.D.; Robson, J.M. Does Lyme disease exist in Australia? Med. J. Aust. 2016, 205, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Graves, S.R.; Stenos, J. Tick-borne infectious diseases in Australia. Med. J. Aust. 2017, 206, 320–324. [Google Scholar]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef] [Green Version]
- Robles, A.; Fong, J.; Cervantes, J. Borrelia Infection in Latin America. Rev. Investig. Clin. 2018, 70, 158–163. [Google Scholar] [CrossRef]
- Socolovschi, C.; Doudier, B.; Pages, F.; Parola, P. Ticks and human tick-borne diseases in Africa. Med. Trop. 2008, 68, 119–133. [Google Scholar]
- Yoshinari, N.H.; Bonoldi, V.L.N.; Bonin, S.; Falkingham, E.; Trevisan, G. The Current State of Knowledge on Baggio-Yoshinari Syndrome (Brazilian Lyme Disease-like Illness). Chronological Presentation of Historical and Scientific Events Observed over the Last 30 Years. Pathogens. 2022, 11, 899. [Google Scholar]
- Hall-Mendelin, S.; Craig, S.B.; Hall, R.A.; O’Donoghue, P.; Atwell, R.B.; Tulsiani, S.M.; Graham, G.C. Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Ann. Trop. Med. Parasitol. 2011, 105, 95–106. [Google Scholar] [CrossRef] [Green Version]
- van Nunen, S. Tick-induced allergies: Mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac. Allergy 2015, 5, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaman, M.H. Lyme disease: Why the controversy? Intern. Med. J. 2016, 46, 1370–1375. [Google Scholar] [PubMed]
- Chalada, M.J.; Stenos, J.; Bradbury, R.S. Is there a Lyme-like disease in Australia? Summary of the findings to date. One Health 2016, 2, 42–54. [Google Scholar] [PubMed]
- Australian Government Department of Health. Debilitating Symptom Complexes Attributed to Ticks (DSCATT). 2020. Available online: www1.health.gov.au/internet/main/publishing.nsf/Content/ohplyme-disease.htm (accessed on 4 March 2021).
- Commonwealth of Australia. Growing Evidence of an Emerging Tick-Borne Disease That Causes a Lyme-Like Illness for Many Australian Patients. 2016. Available online: www.aph.gov.au/Parliamentary_Business/Committees/Senate/Community_Affairs/Lymelikeillness45/Final_Report (accessed on 5 March 2022).
- Haisman-Welsh, R.; Marshall, C.; Van, P.; Hooper, C.; Houliston, P. A Literature Review to Support the DSCATT Clinical Pathway; Department of Health: Canberra, Australia, 2020. Available online: https://www.health.gov.au/sites/default/files/documents/2021/07/literature-review-to-support-the-debilitating-symptom-complexes-attributed-to-ticks-clinical-pathway.pdf (accessed on 23 April 2022).
- Schnall, J.; Oliver, G.; Braat, S.; Macdonell, R.; Gibney, K.B.; Kanaan, R.A. Characterising DSCATT: A case series of Australian patients with debilitating symptom complexes attributed to ticks. Aust. N. Z. J. Psychiatry 2021, 56, 947–984. [Google Scholar] [CrossRef]
- Greay, T.L.; Oskam, C.L.; Gofton, A.W.; Rees, R.L.; Ryan, U.M.; Irwin, P.J. A survey of ticks (Acari: Ixodidae) of companion animals in Australia. Parasites Vectors 2016, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.L.; Loh, S.M.; Banks, P.B.; Gillett, A.; Ahlstrom, L.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks. Ticks Tick Borne Dis. 2020, 11, 101407. [Google Scholar]
- Gofton, A.W.; Oskam, C.L.; Lo, N.; Beninati, T.; Wei, H.; McCarl, V.; Murray, D.C.; Paparini, A.; Greay, T.L.; Holmes, A.J.; et al. Inhibition of the endosymbiont “Candidatus Midichloria mitochondrii” during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites Vectors 2015, 8, 345. [Google Scholar]
- Gofton, A.W.; Doggett, S.; Ratchford, A.; Oskam, C.L.; Paparini, A.; Ryan, U.; Irwin, P. Bacterial Profiling Reveals Novel “Ca. Neoehrlichia”, Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks. PLoS ONE 2015, 10, e0145449. [Google Scholar]
- Barker, S.C.; Walker, A.R.; Campelo, D. A list of the 70 species of Australian ticks; diagnostic guides to and species accounts of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas. Int. J. Parasitol. 2014, 44, 941–953. [Google Scholar]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar]
- Irwin, P.J.; Robertson, I.D.; Westman, M.E.; Perkins, M.; Straubinger, R.K. Searching for Lyme borreliosis in Australia: Results of a canine sentinel study. Parasites Vectors 2017, 10, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, P.; Egan, S.L.; Greay, T.; Oskam, C. Bacterial tick-associated infections in Australia: Current studies and future directions. Microbiol. Aust. 2018, 39, 200–202. [Google Scholar] [CrossRef]
- Long, J.A. Why Australasian vertebrate animals are so unique—A palaeontological perspective. Gen. Comp. Endocrinol. 2017, 244, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Loh, S.M.; Gofton, A.W.; Lo, N.; Gillett, A.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasites Vectors 2016, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Loh, S.M.; Gillett, A.; Ryan, U.; Irwin, P.; Oskam, C. Molecular characterization of ‘Candidatus Borrelia tachyglossi’ (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. Int. J. Syst. Evol. Microbiol. 2017, 67, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Gofton, A.W.; Doggett, S.; Ratchford, A.; Ryan, U.; Irwin, P. Phylogenetic characterisation of two novel Anaplasmataceae from Australian Ixodes holocyclus ticks: ‘Candidatus Neoehrlichia australis’ and ‘Candidatus Neoehrlichia arcana’. Int. J. Syst. Evol. Microbiol. 2016, 66, 4256–4261. [Google Scholar]
- Barbosa, A.D.; Gofton, A.W.; Paparini, A.; Codello, A.; Greay, T.; Gillett, A.; Warren, K.; Irwin, P.; Ryan, U. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS). PLoS ONE 2017, 12, e0181279. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.A.; Hall-Mendelin, S.; Hobson-Peters, J.; Deliyannis, G.; Allen, A.; Lew-Tabor, A.; Rodriguez-Valle, M.; Barker, D.; Barker, S.C.; Hall, R.A. Discovery of a novel iflavirus sequence in the eastern paralysis tick Ixodes holocyclus. Arch. Virol. 2018, 163, 2451–2457. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.L.; Taylor, C.L.; Banks, P.B.; Northover, A.S.; Ahlstrom, L.A.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. The bacterial biome of ticks and their wildlife hosts at the urban-wildland interface. Microb. Genom. 2021, 7, 000730. [Google Scholar] [CrossRef]
- Egan, S.L.; Taylor, C.L.; Austen, J.M.; Banks, P.B.; Northover, A.S.; Ahlstrom, L.A.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. Haemoprotozoan surveillance in peri-urban native and introduced wildlife from Australia. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100052. [Google Scholar]
- Chandra, S.; Harvey, E.; Emery, D.; Holmes, E.C.; Slapeta, J. Unbiased Characterization of the Microbiome and Virome of Questing Ticks. Front. Microbiol. 2021, 12, 627327. [Google Scholar] [CrossRef] [PubMed]
- Gofton, A.W.; Blasdell, K.R.; Taylor, C.; Banks, P.B.; Michie, M.; Roy-Dufresne, E.; Poldy, J.; Wang, J.; Dunn, M.; Tachedjian, M.; et al. Metatranscriptomic profiling reveals diverse tick-borne bacteria, protozoans and viruses in ticks and wildlife from Australia. Transbound Emerg. Dis. 2022, 69, e2389–e2407. [Google Scholar] [PubMed]
- Lee, W.; Barbosa, A.D.; Irwin, P.; Currie, A.; Kollmann, T.R.; Beaman, M.; Lee, A.; Oskam, C. A Systems Biology Approach to Better Understand Human Tick-Borne Diseases. Trends Parasitol. 2022, in press. [Google Scholar]
- Wolfe, F. Fibromyalgia. Rheum. Dis. Clin. N. Am. 1990, 16, 681–698. [Google Scholar] [CrossRef]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Bobe, J.R.; Jutras, B.L.; Horn, E.J.; Embers, M.E.; Bailey, A.; Moritz, R.L.; Zhang, Y.; Soloski, M.J.; Ostfeld, R.S.; Marconi, R.T.; et al. Recent Progress in Lyme Disease and Remaining Challenges. Front. Med. 2021, 8, 666554. [Google Scholar]
- Sneller, M.C.; Liang, C.J.; Marques, A.R.; Chung, J.Y.; Shanbhag, S.M.; Fontana, J.R.; Raza, H.; Okeke, O.; Dewar, R.L.; Higgins, B.P.; et al. A Longitudinal Study of COVID-19 Sequelae and Immunity: Baseline Findings. Ann. Intern. Med. 2022, 175, 969–979. [Google Scholar] [CrossRef]
- Brettschneider, S.; Bruckbauer, H.; Klugbauer, N.; Hofmann, H. Diagnostic value of PCR for detection of Borrelia burgdorferi in skin biopsy and urine samples from patients with skin borreliosis. J. Clin. Microbiol. 1998, 36, 2658–2665. [Google Scholar]
- Brouqui, P.; Bacellar, F.; Baranton, G.; Birtles, R.J.; Bjoersdorff, A.; Blanco, J.R.; Caruso, G.; Cinco, M.; Fournier, P.E.; Francavilla, E.; et al. Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin. Microbiol. Infect. 2004, 10, 1108–1132. [Google Scholar]
- Capewell, P.; Cren-Travaille, C.; Marchesi, F.; Johnston, P.; Clucas, C.; Benson, R.A.; Gorman, T.A.; Calvo-Alvarez, E.; Crouzols, A.; Jouvion, G.; et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 2016, 5, e17716. [Google Scholar] [CrossRef] [PubMed]
- Aguero-Rosenfeld, M.E.; Wang, G.; Schwartz, I.; Wormser, G.P. Diagnosis of lyme borreliosis. Clin. Microbiol. Rev. 2005, 18, 484–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, M.; Drutman, S. Current topics in infectious diseases of the skin. Exp. Rev. Dermatol. 2012, 7, 93–106. [Google Scholar] [CrossRef]
- Vyond. Available online: https://www.vyond.com (accessed on 21 August 2020).
- ABC Health Report. Research Underway to Understand Chronic Illness Caused by Ticks. Available online: https://www.abc.net.au/radionational/programs/healthreport/research-underway-to-understand-chronic-illness-caused-by-ticks/13529344 (accessed on 7 July 2022).
- ABC Radio Perth; ABC WA Afternoons. Ticks in WA. Available online: https://www.youtube.com/watch?v=f2b3KvU6r38 (accessed on 7 July 2022).
- Troublesome Ticks Research. Available online: https://tickstudy.murdoch.edu.au (accessed on 7 July 2022).
- Australasian Society of Clinical Immunology and Allergy. Tick Allergy. 2014. Available online: www.allergy.org.au (accessed on 2 July 2022).
- Evans, M.L.; Egan, S.; Irwin, P.J.; Oskam, C.L. Automatic Barcode Gap Discovery reveals large COI intraspecific divergence in Australian Ixodidae. Zootaxa 2019, 4656, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Egan, S. Ecology of Ticks and Microbes in Australian Wildlife. Ph.D. thesis, Murdoch University, Perth, Australia, 2022. [Google Scholar]
- Roberts, F. Australian Ticks; CSIRO: Melbourne, Australia, 1970. [Google Scholar]
- Jackson, J.; Beveridge, I.; Chilton, N.; Andrews, R.; Dixon, B. Morphological comparison of the adult and larval stages of the Australian ticks Ixodes holocyclus Neumann, 1899 and I. cornuatus Roberts, 1960 (Acari: Ixodoidea). Syst. Appl. Acarol. 2002, 7, 91. [Google Scholar] [CrossRef]
- Kwak, M.L.; Beveridge, I.; Koehler, A.V.; Malipatil, M.; Gasser, R.B.; Jabbar, A. Phylogenetic analysis of the Australasian paralysis ticks and their relatives (Ixodidae: Ixodes: Sternalixodes). Parasites Vectors 2017, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Casselli, T.; Divan, A.; Vomhof-DeKrey, E.E.; Tourand, Y.; Pecoraro, H.L.; Brissette, C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog. 2021, 17, e1009256. [Google Scholar] [CrossRef]
- Palomar, A.M.; Premchand-Branker, S.; Alberdi, P.; Belova, O.A.; Moniuszko-Malinowska, A.; Kahl, O.; Bell-Sakyi, L. Isolation of known and potentially pathogenic tick-borne microorganisms from European ixodid ticks using tick cell lines. Ticks Tick Borne Dis. 2019, 10, 628–638. [Google Scholar] [CrossRef]
- Munderloh, U.G.; Liu, Y.; Wang, M.; Chen, C.; Kurtti, T.J. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994, 80, 533–543. [Google Scholar] [CrossRef]
- Lockhart, M.G.; Islam, A.; Fenwick, S.G.; Graves, S.R.; Stenos, J. Growth Yields of Four Coxiella burnetii Isolates in Four Different Cell Culture Lines. Adv. Microbiol. 2013, 3, 88–90. [Google Scholar] [CrossRef]
- Graves, S.R.; Stenos, J.; Unsworth, N.; Nguyen, C. Laboratory Diagnosis of Rickettsial Infection. Aust. J. Med. Sci. 2006, 27, 39–44. [Google Scholar]
- O’Brien, C.A.; Harrison, J.J.; Colmant, A.M.G.; Traves, R.J.; Paramitha, D.; Hall-Mendelin, S.; Bielefeldt-Ohmann, H.; Vet, L.J.; Piyasena, T.B.H.; Newton, N.D.; et al. Improved detection of flaviviruses in Australian mosquito populations via replicative intermediates. J. Gen. Virol. 2021, 102, 001617. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Huang, B.; Warrilow, D.; Hazlewood, J.E.; Bielefeldt-Ohmann, H.; Hall-Mendelin, S.; Pegg, C.L.; Harrison, J.J.; Paramitha, D.; Newton, N.D.; et al. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasites Vectors. 2022, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Hobson-Peters, J.; Yam, A.W.; Colmant, A.M.; McLean, B.J.; Prow, N.A.; Watterson, D.; Hall-Mendelin, S.; Warrilow, D.; Ng, M.L.; et al. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl. Trop. Dis. 2015, 9, e0003629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediannikov, O.; Fenollar, F. Looking in ticks for human bacterial pathogens. Microb. Pathog. 2014, 77, 142–148. [Google Scholar] [PubMed]
- Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013, 58, 419–428. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Binetruy, F.; Hernandez-Jarguin, A.M.; Duron, O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front.Cell Infect. Microbiol. 2017, 7, 236. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Kazimirova, M.; Hubalek, Z.; Hornok, S.; Farkas, R.; Cosson, J.F.; Bonnet, S.; Vourch, G.; Gasqui, P.; Mihalca, A.D.; et al. Emerging horizons for tick-borne pathogens: From the ‘one pathogen-one disease’ vision to the pathobiome paradigm. Future Microbiol. 2015, 10, 2033–2043. [Google Scholar] [CrossRef] [Green Version]
- Alcorn, K.; Gerrard, J.; Cochrane, T.; Graham, R.; Jennison, A.; Irwin, P.J.; Barbosa, A.D. First Report of Candidatus Mycoplasma haemohominis Infection in Australia Causing Persistent Fever in an Animal Carer. Clin. Infect. Dis. 2021, 72, 634–640. [Google Scholar] [CrossRef]
- Gofton, A.W.; Waudby, H.P.; Petit, S.; Greay, T.L.; Ryan, U.M.; Irwin, P.J. Detection and phylogenetic characterisation of novel Anaplasma and Ehrlichia species in Amblyomma triguttatum subsp. from four allopatric populations in Australia. Ticks Tick Borne Dis. 2017, 8, 749–756. [Google Scholar] [CrossRef]
- Martijn, J.; Lind, A.E.; Schon, M.E.; Spiertz, I.; Juzokaite, L.; Bunikis, I.; Pettersson, O.V.; Ettema, T.J.G. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ. Microbiol. 2019, 21, 2485–2498. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, B.R.; Barratt, J.; Lane, M.; Talundzic, E.; Bradbury, R.S. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. Microbiome 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, B.R.; Talundzic, E.; Barratt, J.; Kines, K.J.; Olsen, C.; Lane, M.; Sheth, M.; Bradbury, R.S. Restriction enzyme digestion of host DNA enhances universal detection of parasitic pathogens in blood via targeted amplicon deep sequencing. Microbiome 2018, 6, 164. [Google Scholar] [CrossRef] [PubMed]
- Austen, J.M.; Barbosa, A.D. Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. Pathogens 2021, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Austen, J.M.; Reid, S.A.; Robinson, D.R.; Friend, J.A.; Ditcham, W.G.; Irwin, P.J.; Ryan, U. Investigation of the morphological diversity of the potentially zoonotic Trypanosoma copemani in quokkas and Gilbert’s potoroos. Parasitology 2015, 142, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.D.; Austen, J.; Portas, T.J.; Friend, J.A.; Ahlstrom, L.A.; Oskam, C.L.; Ryan, U.M.; Irwin, P.J. Sequence analyses at mitochondrial and nuclear loci reveal a novel Theileria sp. and aid in the phylogenetic resolution of piroplasms from Australian marsupials and ticks. PLoS ONE 2019, 14, e0225822. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.D.; Mackie, J.T.; Stenner, R.; Gillett, A.; Irwin, P.; Ryan, U. Trypanosoma teixeirae: A new species belonging to the T. cruzi clade causing trypanosomosis in an Australian little red flying fox (Pteropus scapulatus). Vet. Parasitol. 2016, 223, 214–221. [Google Scholar] [CrossRef]
- Krige, A.S.; Thompson, R.C.A.; Seidlitz, A.; Keatley, S.; Wayne, J.; Clode, P.L. Molecular Detection of Trypanosoma spp. in Questing and Feeding Ticks (Ixodidae) Collected from an Endemic Region of South-West Australia. Pathogens 2021, 10, 1037. [Google Scholar] [CrossRef]
- Thompson, C.K.; Thompson, R.C.A. Trypanosomes of Australian Mammals: Knowledge Gaps Regarding Transmission and Biosecurity. Trends Parasitol. 2015, 31, 553–562. [Google Scholar] [CrossRef]
- Austen, J.M.; Van Kampen, E.; Egan, S.L.; O’Dea, M.A.; Jackson, B.; Ryan, U.M.; Irwin, P.J.; Prada, D. First report of Trypanosoma dionisii (Trypanosomatidae) identified in Australia. Parasitology 2020, 147, 1801–1809. [Google Scholar] [CrossRef]
- Cooper, C.; Clode, P.L.; Peacock, C.; Thompson, R.C. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia. Adv. Parasitol. 2017, 97, 47–109. [Google Scholar] [PubMed]
- Parry, R.; James, M.E.; Asgari, S. Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms 2021, 9, 1653. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.K.; Botero, A.; Wayne, A.F.; Godfrey, S.S.; Lymbery, A.J.; Thompson, R.C. Morphological polymorphism of Trypanosoma copemani and description of the genetically diverse T. vegrandis sp. nov. from the critically endangered Australian potoroid, the brush-tailed bettong (Bettongia penicillata (Gray, 1837)). Parasites Vectors 2013, 6, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Othman, R.; Cai, B.; Liu, A.C.; Varankovich, N.; He, D.; Blimkie, T.M.; Lee, A.H.; Gill, E.E.; Novotny, M.; Aevermann, B.; et al. Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults. Front. Immunol. 2020, 11, 580373. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar]
- Marx, V. Method of the Year: Spatially resolved transcriptomics. Nat. Methods 2021, 18, 9–14. [Google Scholar]
- Lee, A.H.; Shannon, C.P.; Amenyogbe, N.; Bennike, T.B.; Diray-Arce, J.; Idoko, O.T.; Gill, E.E.; Ben-Othman, R.; Pomat, W.S.; van Haren, S.D.; et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat. Commun. 2019, 10, 1092. [Google Scholar]
- De, S.; Kitsou, C.; Sonenshine, D.E.; Pedra, J.H.F.; Fikrig, E.; Kassis, J.A.; Pal, U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends Genet. 2021, 37, 8–11. [Google Scholar]
- Clarke, D.J.B.; Rebman, A.W.; Bailey, A.; Wojciechowicz, M.L.; Jenkins, S.L.; Evangelista, J.E.; Danieletto, M.; Fan, J.; Eshoo, M.W.; Mosel, M.R.; et al. Predicting Lyme Disease From Patients’ Peripheral Blood Mononuclear Cells Profiled With RNA-Sequencing. Front. Immunol. 2021, 12, 636289. [Google Scholar]
- Team R RStudio. Integrated Development for R; RStudio Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C.J. Classification and Regression Trees (Wadsworth Statistics/Probability); Chapman & Hall: Boca Raton, FL, USA, 1984. [Google Scholar]
- Singh, A.; Shannon, C.P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S.J.; Le Cao, K.A. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019, 35, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Fredricks, D.N.; Relman, D.A. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 1996, 9, 18–33. [Google Scholar] [CrossRef] [PubMed]
Sample Collection Location | Biospecimen | Intermediate Destination (Via Pathology Centre (PC) Courier Network) | Final Destination (Via Commercial Courier Services) |
---|---|---|---|
Sydney | Tick * | PC central lab (Storage at −4 °C) | Batch shipment to MU at the end of each tick season. |
Skin biopsy * | PC central lab | Immediate onward shipment to ARRL (half biopsy tested at ARRL and half frozen at −80 °C until batch shipped to MU). | |
Blood tubes: 1 (PAXgene® *,#) and 2 (LH) | PC central lab (Heparinised plasma harvested and stored with PAXgene® *,# at −80 °C within 4 h of collection) | Batch courier to MU at the end of each tick season. | |
Blood tubes: 4 (EDTA), 5 (EDTA) and 7 (SST) | PC central lab (SST centrifugation) | Immediate onward shipment to ARRL (Tubes 4 and 7 used for analyses at ARRL, tube 5 frozen at −80 °C or until batch couriered to MU). | |
Blood tubes: 3 (EDTA) and 6 (SST) | PC central lab (FBE, chemistries, blood smears, EDTA plasma harvesting within 4 h of sample collection) | Batch courier of blood smears and frozen plasma to MU at the end of each tick season. | |
Western Australia | Tick * | PC central lab (SST centrifugation) | Immediate pick-up by a MU researcher (Storage at −4 °C at MU). |
Skin biopsy *,^ | Immediate pick-up by a MU researcher (half frozen at −80 °C at MU and half express couriered to ARRL). | ||
Blood tubes: 1 (PAXgene® *,#), 2 (LH), 4 (EDTA), 5 (EDTA) and 7 (SST) | Immediate pick-up by a MU researcher (express shipment of tubes 4 and 7 to ARRL; remaining samples processed, aliquoted and stored at −80 °C at MU). | ||
Blood tubes 3 (EDTA) and 6 (SST) | PC central lab (FBE and chemistries) | N/A | |
Other locations | Tick * | PC central lab (SST centrifugation) | Immediate onward shipment to ARRL, then batch shipment to MU after each tick season (Storage at −4 °C). |
Skin biopsy * | Immediate onward shipment to ARRL (half biopsy tested at ARRL and half frozen at −80 °C for until batch shipped to MU). | ||
Blood tubes 1 (LH), 3 (EDTA), 4 (EDTA) and 6 (SST) | Immediate onward shipment to ARRL (Heparinised plasma from tube 1, and tube 3 stored at −80 °C until batch shipped to MU. Tubes 4 and 7 used for analyses at ARRL). | ||
Blood tubes 2 (EDTA) and 5 (SST) | PC central lab (FBE and chemistries) | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, A.D.; Long, M.; Lee, W.; Austen, J.M.; Cunneen, M.; Ratchford, A.; Burns, B.; Kumarasinghe, P.; Ben-Othman, R.; Kollmann, T.R.; et al. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens 2022, 11, 1290. https://doi.org/10.3390/pathogens11111290
Barbosa AD, Long M, Lee W, Austen JM, Cunneen M, Ratchford A, Burns B, Kumarasinghe P, Ben-Othman R, Kollmann TR, et al. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens. 2022; 11(11):1290. https://doi.org/10.3390/pathogens11111290
Chicago/Turabian StyleBarbosa, Amanda D., Michelle Long, Wenna Lee, Jill M. Austen, Mike Cunneen, Andrew Ratchford, Brian Burns, Prasad Kumarasinghe, Rym Ben-Othman, Tobias R. Kollmann, and et al. 2022. "The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia" Pathogens 11, no. 11: 1290. https://doi.org/10.3390/pathogens11111290
APA StyleBarbosa, A. D., Long, M., Lee, W., Austen, J. M., Cunneen, M., Ratchford, A., Burns, B., Kumarasinghe, P., Ben-Othman, R., Kollmann, T. R., Stewart, C. R., Beaman, M., Parry, R., Hall, R., Tabor, A., O’Donovan, J., Faddy, H. M., Collins, M., Cheng, A. C., ... Irwin, P. J. (2022). The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens, 11(11), 1290. https://doi.org/10.3390/pathogens11111290