PICTUREE—Aedes: A Web Application for Dengue Data Visualization and Case Prediction
Abstract
:1. Introduction
2. Data
3. Simulation Tools
3.1. Estimating Dengue Risk-Related Measures
3.1.1. Vector Population
3.1.2. Dengue Transmission Reproductive Number
3.1.3. Dengue Transmission Risk
3.2. Forecasting Dengue Case Number
3.2.1. SEIR-SEI-EnKF Forecast
3.2.2. Neural Network Forecast
3.2.3. Particle Filter Forecast
3.2.4. Super Ensemble Forecast
4. System Architecture
4.1. Client Application
4.2. Server Backend
- HTTP server: The backend system exposes multiple API (application programming interface) endpoints to the client via an HTTP server. This HTTP server runs in the Node.js environment [42].
- Database: The database service consists of PostgreSQL and PostGIS [43] extensions to handle spatial queries. The database contains multiple tables to store data collected from various sources and simulation results.
- Map tile service: When the client requests the home page of the map tool, the HTTP server loads map tiles from a separate map tile service called MapTiler [44]. This service helps with memory management by loading only the parts and zoom levels required by the client. The service takes input from large tile files collected from OpenStreetMap [45].
- Simulation tools: The system can deploy and run executable code to perform on-demand analysis and simulations on selected data. The HTTP service directly communicates with the executables to pass arguments and to collect results.
- Scheduled updates: The system contains scripts that run regularly to update the database tables with new weather data. The script connects to the NOAA-NCEI [24] servers for daily weather observation data.
5. Results
5.1. Data Visualization
5.2. Simulation Results
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilder-Smith, A.; Ooi, E.E.; Horstick, O.; Wills, B. Dengue. Lancet 2019, 393, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Quam, M.B.; Sudre, B.; German, M.; Kraemer, M.U.; Brady, O.; Bogoch, I.I.; Liu-Helmersson, J.; Wilder-Smith, A.; Semenza, J.C.; et al. Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine 2016, 9, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Polwiang, S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003–2017). BMC Infect. Dis. 2020, 20, 208. [Google Scholar] [CrossRef]
- Wu, P.C.; Guo, H.R.; Lung, S.C.; Lin, C.Y.; Su, H.J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 2007, 103, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Macoris, M.D.L.D.G.; Galvani, K.C.; Andrighetti, M.T.M.; Wanderley, D.M.V. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 2009, 137, 1188–1202. [Google Scholar] [CrossRef]
- Watts, D.M.; Burke, D.S.; Harrison, B.A.; Whitmire, R.E.; Nisalak, A. Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus; Army Medical Research Inst of Infectious Diseases: Fort Detrick, MD, USA, 1986. [Google Scholar]
- Struchiner, C.J.; Rockloev, J.; Wilder-Smith, A.; Massad, E. Increasing dengue incidence in Singapore over the past 40 years: Population growth, climate and mobility. PLoS ONE 2015, 10, e0136286. [Google Scholar] [CrossRef]
- Focks, D.A.; Haile, D.G.; Daniels, E.; Mount, G.A. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. J. Med. Entomol. 1993, 30, 1003–1017. [Google Scholar] [CrossRef]
- Riad, M.H.; Cohnstaedt, L.W.; Scoglio, C.M. Risk Assessment of Dengue Transmission in Bangladesh Using a Spatiotemporal Network Model and Climate Data. Am. J. Trop. Med. Hyg. 2021, 104, 1444. [Google Scholar] [CrossRef]
- Eisen, L.; Monaghan, A.J.; Lozano-Fuentes, S.; Steinhoff, D.F.; Hayden, M.H.; Bieringer, P.E. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J. Med. Entomol. 2014, 51, 496–516. [Google Scholar] [CrossRef]
- Couret, J.; Dotson, E.; Benedict, M.Q. Benedict. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 2014, 9, e87468. [Google Scholar] [CrossRef]
- Barbazan, P.; Guiserix, M.; Boonyuan, W.; Tuntaprasart, W.; Pontier, D.; Gonzalez, J.P. Modelling the effect of temperature on transmission of dengue. Med. Vet. Entomol. 2010, 24, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.Z.; Silva, E.A.S.D.; Fabbro, A.L.D. A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Brooks, L.C.; Farrow, D.C.; Hyun, S.; Tibshirani, R.J.; Rosenfeld, R. Flexible modeling of epidemics with an empirical Bayes framework. PLoS Comput. Biol. 2015, 11, e1004382. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Yu, X.; Zeng, Q.; Cai, Z.; Wu, H.; Zhang, Q.; Xiao, J.; Ma, W.; Pei, S.; et al. An ensemble forecast system for tracking dynamics of dengue outbreaks and its validation in China. PLoS Comput. Biol. 2022, 18, e1010218. [Google Scholar] [CrossRef]
- Yi, C.; Cohnstaedt, L.W.; Scoglio, C.M. SEIR-SEI-EnKF: A new model for estimating and forecasting dengue outbreak dynamics. IEEE Access 2021, 9, 156758–156767. [Google Scholar] [CrossRef]
- DeFelice, N.B.; Little, E.; Campbell, S.R.; Shaman, J. Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nat. Commun. 2017, 8, 14592. [Google Scholar] [CrossRef]
- ur Rehman, M.J.; Dass, S.C.; Asirvadam, V.S.; Adly, A. Parameter estimation for nonlinear disease dynamical system using particle filter. In Proceedings of the 2015 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Bandung, Indonesia, 5–7 October 2015; pp. 143–147. [Google Scholar]
- Zhao, X.; Li, K.; Ang, C.K.E.; Cheong, K.H. A deep learning based hybrid architecture for weekly dengue incidences forecasting. Chaos Solitons Fractals 2023, 168, 113170. [Google Scholar] [CrossRef]
- Ferdousi, T.; Cohnstaedt, L.W.; Scoglio, C.M. A Windowed Correlation-Based Feature Selection Method to Improve Time Series Prediction of Dengue Fever Cases. IEEE Access 2021, 9, 141210–141222. [Google Scholar] [CrossRef]
- Xu, J.; Xu, K.; Li, Z.; Meng, F.; Tu, T.; Xu, L.; Liu, Q. Forecast of dengue cases in 20 Chinese cities based on the deep learning method. Int. J. Environ. Res. Public Health 2020, 17, 453. [Google Scholar] [CrossRef]
- Deb, S.; Deb, S. An ensemble method for early prediction of dengue outbreak. J. R. Stat. Soc. Ser. Stat. Soc. 2022, 185, 84–101. [Google Scholar] [CrossRef]
- Yamana, T.K.; Kandula, S.; Shaman, J. Superensemble forecasts of dengue outbreaks. J. R. Soc. Interface 2016, 13, 20160410. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information (2001): Global Surface Summary of the Day—GSOD. NOAA National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516 (accessed on 3 April 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2018, 10, 10.24381. [Google Scholar]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- The Nature Conservancy; USDA Forest Service. U.S. Geological Survey. Based on Bailey, Robert G. In Description of the Ecoregions of the United States, 2nd ed.; Misc. Pub. No. 1391, Map Scale 1:7,500,000; USDA Forest Service: Washington, DC, USA, 1995; 108p. [Google Scholar]
- Wiken, E.B. Terrestrial ecozones of Canada. In Ecological Land Classification Series No. 19; Environment Canada, Hull Quebec: Gatineau, QC, Canada, 1986; p. 26. [Google Scholar]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.; Shearer, F.M.; Brady, O.J.; Messina, J.P.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2015, 2, 1–8. [Google Scholar]
- Messina, J.P.; Brady, O.J.; Pigott, D.M.; Brownstein, J.S.; Hoen, A.G.; Hay, S.I. A global compendium of human dengue virus occurrence. Sci. Data 2014, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dengue Fever-Explore-Google Trends. Available online: https://trends.google.com/trends/explore?date=now%201-d&geo=US&q=dengue,fever&hl=en (accessed on 3 April 2023).
- PAHO/WHO Data—National Dengue Fever Cases. Available online: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html (accessed on 15 May 2023).
- Murphy, A.; Rajahram, G.S.; Jilip, J.; Maluda, M.; William, T.; Hu, W.; Reid, S.; Devine, G.J.; Frentiu, F.D. Incidence and epidemiological features of dengue in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2020, 14, e0007504. [Google Scholar] [CrossRef]
- Chaudhry, M.; Ahmad, S.; Rashid, H.B.; Uddin, I. Dengue epidemic in postconflict swat district, Khyber Pakhtunkhwa, Pakistan, 2013. Am. J. Trop. Med. Hyg. 2017, 96, 899. [Google Scholar] [CrossRef]
- Xu, Z.; Bambrick, H.; Yakob, L.; Devine, G.; Frentiu, F.D.; Salazar, F.V.; Bonsato, R.; Hu, W. High relative humidity might trigger the occurrence of the second seasonal peak of dengue in the Philippines. Sci. Total Environ. 2020, 708, 134849. [Google Scholar] [CrossRef]
- Hii, Y.L.; Zhu, H.; Ng, N.; Ng, L.C.; Rocklöv, J. Forecast of dengue incidence using temperature and rainfall. PLoS Negl. Trop. Dis. 2012, 6, e1908. [Google Scholar] [CrossRef]
- Liyanage, P.; Tissera, H.; Sewe, M.; Quam, M.; Amarasinghe, A.; Palihawadana, P.; Wilder-Smith, A.; Louis, V.R.; Tozan, Y.; Rocklöv, J. A spatial hierarchical analysis of the temporal influences of the El Nino-southern oscillation and weather on dengue in Kalutara District, Sri Lanka. Int. J. Environ. Res. Public Health 2016, 13, 1087. [Google Scholar] [CrossRef]
- Vásquez, P.; Loría, A.; Sanchez, F.; Barboza, L.A. Climate-driven statistical models as effective predictors of local dengue incidence in costa rica: A generalized additive model and random forest approach. Rev. MatemáTica TeoríA Apl. 2020, 27, 1–21. [Google Scholar] [CrossRef]
- Cuong, H.Q.; Hien, N.T.; Duong, T.N.; Phong, T.V.; Cam, N.N.; Farrar, J.; Nam, V.S.; Thai, K.T.; Horby, P. Quantifying the emergence of dengue in Hanoi, Vietnam: 1998–2009. PLoS Negl. Trop. Dis. 2011, 5, e1322. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, J.; Recker, M. The 2012 Madeira dengue outbreak: Epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 2014, 8, e3083. [Google Scholar] [CrossRef] [PubMed]
- Edler, D.; Vetter, M. The simplicity of modern audiovisual web cartography: An example with the open-source javascript library leaflet. js. KN-J. Cartogr. Geogr. Inf. 2019, 69, 51–62. [Google Scholar] [CrossRef]
- Tilkov, S.; Vinoski, S. Node. js: Using JavaScript to build high-performance network programs. IEEE Internet Comput. 2010, 14, 80–83. [Google Scholar] [CrossRef]
- Zimányi, E.; Sakr, M.; Lesuisse, A. MobilityDB: A mobility database based on PostgreSQL and PostGIS. ACM Trans. Database Syst. (TODS) 2020, 45, 1–42. [Google Scholar] [CrossRef]
- Cascón-Katchadourian, J.D.; Ruiz-Rodríguez, A.Á. Description and Evaluation of MapTiler Software: From Scanned Map to Interactive Layer for Web Publishing. 2016. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5730199 (accessed on 20 April 2023).
- Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Züst, R.; Toh, Y.X.; Valdés, I.; Cerny, D.; Heinrich, J.; Hermida, L.; Marcos, E.; Guillén, G.; Kalinke, U.; Shi, P.Y.; et al. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: Implications for a new mouse model to test dengue vaccines. J. Virol. 2014, 88, 7276–7285. [Google Scholar] [CrossRef]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.S.; Williams, C.; et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- World Health Organization. Manual on Environmental Management for Mosquito Control, with Special Emphasis on Malaria Vectors; World Health Organization: Geneva, Switzerland, 1982.
- Barrera, R.; Amador, M.; MacKay, A.J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 2011, 5, e1378. [Google Scholar] [CrossRef]
- Nguyen, L.A.P.; Clements, A.C.; Jeffery, J.A.; Yen, N.T.; Nam, V.S.; Vaughan, G.; Shinkfield, R.; Kutcher, S.C.; Gatton, M.L.; Kay, B.H.; et al. Abundance and prevalence of Aedes aegypti immatures and relationships with household water storage in rural areas in southern Viet Nam. Int. Health 2011, 3, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Kurnia, N.; Kaitana, Y.; Salaki, C.L.; Mandey, L.C.; Tuda, J.S.B.; Tallei, T.E. Study of Dengue Virus Transovarial Transmission in Aedes spp. in Ternate City Using Streptavidin-Biotin-Peroxidase Complex Immunohistochemistry. Infect. Dis. Rep. 2022, 14, 765–771. [Google Scholar] [CrossRef] [PubMed]
Item | Source | Remark |
---|---|---|
Daily weather observation | [24] | Updated weekly |
ERA5 hourly data | [25] | 2018–present |
Terrestrial ecoregions | [26,27,28] | As of 14 December 2009 |
Aedes mosquito occurrence | [29] | 1960–2014 |
Dengue occurrence | [30] | 1960–2012 |
Country-wise Google trends | [31] | 2015–2022 |
27 April 2022 | 4 May 2022 | 11 May 2022 | |
---|---|---|---|
Reported cases | 1379 | 1685 | 1995 |
Kalman filter (Median) | 1229/10.9% | 1293/23.3% | 1338/32.9% |
Neural network | 1414/2.5% | 1795/6.5% | 2243/12.4% |
Particle filter (Median) | 1298/5.9% | 1492/11.5% | 1686/15.5% |
Super ensemble (weighted average) | 1302/5.6% | 1500/11.0% | 1703/14.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, C.; Vajdi, A.; Ferdousi, T.; Cohnstaedt, L.W.; Scoglio, C. PICTUREE—Aedes: A Web Application for Dengue Data Visualization and Case Prediction. Pathogens 2023, 12, 771. https://doi.org/10.3390/pathogens12060771
Yi C, Vajdi A, Ferdousi T, Cohnstaedt LW, Scoglio C. PICTUREE—Aedes: A Web Application for Dengue Data Visualization and Case Prediction. Pathogens. 2023; 12(6):771. https://doi.org/10.3390/pathogens12060771
Chicago/Turabian StyleYi, Chunlin, Aram Vajdi, Tanvir Ferdousi, Lee W. Cohnstaedt, and Caterina Scoglio. 2023. "PICTUREE—Aedes: A Web Application for Dengue Data Visualization and Case Prediction" Pathogens 12, no. 6: 771. https://doi.org/10.3390/pathogens12060771
APA StyleYi, C., Vajdi, A., Ferdousi, T., Cohnstaedt, L. W., & Scoglio, C. (2023). PICTUREE—Aedes: A Web Application for Dengue Data Visualization and Case Prediction. Pathogens, 12(6), 771. https://doi.org/10.3390/pathogens12060771