Exploring Emerging Challenges: Survey on Phlebotomine Sand Flies and Leishmania infantum at the Northern Endemic Border in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Entomological Surveys
2.3. Detection of Leishmania infantum in Phlebotomine Sand Flies
2.4. Surveys of Domestic Hosts
3. Results
3.1. Phlebotomine Sand Flies
3.2. Leishmania infantum in Phlebotomine Sand Flies
3.3. Leishmania infantum in Domestic Hosts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Surveillance, Prevention and Control of Leishmaniases in the European Union and Its Neighbouring Countries; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2022. [Google Scholar]
- World Health Organization. Global leishmaniasis surveillance: 2019–2020, a baseline for the 2030 roadmap. Wkly. Epidemiol. Rec. 2021, 96, 401–419. [Google Scholar]
- Hong, A.; Zampieri, R.A.; Shaw, J.J.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. One health approach to leishmaniases: Understanding the disease dynamics through diagnostic tools. Pathogens 2020, 9, 809. [Google Scholar] [CrossRef]
- World Health Organization. Operational Manual on Leishmaniasis Vector Control, Surveillance, Monitoring and Evaluation; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New epidemiological aspects of animal leishmaniosis in Europe: The role of vertebrate hosts other than dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef]
- Foglia Manzillo, V.; Gizzarelli, M.; Vitale, F.; Montagnaro, S.; Torina, A.; Sotera, S.; Oliva, G. Serological and entomological survey of canine leishmaniasis in Lampedusa island, Italy. BMC Vet. Res. 2018, 14, 286. [Google Scholar] [CrossRef]
- Kostopoulou, D.; Gizzarelli, M.; Ligda, P.; Foglia Manzillo, V.; Saratsi, K.; Montagnaro, S.; Schunack, B.; Boegel, A.; Pollmeier, M.; Oliva, G.; et al. Mapping the canine vector-borne disease risk in a Mediterranean area. Parasites Vectors 2020, 13, 282. [Google Scholar] [CrossRef]
- Deplazes, P.; Eckert, J.; Mathis, A.; von Samson-Himmelstjerna, G.; Zahner, H. Parasitology in Veterinary Medicine; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016. [Google Scholar]
- Alvar, J.; Molina, R.; San Andrés, M.; Tesouro, M.; Nieto, J.; Vitutia, M.; González, F.; San Andrés, M.D.; Boggio, J.; Rodriguez, F.; et al. Canine leishmaniasis: Clinical, parasitological and entomological follow-up after chemotherapy. Ann. Trop. Med. Parasitol. 1994, 88, 371–378. [Google Scholar] [CrossRef]
- Molina, R.; Amela, C.; Nieto, J.; San-Andrés, M.; Gonzalez, F.; Castillo, J.; Lucientes, J.; Alvar, J. Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 491–493. [Google Scholar] [CrossRef]
- Asfaram, S.; Fakhar, M.; Teshnizi, S.H. Is the cat an important reservoir host for visceral leishmaniasis? A systematic review with meta-analysis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e20190012. [Google Scholar] [CrossRef]
- Garcia-Torres, M.; López, M.C.; Tasker, S.; Lappin, M.R.; Blasi-Brugué, C.; Roura, X. Review and statistical analysis of clinical management of feline leishmaniosis caused by Leishmania infantum. Parasites Vectors 2022, 15, 253. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.G.; Cardoso, L.; Baneth, G.; Bourdeau, P.; Koutinas, A.; Miró, G.; Oliva, G.; Solano-Gallego, L. LeishVet update and recommendations on feline leishmaniosis. Parasites Vectors 2015, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.G.; Persichetti, M.F. Feline leishmaniosis: Is the cat a small dog? Vet. Parasitol. 2018, 251, 131–137. [Google Scholar] [CrossRef]
- Priolo, V.; Masucci, M.; Donato, G.; Solano-Gallego, L.; Martínez-Orellana, P.; Persichetti, M.F.; Raya-Bermúdez, A.; Vitale, F.; Pennisi, M.G. Association between feline immunodeficiency virus and Leishmania infantum infections in cats: A retrospective matched case-control study. Parasites Vectors 2022, 15, 107. [Google Scholar] [CrossRef]
- Kniha, E.; Aspöck, H.; Auer, H.; Walochnik, J. Leishmania infections and Leishmania species in central Europe. Wien. Tierärztliche Monatsschrift—Vet. Med. Austria 2023, 110, Doc1. [Google Scholar] [CrossRef]
- Maia, C.; Conceição, C.; Pereira, A.; Rocha, R.; Ortuño, M.; Muñoz, C.; Jumakanova, Z.; Pérez-Cutillas, P.; Özbel, Y.; Töz, S.; et al. The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS Negl. Trop. Dis. 2023, 17, e0011497. [Google Scholar] [CrossRef] [PubMed]
- Arce, A.; Estirado, A.; Ordobas, M.; Sevilla, S.; García, N.; Moratilla, L.; de la Fuente, S.; Martínez, A.M.; Pérez, A.M.; Aránguez, E.; et al. Re-emergence of leishmaniasis in Spain: Community outbreak in Madrid, Spain, 2009 to 2012. Eurosurveillance 2013, 18, 20546. [Google Scholar] [CrossRef] [PubMed]
- Cecílio, P.; Cordeiro-da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 305. [Google Scholar] [CrossRef]
- Gradoni, L.; Ferroglio, E.; Zanet, S.; Mignone, W.; Venco, L.; Bongiorno, G.; Fiorentino, E.; Cassini, R.; Grillini, M.; Simonato, G.; et al. Monitoring and detection of new endemic foci of canine leishmaniosis in northern continental Italy: An update from a study involving five regions (2018-2019). Vet. Parasitol. Reg. Stud. Rep. 2022, 27, 100676. [Google Scholar] [CrossRef]
- Maroli, M.; Feliciangeli, M.D.; Bichaud, L.; Charrel, R.N.; Gradoni, L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013, 27, 123–147. [Google Scholar] [CrossRef]
- Maroli, M.; Rossi, L.; Baldelli, R.; Capelli, G.; Ferroglio, E.; Genchi, C.; Gramiccia, M.; Mortarino, M.; Pietrobelli, M.; Gradoni, L. The northward spread of leishmaniasis in Italy: Evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop. Med. Int. Health 2008, 13, 256–264. [Google Scholar] [CrossRef]
- Mendoza-Roldan, J.; Benelli, G.; Panarese, R.; Iatta, R.; Furlanello, T.; Beugnet, F.; Zatelli, A.; Otranto, D. Leishmania infantum and Dirofilaria immitis infections in Italy, 2009–2019: Changing distribution patterns. Parasites Vectors 2020, 13, 193. [Google Scholar] [CrossRef] [PubMed]
- Le Rutte, E.A.; van der Wilt, L.S.; Bulstra, C.A.; Nieboer, D.; Kontoroupis, P.; de Vlas, S.J.; Richardus, J.H. Incidence and geographical distribution of canine leishmaniosis in 2016-2017 in Spain and France. Vet. Parasitol. Reg. Stud. Rep. 2021, 25, 100613. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Van Bortel, W.; Zeller, H.; Alten, B. A summary of the evidence for the change in European distribution of phlebotomine sand flies (Diptera: Psychodidae) of public health importance. J. Vector Ecol. 2014, 39, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Maia, C.; Cardoso, L. Spread of Leishmania infantum in Europe with dog travelling. Vet. Parasitol. 2015, 213, 2–11. [Google Scholar] [CrossRef]
- Menn, B.; Lorentz, S.; Naucke, T.J. Imported and travelling dogs as carriers of canine vector-borne pathogens in Germany. Parasites Vectors 2010, 3, 34. [Google Scholar] [CrossRef]
- Mettler, M.; Grimm, F.; Capelli, G.; Camp, H.; Deplazes, P. Evaluation of enzyme-linked immunosorbent assays, an immunofluorescent-antibody test, and two rapid tests (immunochromatographic-dipstick and gel tests) for serological diagnosis of symptomatic and asymptomatic Leishmania infections in dogs. J. Clin. Microbiol. 2005, 43, 5515–5519. [Google Scholar] [CrossRef]
- Naucke, T.J.; Schmitt, C. Is leishmaniasis becoming endemic in Germany? Int. J. Med. Microbiol. 2004, 293 (Suppl. S37), 179–181. [Google Scholar] [CrossRef]
- Gaschen, H. Phlébotomes de Suisse. Acta Trop. 1945, 2, 137–154. [Google Scholar] [CrossRef]
- Grimm, F.; Gessler, M.; Jenni, L. Aspects of sandfly biology in southern Switzerland. Med. Vet. Entomol. 1993, 7, 170–176. [Google Scholar] [CrossRef]
- Knechtli, R.; Jenni, L. Distribution and relative density of three sandfly (Diptera: Phlebotominae) species in southern Switzerland. Ann. Parasitol. Hum. Comp. 1989, 64, 53–63. [Google Scholar] [CrossRef]
- Olcer, M. Vorkommen der Caninen Leishmaniose und Deren Überträger in der Schweiz. Master‘s Thesis, University of Zurich, Zurich, Switzerland, 2017. [Google Scholar]
- Schaffner, F.; Silaghi, C.; Verhulst, N.O.; Depaquit, J.; Mathis, A. The Phlebotomine sand fly fauna of Switzerland revisited. Med. Vet. Entomol. 2024, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Obwaller, A.G.; Karakus, M.; Poeppl, W.; Töz, S.; Özbel, Y.; Aspöck, H.; Walochnik, J. Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasites Vectors 2016, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Defilippo, F.; Carrera, M.; Lelli, D.; Canziani, S.; Moreno, A.; Sozzi, E.; Manarolla, G.; Chiari, M.; Marco, F.; Cerioli, M.P.; et al. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in the Lombardy region, northern Italy. Insects 2022, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Oerther, S.; Jöst, H.; Heitmann, A.; Lühken, R.; Krüger, A.; Steinhausen, I.; Brinker, C.; Lorentz, S.; Marx, M.; Schmidt-Chanasit, J.; et al. Phlebotomine sand flies in Southwest Germany: An update with records in new locations. Parasites Vectors 2020, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Moeller, P.; Thomas, S.M.; Naucke, T.J.; Beierkuhnlein, C. Combining climatic projections and dispersal ability: A method for estimating the responses of sandfly vector species to climate change. PLoS Negl. Trop. Dis. 2011, 5, e1407. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Thomas, S.M.; Beierkuhnlein, C. Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospat. Health 2010, 5, 59–69. [Google Scholar] [CrossRef]
- Moirano, G.; Zanet, S.; Giorgi, E.; Battisti, E.; Falzoi, S.; Acquaotta, F.; Fratianni, S.; Richiardi, L.; Ferroglio, E.; Maule, M. Integrating environmental, entomological, animal, and human data to model the Leishmania infantum transmission risk in a newly endemic area in northern Italy. One Health 2020, 10, 100159. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Medlock, J.; Balenghien, T.; Alten, B.; Versteirt, V.; Schaffner, F. Field sampling methods for mosquitoes, sandflies, biting midges and ticks. EFSA Support. Publ. 2018, 15, 1435E. [Google Scholar] [CrossRef]
- Muñoz, C.; Risueño, J.; Pérez-Cutillas, P.; Bernal, L.J.; Ortiz, J.M.; Ruiz de Ybáñez, R.; Sánchez-López, P.F.; Martínez-Carrasco, C.; Del Río, L.; De la Rúa, P.; et al. Density assessment and reporting for Phlebotomus perniciosus and other sand fly species in periurban residential estates in Spain. Parasitol. Res. 2021, 120, 3091–3103. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Latrofa, M.S.; Otranto, D. Quantification of Leishmania infantum DNA in females, eggs and larvae of Rhipicephalus sanguineus. Parasites Vectors 2011, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Francino, O.; Altet, L.; Sánchez-Robert, E.; Rodriguez, A.; Solano-Gallego, L.; Alberola, J.; Ferrer, L.; Sánchez, A.; Roura, X. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet. Parasitol. 2006, 137, 214–221. [Google Scholar] [CrossRef]
- Degrave, W.; Fernandes, O.; Campbell, D.; Bozza, M.; Lopes, U. Use of molecular probes and PCR for detection and typing of Leishmania—A mini-review. Memórias Inst. Oswaldo Cruz 1994, 89, 463–469. [Google Scholar] [CrossRef]
- Galluzzi, L.; Ceccarelli, M.; Diotallevi, A.; Menotta, M.; Magnani, M. Real-time PCR applications for diagnosis of leishmaniasis. Parasites Vectors 2018, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Latrofa, M.S.; Iatta, R.; Dantas-Torres, F.; Annoscia, G.; Gabrielli, S.; Pombi, M.; Gradoni, L.; Otranto, D. Detection of Leishmania infantum DNA in phlebotomine sand flies from an area where canine leishmaniosis is endemic in southern Italy. Vet. Parasitol. 2018, 253, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, G. Feline Leishmaniosis: Development of a New Diagnostic Tool and Investigating the Epidemiological Role of Cats. Master‘s Thesis, University of Zurich, Zurich, Switzerland, 2023. [Google Scholar]
- Naucke, T.J.; Pesson, B. Presence of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 (Diptera: Psychodidae) in Germany. Parasitol. Res. 2000, 86, 335–336. [Google Scholar] [CrossRef]
- Berriatua, E.; Maia, C.; Conceição, C.; Özbel, Y.; Töz, S.; Baneth, G.; Pérez-Cutillas, P.; Ortuño, M.; Muñoz, C.; Jumakanova, Z.; et al. Leishmaniases in the European Union and neighboring countries. Emerg. Infect. Dis. 2021, 27, 1723–1727. [Google Scholar] [CrossRef]
- Barón, S.D.; Morillas-Márquez, F.; Morales-Yuste, M.; Díaz-Sáez, V.; Irigaray, C.; Martín-Sánchez, J. Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: Implications for the control of the disease. Parasitology 2011, 138, 1234–1244. [Google Scholar] [CrossRef]
- Pereira, S.; Pita-Pereira, D.; Araujo-Pereira, T.; Britto, C.; Costa-Rego, T.; Ferrolho, J.; Vilhena, M.; Rangel, E.F.; Vilela, M.L.; Afonso, M.O. First molecular detection of Leishmania infantum in Sergentomyia minuta (Diptera, Psychodidae) in Alentejo, southern Portugal. Acta Trop. 2017, 174, 45–48. [Google Scholar] [CrossRef]
- Ferroglio, E.; Battisti, E.; Zanet, S.; Bolla, C.; Concialdi, E.; Trisciuoglio, A.; Khalili, S.; Biglino, A. Epidemiological evaluation of Leishmania infantum zoonotic transmission risk in the recently established endemic area of northwestern Italy. Zoonoses Public Health 2018, 65, 675–682. [Google Scholar] [CrossRef]
- Signorini, M.; Drigo, M.; Marcer, F.; di Regalbono, A.F.; Gasparini, G.; Montarsi, F.; Pietrobelli, M.; Cassini, R. Comparative field study to evaluate the performance of three different traps for collecting sand flies in northeastern Italy. J. Vector Ecol. 2013, 38, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Risueño, J.; Yilmaz, A.; Pérez-Cutillas, P.; Goyena, E.; Ortuño, M.; Bernal, L.J.; Ortiz, J.; Alten, B.; Berriatua, E. Investigations of Phlebotomus perniciosus sand flies in rural Spain reveal strongly aggregated and gender-specific spatial distributions and advocate use of light-attraction traps. Med. Vet. Entomol. 2018, 32, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Rinaldi, L.; Musella, V.; Veneziano, V.; Carbone, S.; Gradoni, L.; Cringoli, G.; Maroli, M. Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy. Geospat. Health 2007, 1, 191–198. [Google Scholar] [CrossRef]
- Gradoni, L. Epizootiology of canine leishmaniasis in southern Europe. In Canine leishmaniasis: An Update. Proceedings of the Canine Leishmaniasis Forum, Barcelona, Spain; Killick-Kendrick, R., Ed.; Hoechst Roussel Vet: Wiesbaden, Germany, 1999; pp. 32–39. [Google Scholar]
- Naucke, T. Leishmaniose-Infektionen in Deutschland-Gefahr geht nicht nur von Sandmücken aus. Tierarztl. Umsch. 2016, 71, 130. [Google Scholar]
- Schäfer, I.; Volkmann, M.; Beelitz, P.; Merle, R.; Müller, E.; Kohn, B. Retrospective evaluation of vector-borne infections in dogs imported from the Mediterranean region and southeastern Europe (2007–2015). Parasites Vectors 2019, 12, 30. [Google Scholar] [CrossRef]
- Leschnik, M.; Löwenstein, M.; Edelhofer, R.; Kirtz, G. Imported non-endemic, arthropod-borne and parasitic infectious diseases in Austrian dogs. Wien. Klin. Wochenschr. 2008, 120, 59–62. [Google Scholar] [CrossRef]
- Schäfer, I.; Volkmann, M.; Beelitz, P.; Merle, R.; Müller, E.; Kohn, B. Retrospective analysis of vector-borne infections in dogs after travelling to endemic areas (2007–2018). Vet. Parasitol. X 2019, 2, 100015. [Google Scholar] [CrossRef]
- Mencke, N. The importance of canine leishmaniosis in non-endemic areas, with special emphasis on the situation in Germany. Berl. Münchener Tierärztliche Wochenschr. 2011, 124, 434–442. [Google Scholar]
- Randolph, S.E.; Rogers, D.J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Microbiol. 2010, 8, 361–371. [Google Scholar] [CrossRef]
- Pereira, A.; Parreira, R.; Cristóvão, J.M.; Vitale, F.; Bastien, P.; Campino, L.; Maia, C. Leishmania infantum strains from cats are similar in biological properties to canine and human strains. Vet. Parasitol. 2021, 298, 109531. [Google Scholar] [CrossRef]
- Alcover, M.M.; Basurco, A.; Fernandez, A.; Riera, C.; Fisa, R.; Gonzalez, A.; Verde, M.; Garrido, A.M.; Ruíz, H.; Yzuel, A.; et al. A cross-sectional study of Leishmania infantum infection in stray cats in the city of Zaragoza (Spain) using serology and PCR. Parasites Vectors 2021, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Iatta, R.; Furlanello, T.; Colella, V.; Tarallo, V.D.; Latrofa, M.S.; Brianti, E.; Trerotoli, P.; Decaro, N.; Lorusso, E.; Schunack, B.; et al. A nationwide survey of Leishmania infantum infection in cats and associated risk factors in Italy. PLoS Negl. Trop. Dis. 2019, 13, e0007594. [Google Scholar] [CrossRef] [PubMed]
- Ferroglio, E.; Maroli, M.; Gastaldo, S.; Mignone, W.; Rossi, L. Canine leishmaniasis, Italy. Emerg. Infect. Dis. 2005, 11, 1618–1620. [Google Scholar] [CrossRef]
- Pereira, A.; Maia, C. Leishmania infection in cats and feline leishmaniosis: An updated review with a proposal of a diagnosis algorithm and prevention guidelines. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100035. [Google Scholar] [CrossRef]
Site | Canton (District) | Latitude, Longitude | Altitude (m.a.s.l.) | Site Type | Potential Domestic Hosts | Trap Types |
---|---|---|---|---|---|---|
1 | TI (BEL) | 46.22649, 9.02952 | 237 | Dog shelter | Dogs | LT, ST |
2 | TI (BEL) | 46.21237, 9.0387 | 241 | Campsite | Dogs | LT, ST |
3 | TI (LOC) | 46.17893, 8.85174 | 218 | Private house | Chickens, guinea pigs, dogs | LT, ST |
4 | TI (LOC) | 46.17731, 8.86896 | 200 | Horse stable | Horse, dogs | LT, ST |
5 | TI (LOC) | 46.17628, 8.87016 | 200 | Chicken farm | Chickens, dogs | LT, ST |
6 | TI (BEL) | 46.18121, 8.9836 | 216 | Farm | Cattle, dogs, chickens | LT, ST |
7 | TI (BEL) | 46.17102, 8.93746 | 220 | Woodland path | Dogs, horses | LT, ST |
8 | TI (BEL) | 46.16783, 8.95076 | 207 | Farm | Rabbits, chickens, cats | LT, ST |
9 | TI (BEL) | 46.16375, 9.00529 | 256 | Private breeder | Rabbits, chickens, cats | LT, ST |
10 | TI (BEL) | 46.16144, 8.99828 | 225 | Horse stable | Horses, cats, dogs | LT, ST |
11 | TI (LUG) | 46.06026, 8.9614 | 567 | Farm | Rabbits, chickens | LT, ST |
12 | TI (LUG) | 46.05588, 8.95031 | 443 | Farm | Chickens, cattle | LT, ST |
13 | TI (LUG) | 46.04391, 8.9411 | 443 | Farm | Rabbits, chickens | LT, ST |
14 | TI (LUG) | 46.00013, 8.92334 | 422 | Farm | Rabbits, pigs, cattle, dogs | LT, ST |
15 | TI (LUG) | 45.99488, 8.91427 | 276 | Horse stable | Horses, dogs | LT, ST |
16 | TI (MEN) | 45.86086, 9.00299 | 405 | Farm | Rabbits, chickens, cattle, pigs | LT, ST |
17 | TI (MEN) | 45.85826, 8.9958 | 364 | Private breeder | Chickens, dogs | LT, ST |
18 | TI (MEN) | 45.82656, 8.99956 | 277 | Horse stable | Horses, dogs | LT, ST |
19 | TI (MEN) | 45.82329, 9.0109 | 432 | Private breeder | Rabbits, chickens | LT, ST |
20 | TI (MEN) | 45.82089, 9.00587 | 447 | Dog pension | Dogs, horses | LT, ST |
21 | BS | 47.589258, 7.674204 | 385 | Farm | Chickens | LT, ST |
22 | BS | 47.574182, 7.623749 | 260 | Farm | Chickens | LT, ST |
23 | BL | 47.511855, 7.635353 | 404 | Farm | Chickens, pigs | LT, ST |
24 | BL | 47.495328, 7.545950 | 318 | Farm | Chickens | ST |
25 | BL | 47.500276, 7.568093 | 358 | Farm | Chickens, horses | ST |
26 | BL | 47.454196, 7.609626 | 384 | Private breeder | Rabbits | ST |
27 | BL | 47.418270, 7.503840 | 356 | Private breeder | Rabbits | LT, ST |
Site | Sampling Effort 1 | Ph. mascittii | Ph. neglectus | Ph. perniciosus | S. minuta | |||||
---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
1 | 7 | 0 | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | ||||
2 | 5 | 0 | 1 (0.2) | 0 (0) | 0 (0) | 0 (0) | ||||
3 | 6 | 0 | 1 (0.2) | 0 (0) | 0 (0) | 5 (0.8) | ||||
4 | 7 | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||||
5 | 7 | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||||
6 | 7 | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||||
7 | 6 | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||||
8 | 7 | 0 | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | ||||
9 | 7 | 0 | 3 (0.4) | 0 (0) | 5 (0.7) | 0 (0) | ||||
10 | 7 | 0 | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | ||||
11 | 7 | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||||
12 | 7 | 0 | 0 (0) | 0 (0) | 7 (1.0) | 2 (0.3) | ||||
13 | 7 | 0 | 1 (0.1) | 0 (0) | 0 (0) | 0 (0) | ||||
14 | 7 | 0 | 1 (0.1) | 0 (0) | 0 (0) | 0 (0) | ||||
15 | 7 | 0 | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | ||||
16 | 8 | 10 | 1 (0.1) | 1 (0.1) | 0 (0) | 0 (0) | 4 (0.5) | 31 (3.1) | 9 (1.1) | 2 (0.2) |
17 | 7 | 9 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | 0 (0) | 0 (0) |
18 | 7 | 9 | 1 (0.1) | 0 (0) | 0 (0) | 0 (0) | 11 (1.6) | 1 (0.1) | 2 (0.3) | 0 (0) |
19 | 7 | 9 | 0 (0) | 0 (0) | 1 (0.1) | 0 (0) | 29 (4.1) | 48 (5.3) | 0 (0) | 0 (0) |
20 | 8 | 9 | 1 (0.1) | 0 (0) | 0 (0) | 0 (0) | 1 (0.1) | 3 (0.3) | 0 (0) | 1 (0.1) |
Total | 10 | 1 | 1 | 0 | 62 | 83 | 18 | 3 |
Dogs | Cats | |||||
---|---|---|---|---|---|---|
n | % | 95% CI | n | % | 95% CI | |
Examined in this study | 101 | 126 | ||||
Anti-Leishmania antibody positive | 3 | 3 | [0.6, 8.4] | 2 | 1.6 | [0.2, 5.6] |
Anti-Leishmania antibody questionable | 1 | 1 | [0, 5.4] | - | ||
Anti-Leishmania antibody negative | 97 | 96 | 124 | 98.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravasi, D.; Schnyder, M.; Guidi, V.; Haye, T.; Parrondo Monton, D.; Flacio, E. Exploring Emerging Challenges: Survey on Phlebotomine Sand Flies and Leishmania infantum at the Northern Endemic Border in Europe. Pathogens 2024, 13, 1074. https://doi.org/10.3390/pathogens13121074
Ravasi D, Schnyder M, Guidi V, Haye T, Parrondo Monton D, Flacio E. Exploring Emerging Challenges: Survey on Phlebotomine Sand Flies and Leishmania infantum at the Northern Endemic Border in Europe. Pathogens. 2024; 13(12):1074. https://doi.org/10.3390/pathogens13121074
Chicago/Turabian StyleRavasi, Damiana, Manuela Schnyder, Valeria Guidi, Tim Haye, Diego Parrondo Monton, and Eleonora Flacio. 2024. "Exploring Emerging Challenges: Survey on Phlebotomine Sand Flies and Leishmania infantum at the Northern Endemic Border in Europe" Pathogens 13, no. 12: 1074. https://doi.org/10.3390/pathogens13121074
APA StyleRavasi, D., Schnyder, M., Guidi, V., Haye, T., Parrondo Monton, D., & Flacio, E. (2024). Exploring Emerging Challenges: Survey on Phlebotomine Sand Flies and Leishmania infantum at the Northern Endemic Border in Europe. Pathogens, 13(12), 1074. https://doi.org/10.3390/pathogens13121074