Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period
Abstract
:1. Introduction
2. The Lung Microbiota and Microbiome
Phyla | Actinobacteria | Bacteroidetes | Firmicutes | Proteobacteria | Tenericutes | Verrucomicrobia |
---|---|---|---|---|---|---|
Genus | Bifidobacterium Corynebacterium Dermatobacter Kocuria Mycobacterium Parascovia Propionibacterium Rothia | Bacteroides Prevotella Porphyromonas Rikenella | Bacillus Clostridium Dolosigranulum Enterococcus Lactobacillus Leuconostoc Pediococcus Staphylococcus Streptococcus Veillonella Weisella | Acinetobacter Bradyrhizobiaceae Burkholderia Escherichia Haemophilus Helicobacter Moraxella Neisseria Novosphingobium Pateurella Pseudomonas Ralstonia Serratia Sphingobium Sphingomonas Sphingopyxis | Mycoplasma Ureaplasma | Akkermansia |
3. Ventilator-Associate Pneumonia (VAP)
3.1. Definition and Epidemiology
3.2. Sample Collection and Pathogens Implicated in VAP
3.3. Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111, Erratum in Clin. Infect. Dis. 2017, 64, 1298; Erratum in Clin. Infect. Dis. 2017, 65, 1435; Erratum in Clin. Infect. Dis. 2017, 65, 2161. [Google Scholar] [CrossRef]
- CDC. Pneumonia (Ventilator-Associated [VAP] and Non-Ventilator-Associated Pneumonia [PNEU]) Event; CDC: Atlanta, GA, USA, 2024. [Google Scholar]
- Baltimore, R.S. The difficulty of diagnosing ventilator-associated pneumonia. Pediatrics 2003, 112 Pt 1, 1420–1421. [Google Scholar] [CrossRef]
- Rogers, G.B.; Stressmann, F.A.; Koller, G.; Daniels, T.; Carroll, M.P.; Bruce, K.D. Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections. Diagn. Microbiol. Infect. Dis. 2008, 62, 133–141. [Google Scholar] [CrossRef]
- Sherman, M.P.; Minnerly, J.; Curtiss, W.; Rangwala, S.; Kelley, S.T. Research on neonatal microbiomes: What neonatologists need to know. Neonatology 2014, 105, 14–24. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Lal, C.V.; Travers, C.; Aghai, Z.H.; Eipers, P.; Jilling, T.; Halloran, B.; Carlo, W.A.; Keeley, J.; Rezonzew, G.; Kumar, R.; et al. The Airway Microbiome at Birth. Sci. Rep. 2016, 6, 31023. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Shin, J.; Guevarra, R.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Lee, J.H.; Kim, H.B.; Isaacson, R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [PubMed]
- DiGiulio, D.B.; Romero, R.; Amogan, H.P.; Kusanovic, J.P.; Bik, E.M.; Gotsch, F.; Kim, C.J.; Erez, O.; Edwin, S.; Relman, D.A. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: A molecular and culture-based investigation. PLoS ONE 2008, 3, e3056. [Google Scholar] [CrossRef]
- Jones, H.E.; Harris, K.A.; Azizia, M.; Bank, L.; Carpenter, B.; Hartley, J.C.; Klein, N.; Peebles, D. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PLoS ONE 2009, 4, e8205. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [PubMed]
- Lauder, A.P.; Roche, A.M.; Sherrill-Mix, S.; Bailey, A.; Laughlin, A.L.; Bittinger, K.; Leite, R.; Elovitz, M.A.; Parry, S.; Bushman, F.D. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 2016, 4, 29. [Google Scholar] [CrossRef]
- Chen, H.J.; Gur, T.L. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019, 42, 402–413. [Google Scholar] [CrossRef]
- Pammi, M.; Lal, C.V.; Wagner, B.D.; Mourani, P.M.; Lohmann, P.; Luna, R.A.; Sisson, A.; Shivanna, B.; Hollister, E.B.; Abman, S.H.; et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J. Pediatr. 2019, 204, 126–133.e2. [Google Scholar] [CrossRef]
- Gallacher, D.J.; Kotecha, S. Respiratory Microbiome of New-Born Infants. Front. Pediatr. 2016, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Spaetgens, R.; DeBella, K.; Ma, D.; Robertson, S.; Mucenski, M.; Davies, H.D. Perinatal antibiotic usage and changes in colonization and resistance rates of group B streptococcus and other pathogens. Obstet. Gynecol. 2002, 100, 525–533. [Google Scholar]
- Stoll, B.J.; Hansen, N.I.; Sanchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.I.I.I.D.; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef]
- Stevens, J.; Steinmeyer, S.; Bonfield, M.; Peterson, L.; Wang, T.; Gray, J.; Lewkowich, I.; Xu, Y.; Du, Y.; Guo, M.; et al. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci. Transl. Med. 2022, 14, eabl3981. [Google Scholar] [CrossRef]
- Dang, A.T.; Marsland, B.J. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef]
- Tirone, C.; Pezza, L.; Paladini, A.; Tana, M.; Aurilia, C.; Lio, A.; D’Ippolito, S.; Tersigni, C.; Posteraro, B.; Sanguinetti, M.; et al. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front. Immunol. 2019, 10, 2910. [Google Scholar] [CrossRef]
- Alcazar, C.G.; Paes, V.M.; Shao, Y.; Oesser, C.; Miltz, A.; Lawley, T.D.; Brocklehurst, P.; Rodger, A.; Field, N. The association between early-life gut microbiota and childhood respiratory diseases: A systematic review. Lancet Microbe 2022, 3, e867–e880. [Google Scholar] [CrossRef]
- Gleeson, K.; Eggli, D.F.; Maxwell, S.L. Quantitative aspiration during sleep in normal subjects. Chest 1997, 111, 1266–1272. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Welsh, D.A.; Shellito, J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 2015, 6, 1085. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Krajmalnik-Brown, R.; Ilhan, Z.E.; Kang, D.W.; DiBaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Litvak, Y.; Byndloss, M.X.; Bäumler, A.J. Colonocyte metabolism shapes the gut microbiota. Science 2018, 362, eaat9076. [Google Scholar] [CrossRef]
- Terrin, G.; Passariello, A.; De Curtis, M.; Manguso, F.; Salvia, G.; Lega, L.; Messina, F.; Paludetto, R.; Canani, R.B. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics 2012, 129, e40–e45. [Google Scholar] [CrossRef]
- Sharif, S.; Meader, N.; Oddie, S.J.; Rojas-Reyes, M.X.; McGuire, W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst. Rev. 2023, 7, CD005496. [Google Scholar] [CrossRef]
- Yun, Y.; Srinivas, G.; Kuenzel, S.; Linnenbrink, M.; Alnahas, S.; Bruce, K.D.; Steinhoff, U.; Baines, J.F.; Schaible, U.E. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS ONE 2014, 9, e113466. [Google Scholar] [CrossRef]
- Groves, H.T.; Cuthbertson, L.; James, P.; Moffatt, M.F.; Cox, M.J.; Tregoning, J.S. Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota. Front. Immunol. 2018, 9, 182. [Google Scholar] [CrossRef]
- Yildiz, S.; Mazel-Sanchez, B.; Kandasamy, M.; Manicassamy, B.; Schmolke, M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome 2018, 6, 9. [Google Scholar] [CrossRef]
- Sencio, V.; Barthelemy, A.; Tavares, L.P.; Machado, M.G.; Soulard, D.; Cuinat, C.; Queiroz-Junior, C.M.; Noordine, M.L.; Salomé-Desnoulez, S.; Deryuter, L.; et al. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep. 2020, 30, 2934–2947.e6. [Google Scholar] [CrossRef]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; Van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef]
- Bogaert, D.; Keijser, B.; Huse, S.; Rossen, J.; Veenhoven, R.; van Gils, E.; Bruin, J.; Montijn, R.; Bonten, M.; Sanders, E. Variability and diversity of nasopharyngeal microbiota in children: A metagenomic analysis. PLoS ONE 2011, 6, e17035. [Google Scholar] [CrossRef]
- Charlson, E.S.; Bittinger, K.; Haas, A.R.; Fitzgerald, A.S.; Frank, I.; Yadav, A.; Bushman, F.D.; Collman, R.G. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 2011, 184, 957–963. [Google Scholar] [CrossRef]
- Brugger, S.D.; Eslami, S.M.; Pettigrew, M.M.; Escapa, I.F.; Henke, M.T.; Kong, Y.; Lemon, K.P. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota. mSphere 2020, 5, e00852-20. [Google Scholar] [CrossRef]
- Bosch, A.A.T.M.; Levin, E.; van Houten, M.A.; Hasrat, R.; Kalkman, G.; Biesbroek, G.; de Steenhuijsen Piters, W.A.A.; de Groot, P.C.M.; Pernet, P.; Keijser, B.J.F.; et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. EBioMedicine 2016, 9, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.A.; Reiner, G.L.; Lugo, K.A.; Kreuk, L.S.; Stanbery, A.G.; Ansaldo, E.; Seher, T.D.; Ludington, W.B.; Barton, G.M. Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell 2016, 165, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Jeurink, P.V.; van Bergenhenegouwen, J.; Jiménez, E.; Knippels, L.M.; Fernández, L.; Garssen, J.; Knol, J.; Rodríguez, J.M.; Martín, R. Human milk: A source of more life than we imagine. Benef. Microbes 2013, 4, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.C.; Koestler, D.C.; Stanton, B.A.; Davidson, L.; Moulton, L.A.; Housman, M.L.; Moore, J.H.; Guill, M.F.; Morrison, H.G.; Sogin, M.L.; et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: Interaction between intestinal and respiratory tracts and impact of nutritional exposures. Mbio 2012, 3, e00251-12. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef]
- Vissing, N.H.; Chawes, B.L.; Bisgaard, H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am. J. Respir. Crit. Care Med. 2013, 188, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Stressmann, F.A.; Connett, G.J.; Goss, K.; Kollamparambil, T.G.; Patel, N.; Payne, M.S.; Puddy, V.; Legg, J.; Bruce, K.D.; Rogers, G.B. The use of culture-independent tools to characterize bacteria in endo-tracheal aspirates from pre-term infants at risk of bronchopulmonary dysplasia. J. Perinat. Med. 2010, 38, 333–337. [Google Scholar] [CrossRef]
- Beeton, M.L.; Maxwell, N.C.; Davies, P.L.; Nuttall, D.; McGreal, E.; Chakraborty, M.; Spiller, O.B.; Kotecha, S. Role of pulmonary infection in the development of chronic lung disease of prematurity. Eur. Respir. J. 2011, 37, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.L.; Brodie, E.L.; Weng, L.; Lynch, S.V.; Garcia, O.; Brown, R.; Hugenholtz, P.; DeSantis, T.Z.; Andersen, G.L.; Wiener-Kronish, J.P.; et al. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 2007, 45, 1954–1962. [Google Scholar] [CrossRef]
- Cairns, S.; Thomas, J.G.; Hooper, S.J.; Wise, M.P.; Frost, P.J.; Wilson, M.J.; Lewis, M.A.; Williams, D.W. Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS ONE 2011, 6, e14759. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Huffnagle, G.B. Homeostasis and its disruption in the lung microbiome. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 309, L1047–L1055. [Google Scholar] [CrossRef]
- Sandrini, S.; Aldriwesh, M.; Alruways, M.; Freestone, P. Microbial endocrinology: Host-bacteria communication within the gut microbiome. J. Endocrinol. 2015, 225, R21–R34. [Google Scholar] [CrossRef] [PubMed]
- Freestone, P.P.; Hirst, R.A.; Sandrini, S.M.; Sharaff, F.; Fry, H.; Hyman, S.; O’Callaghan, C. Pseudomonas aeruginosa-catecholamine inotrope interactions: A contributory factor in the development of ventilator-associated pneumonia? Chest 2012, 142, 1200–1210. [Google Scholar] [CrossRef]
- Iosifidis, E.; Pitsava, G.; Roilides, E. Ventilator-associated pneumonia in neonates and children: A systematic analysis of diagnostic methods and prevention. Future Microbiol. 2018, 13, 1431–1446. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, F.; Zhang, X.; Huang, Y.L.; Gao, Y.S.; Liu, X.; Li, Y.L.; Qiu, J.F. Risk factors for ventilator-associated pneumonia in the neonatal intensive care unit: A meta-analysis of observational studies. Eur. J. Pediatr. 2014, 173, 427–434. [Google Scholar] [CrossRef]
- Cernada, M.; Brugada, M.; Golombek, S.; Vento, M. Ventilator-associated pneumonia in neonatal patients: An update. Neonatology 2014, 105, 98–107. [Google Scholar] [CrossRef]
- Cernada, M.; Aguar, M.; Brugada, M.; Gutiérrez, A.; López, J.L.; Castell, M.; Vento, M. Ventilator-associated pneumonia in newborn infants diagnosed with an invasive bronchoalveolar lavage technique: A prospective observational study. Pediatr. Crit. Care Med. 2013, 14, 55–61. [Google Scholar] [CrossRef]
- Fernández-Barat, L.; López-Aladid, R.; Torres, A. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. EBioMedicine 2020, 60, 102995. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barat, L.; Torres, A. Biofilms in ventilator-associated pneumonia. Future Microbiol. 2016, 11, 1599–1610. [Google Scholar] [CrossRef]
- Morris, A.C.; Kefala, K.; Simpson, A.J.; Wilkinson, T.S.; Everingham, K.; Kerslake, D.; Raby, S.; Laurenson, I.F.; Swann, D.G.; Walsh, T.S. Evaluation of the effect of diagnostic methodology on the reported incidence of ventilator-associated pneumonia. Thorax 2009, 64, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Cordero, L.; Ayers, L.W.; Miller, R.R.; Seguin, J.H.; Coley, B.D. Surveillance of ventilator-associated pneumonia in very-low-birth-weight infants. Am. J. Infect. Control 2002, 30, 32–39. [Google Scholar] [CrossRef]
- Tusor, N.; De Cunto, A.; Basma, Y.; Klein, J.L.; Meau-Petit, V. Ventilator-associated pneumonia in neonates: The role of point of care lung ultrasound. Eur. J. Pediatr. 2021, 180, 137–146. [Google Scholar] [CrossRef]
- Magill, S.S.; Klompas, M.; Balk, R.; Burns, S.M.; Deutschman, C.S.; Diekema, D.; Fridkin, S.; Greene, L.; Guh, A.; Gutterman, D.; et al. Developing a new, national approach to surveillance for ventilator-associated events: Executive summary. Infect. Control Hosp. Epidemiol. 2013, 34, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Cocoros, N.M.; Kleinman, K.; Priebe, G.P.; Gray, J.E.; Logan, L.K.; Larsen, G.; Sammons, J.; Toltzis, P.; Miroshnik, I.; Horan, K.; et al. Ventilator-Associated Events in Neonates and Children—A New Paradigm. Crit. Care Med. 2016, 44, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Whitesel, E.D.; Gupta, M. A glass half-full: Defining ventilator-associated pneumonia in the neonatal intensive care unit. Pediatr. Res. 2020, 87, 1155–1156. [Google Scholar] [CrossRef]
- Niedzwiecka, T.; Patton, D.; Walsh, S.; Moore, Z.; O’Connor, T.; Nugent, L. What are the effects of care bundles on the incidence of ventilator-associated pneumonia in paediatric and neonatal intensive care units? A systematic review. J. Spec. Pediatr. Nurs. 2019, 24, e12264. [Google Scholar] [CrossRef]
- Willson, D.F.; Conaway, M.; Kelly, R.; Hendley, J.O. The lack of specificity of tracheal aspirates in the diagnosis of pulmonary infection in intubated children. Pediatr. Crit. Care Med. 2014, 15, 299–305. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Holzmann-Pazgal, G.; Hamvas, A.; Olsen, M.A.; Fraser, V.J. Ventilator-associated pneumonia in extremely preterm neonates in a neonatal intensive care unit: Characteristics, risk factors, and outcomes. Pediatrics 2003, 112 Pt 1, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.M.; Chen, L.H.; Yu, H.M. Risk factors and outcomes for ventilator-associated pneumonia in neonatal intensive care unit patients. J. Perinat. Med. 2007, 35, 334–338. [Google Scholar] [CrossRef]
- Garland, J.S. Strategies to prevent ventilator-associated pneumonia in neonates. Clin. Perinatol. 2010, 37, 629–643. [Google Scholar] [CrossRef]
- Deng, C.; Li, X.; Zou, Y.; Wang, J.; Wang, J.; Namba, F.; Hiroyuki, Y.; Yu, J.; Yamauchi, Y.; Guo, C. Risk factors and pathogen profile of ventilator-associated pneumonia in a neonatal intensive care unit in China. Pediatr. Int. 2011, 53, 332–337. [Google Scholar] [CrossRef]
- Afjeh, S.A.; Sabzehei, M.K.; Karimi, A.; Shiva, F.; Shamshiri, A.R. Surveillance of ventilator-associated pneumonia in a neonatal intensive care unit: Characteristics, risk factors, and outcome. Arch. Iran. Med. 2012, 15, 567–571. [Google Scholar]
- Geffers, C.; Baerwolff, S.; Schwab, F.; Gastmeier, P. Incidence of healthcare-associated infections in high-risk neonates: Results from the German surveillance system for very-low-birthweight infants. J. Hosp. Infect. 2008, 68, 214–221. [Google Scholar] [CrossRef]
- el-Ebiary, M.; Soler, N.; Monton, C.; Torres, A. Markers of ventilator-associated pneumonia. Clin. Intensive Care 1995, 6, 121–126. [Google Scholar] [CrossRef]
- Srinivasan, R.; Song, Y.; Wiener-Kronish, J.; Flori, H.R. Plasminogen activation inhibitor concentrations in bronchoalveolar lavage fluid distinguishes ventilator-associated pneumonia from colonization in mechanically ventilated pediatric patients. Pediatr. Crit. Care Med. 2011, 12, 21–27. [Google Scholar] [CrossRef]
- Pinilla-Gonzalez, A.; Lara-Cantón, I.; Torrejón-Rodríguez, L.; Parra-Llorca, A.; Aguar, M.; Kuligowski, J.; Piñeiro-Ramos, J.D.; Sánchez-Illana, Á.; Navarro, A.G.; Vento, M.; et al. Early molecular markers of ventilator-associated pneumonia in bronchoalveolar lavage in preterm infants. Pediatr. Res. 2023, 93, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Minami, H.; Enomoto, M.; Takano, T.; Hayashi, S.; Lee, Y.K. Usefulness of Gram staining of tracheal aspirates in initial therapy for ventilator-associated pneumonia in extremely preterm neonates. J. Perinatol. 2010, 30, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Ergenekon, E.; Çataltepe, S. Ventilator-associated pneumonia in the NICU: Time to boost diagnostics? Pediatr. Res. 2020, 87, 1143–1144. [Google Scholar] [CrossRef]
- Wang, H.C.; Tsai, M.H.; Chu, S.M.; Liao, C.C.; Lai, M.Y.; Huang, H.R.; Chiang, M.C.; Fu, R.H.; Hsu, J.F. Clinical characteristics and outcomes of neonates with polymicrobial ventilator-associated pneumonia in the intensive care unit. BMC Infect. Dis. 2021, 21, 965. [Google Scholar] [CrossRef]
- Weber, C.D. Applying Adult Ventilator-associated Pneumonia Bundle Evidence to the Ventilated Neonate. Adv. Neonatal Care 2016, 16, 178–190. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Linares, D.M.; Ross, P.; Stanton, C. Beneficial Microbes: The pharmacy in the gut. Bioengineered 2016, 7, 11–20. [Google Scholar] [CrossRef]
- AlFaleh, K.; Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2014, 9, CD005496, Erratum in Cochrane Database Syst. Rev. 2020, 10, CD005496. [Google Scholar] [CrossRef]
- Morrow, L.E.; Kollef, M.H.; Casale, T.B. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 1058–1064. [Google Scholar] [CrossRef]
- Forsythe, P. Probiotics and lung diseases. Chest 2011, 139, 901–908. [Google Scholar] [CrossRef]
- Izumo, T.; Maekawa, T.; Ida, M.; Noguchi, A.; Kitagawa, Y.; Shibata, H.; Yasui, H.; Kiso, Y. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int. Immunopharmacol. 2010, 10, 1101–1106. [Google Scholar] [CrossRef]
- Harata, G.; He, F.; Hiruta, N.; Kawase, M.; Kubota, A.; Hiramatsu, M.; Yausi, H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 2010, 50, 597–602. [Google Scholar] [CrossRef]
- Deasy, A.M.; Guccione, E.; Dale, A.P.; Andrews, N.; Evans, C.M.; Bennett, J.S.; Bratcher, H.B.; Maiden, M.C.; Gorringe, A.R.; Read, R.C. Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study. Clin. Infect. Dis. 2015, 60, 1512–1520. [Google Scholar] [CrossRef]
- Banupriya, B.; Biswal, N.; Srinivasaraghavan, R.; Narayanan, P.; Mandal, J. Probiotic prophylaxis to prevent ventilator associated pneumonia (VAP) in children on mechanical ventilation: An open-label randomized controlled trial. Intensive Care Med. 2015, 41, 677–685. [Google Scholar] [CrossRef]
- Johnstone, J.; Meade, M.; Lauzier, F.; Marshall, J.; Duan, E.; Dionne, J.; Arabi, Y.M.; Heels-Ansdell, D.; Thabane, L.; Lamarche, D.; et al. Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA 2021, 326, 1024–1033. [Google Scholar] [CrossRef]
Imaging | Patient without underlying diseases 1 or more (or with underlying diseases 2 or more) imaging test results with one of the following: New and persistent or progressive and persistent
|
Signs and Symptoms |
|
Laboratory | At least one of the following:
|
Threshold values for cultured specimens according to the collection technique | |
Specimen collection/technique | Values |
Lung tissue | ≥104 CFU/g tissue |
Bronchoscopically (B) obtained specimens | |
Bronchoalveolar lavage (B-BAL) | ≥104 CFU/ml |
Protected BAL (B-PBAL) | ≥104 CFU/ml |
Protected specimen brushing (B-PSB) | ≥103 CFU/ml |
Nonbronchoscopically (NB) obtained (blind) specimens | |
NB-BAL | ≥104 CFU/ml |
NB-PSB | ≥103 CFU/ml |
Endotracheal aspirate (TA) | ≥105 CFU/ml |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Muñoz Rodrigo, F.; Urquía Martí, L.; Siguero Onrubia, M.; Borges Luján, M.; Galán Henríquez, G.; Reyes Suárez, D. Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period. Pathogens 2024, 13, 220. https://doi.org/10.3390/pathogens13030220
García-Muñoz Rodrigo F, Urquía Martí L, Siguero Onrubia M, Borges Luján M, Galán Henríquez G, Reyes Suárez D. Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period. Pathogens. 2024; 13(3):220. https://doi.org/10.3390/pathogens13030220
Chicago/Turabian StyleGarcía-Muñoz Rodrigo, Fermín, Lourdes Urquía Martí, Marta Siguero Onrubia, Moreyba Borges Luján, Gloria Galán Henríquez, and Desiderio Reyes Suárez. 2024. "Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period" Pathogens 13, no. 3: 220. https://doi.org/10.3390/pathogens13030220
APA StyleGarcía-Muñoz Rodrigo, F., Urquía Martí, L., Siguero Onrubia, M., Borges Luján, M., Galán Henríquez, G., & Reyes Suárez, D. (2024). Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period. Pathogens, 13(3), 220. https://doi.org/10.3390/pathogens13030220