Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors
Funding
Acknowledgments
Conflicts of Interest
References
- VanderWaal, K.; Deen, J. Global trends in infectious diseases of swine. Proc. Natl. Acad. Sci. USA 2018, 115, 11495–11500. [Google Scholar] [CrossRef] [PubMed]
- Honeyman, M.S. Sustainability issues of U.S. swine production. J. Anim. Sci. 1996, 74, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Shurson, G.C.; Urriola, P.E. Sustainable swine feeding programs require the convergence of multiple dimensions of circular agriculture and food systems with One Health. Anim. Front. 2022, 12, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Vonderohe, C.E.; Brizgys, L.A.; Richert, J.A.; Radcliffe, J.S. Swine production: How sustainable is sustainability? Anim. Front. 2022, 12, 7–17. [Google Scholar] [CrossRef]
- Rauw, W.M.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.C.; Hermesch, S.; Bouquet, A.; Gómez Izquierdo, E.; Louveau, I.; et al. Prospects for sustainability of pig production in relation to climate change and novel feed resources. J. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar] [CrossRef]
- Yu, W.; Jensen, J.D. Sustainability implications of rising global pork demand. Anim. Front. 2022, 12, 56–60. [Google Scholar] [CrossRef]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.P.; Pomar, C. Environmental impacts of pig and poultry production: Insights from a systematic review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Fan, M.Z.; Kerr, B.; Trabue, S.; Yin, X.; Yang, Z.; Wang, W. Chapter 20. Swine nutrition and environment. In Sustainable Swine Nutrition, 2nd ed.; Chiba, L.I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 365–412. [Google Scholar]
- Duarte, M.E.; Kim, S.W. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim. Nutr. 2022, 8, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Fowler, E.C.; Samuel, R.S.; St-Pierre, B. A comparative analysis of the fecal bacterial communities of light and heavy finishing barrows raised in a commercial swine production environment. Pathogens 2023, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, T.; Hermesch, S.; Gilbert, H. Economic and environmental assessments of combined genetics and nutrition optimization strategies to improve the efficiency of sustainable pork production. J. Anim. Sci. 2021, 99, skab051. [Google Scholar] [CrossRef]
- Morris, J.J. What is the hologenome concept of evolution? F1000Research 2018, 7, F1000. [Google Scholar] [CrossRef]
- Maltecca, C.; Bergamaschi, M.; Tiezzi, F. The interaction between microbiome and pig efficiency: A review. J. Anim. Breed Genet. 2020, 137, 4–13. [Google Scholar] [CrossRef]
- Weishaar, R.; Wellmann, R.; Camarinha-Silva, A.; Rodehutscord, M.; Bennewitz, J. Selecting the hologenome to breed for an improved feed efficiency in pigs-A novel selection index. J. Anim. Breed Genet. 2020, 137, 14–22. [Google Scholar] [CrossRef]
- Alberdi, A.; Andersen, S.B.; Limborg, M.T.; Dunn, R.R.; Gilbert, M.T.P. Disentangling host-microbiota complexity through hologenomics. Nat. Rev. Genet. 2022, 23, 281–297. [Google Scholar] [CrossRef]
- Maltecca, C.; Dunn, R.; He, Y.; McNulty, N.P.; Schillebeeckx, C.; Schwab, C.; Shull, C.; Fix, J.; Tiezzi, F. Microbial composition differs between production systems and is associated with growth performance and carcass quality in pigs. Anim. Microbiome 2021, 3, 57. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, T.; Wang, Y.; Xing, K.; Zhang, F.; Zhao, X.; Ao, H.; Chen, S.; Liu, J.; Wang, C. Metagenomic analysis of cecal microbiome identified microbiota and functional capacities associated with feed efficiency in Landrace finishing pigs. Front. Microbiol. 2017, 8, 1546. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Fang, S.; He, M.; Zhao, Y.; Wu, Z.; Yang, M.; Zhang, Z.; Chen, C.; Huang, L. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front. Microbiol. 2017, 8, 1555. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Wu, Z.; Ye, Y.; Peng, L.; Wu, J.; Ruan, D.; Qiu, Y.; Ding, R.; Wang, X.; Zheng, E.; et al. Metagenomic characterization of intestinal regions in pigs with contrasting feed efficiency. Front. Microbiol. 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Fang, S.; Yang, H.; Chen, C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J. Anim. Sci. 2021, 99, skab045. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, Y.; Fu, H.; Xiong, X.; Fang, S.; Jiang, H.; Wu, J.; Yang, H.; Gao, J.; Huang, L. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat. Commun. 2021, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Kim, S.W. Significance of mucosa-associated microbiota and its impacts on intestinal health of pigs challenged with F18+E. coli. Pathogens 2022, 11, 589. [Google Scholar] [CrossRef]
- Frias, A.C.; Sgarbieri, V.C. Guar gum effects on food intake, blood serum lipids and glucose levels of Wistar rats. Plant Foods Hum. Nutr. 1998, 53, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, M.A.N.; Archbold, T.; Wang, Q.; Yang, X.; Fan, M.Z. Prebiotics and β-Glucan as gut modifier feed additives in modulation of growth performance, protein utilization status and dry matter and lactose digestibility in weanling pigs. Front. Anim. Sci. 2022, 3, 855846. [Google Scholar] [CrossRef]
- Fan, M.Z.; Cheng, L.; Wang, M.; Chen, J.; Fan, W.; Jashari, F.; Wang, W. Monomodular and multifunctional processive endocellulases: Implications for swine nutrition and gut microbiome. Anim. Microbiome 2024, 6, 4. [Google Scholar] [CrossRef]
- Rideout, T.C.; Yuan, Z.; Bakovic, M.; Liu, Q.; Li, R.K.; Mine, Y.; Fan, M.Z. Guar gum consumption increases hepatic nuclear SREBP2 and LDL receptor expression in pigs fed an atherogenic diet. J. Nutr. 2007, 137, 568–572. [Google Scholar] [CrossRef]
- Rideout, T.C.; Liu, Q.; Wood, P.; Fan, M.Z. Nutrient utilisation and intestinal fermentation are differentially affected by the consumption of resistant starch varieties and conventional fibres in pigs. Br. J. Nutr. 2008, 99, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.Z.; Archbold, T.; Lackeyram, D.; Liu, Q.; Mine, Y.; Paliyath, G. Consumption of guar gum and retrograded high-amylose corn resistant starch increases IL-10 abundance without affecting pro-inflammatory cytokines in the colon of pigs fed a high-fat diet. J. Anim. Sci. 2012, 90 (Suppl. 4), 278–280. [Google Scholar] [CrossRef]
- Inoue, R.; Otabi, H.; Yamashita, T.; Takizawa, N.; Kido, T.; Sugiyama, A.; Ozeki, M.; Abe, A.; Tsukahara, T. Effects of partially hydrolyzed guar gum supplementation on the fecal microbiotas of piglets. Pathogens 2021, 10, 1420. [Google Scholar] [CrossRef]
- Scott, M.B.; Styring, A.K.; McCullagh, J.S.O. Polyphenols: Bioavailability, microbiome interactions and cellular effects on health in humans and animals. Pathogens 2022, 11, 770. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Forgie, A.J.; Gao, Y.; Ju, T.; Pepin, D.M.; Yang, K.; Gänzle, M.G.; Ozga, J.A.; Chan, C.B.; Willing, B.P. Pea polyphenolics and hydrolysis processing alter microbial community structure and early pathogen colonization in mice. J. Nutr. Biochem. 2019, 67, 101–110. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [PubMed]
- Canadian Food Inspection Agency (CFIA). RG-1 Regulatory Guidance: Feed Registration Procedures and Labelling Standards; CFIA: Ottawa, ON, Canada, 2023.
- Yin, X.; Wang, W.; Seah, S.Y.K.; Mine, Y.; Fan, M.Z. Deglycosylation differentially regulates weaned porcine gut alkaline phosphatase isoform functionality along the longitudinal axis. Pathogens 2023, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Lackeyram, D.; Yang, C.; Archbold, T.; Swanson, K.C.; Fan, M.Z. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J. Nutr. 2010, 140, 461–468. [Google Scholar] [CrossRef]
- de Ridder, K.; Levesque, C.L.; Htoo, J.K.; de Lange, C.F.M. Immune system stimulation reduces the efficiency of tryptophan utilization for body protein deposition in growing pigs. J. Anim. Sci. 2012, 90, 3485–3491. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.H.R.F.; Labussière, E.; Hernández-García, J.; Dubois, S.; Renaudeau, D.; Noblet, J. Effects of ambient temperature on energy and nitrogen utilization in lipopolysaccharide-challenged growing pigs. J. Anim. Sci. 2014, 92, 4909–4920. [Google Scholar] [CrossRef]
- Han, Y.; Tang, C.; Zhao, Q.; Fan, S.; Yang, P.; Zhang, J. Butyrate mitigates lipopolysaccharide-induced intestinal morphological changes in weanling piglets by regulating the microbiota and energy metabolism, and alleviating inflammation and apoptosis. Microorganisms 2022, 10, 2001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.Z.; Kim, S.W. Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors. Pathogens 2024, 13, 225. https://doi.org/10.3390/pathogens13030225
Fan MZ, Kim SW. Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors. Pathogens. 2024; 13(3):225. https://doi.org/10.3390/pathogens13030225
Chicago/Turabian StyleFan, Ming Z., and Sung Woo Kim. 2024. "Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors" Pathogens 13, no. 3: 225. https://doi.org/10.3390/pathogens13030225
APA StyleFan, M. Z., & Kim, S. W. (2024). Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors. Pathogens, 13(3), 225. https://doi.org/10.3390/pathogens13030225