Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria
Abstract
:1. Introduction
Background
2. Methodology
2.1. Study Location
2.1.1. Study Design
2.1.2. Selection of Animals
2.2. Sample Collection
2.3. Thin Blood Smear Examination
2.4. PCR and Nested PCR Detection of Babesia spp.
2.4.1. DNA Extraction
2.4.2. Optimization of PCR Conditions
2.4.3. Detection of Babesia Species by PCR and Nested PCR
2.4.4. Sequencing and Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
3.1. Microscopic Examination of Thin Blood Smear
3.2. Molecular (PCR and Nested PCR) Detection
3.2.1. PCR Detection of Babesia Species
3.2.2. Nested PCR Detection of B. bigemina and B. bovis
3.2.3. Phylogenetic Analysis
3.2.4. B. bigemina Phylogenetic Tree
3.2.5. B. bovis Phylogenetic Tree
3.2.6. Estimates of Evolutionary Divergence between Sequences Based on the RAP-1A Gene of B. bigemina Isolates
3.2.7. Estimates of Evolutionary Divergence between Sequences Based on the SBP-4 Gene of B. bovis Isolates
3.3. Babesia Infection Status among the Selected Cattle and Body Condition Score
4. Discussion, Conclusions and Recommendations
4.1. Discussion
4.2. Conclusions
4.3. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maharana, B.R.; Tewari, A.K.; Saravanan, B.C.; Sudhakar, N.R. Important Hemoprotozoan Diseases of Livestock: Challenges in Current Diagnostics and Therapeutics: An Update. Vet. World 2016, 9, 487–495. [Google Scholar] [CrossRef]
- Mijinyawa, B.; Mcleod, A. Tick-Borne Diseases and Poverty. The Impact of Ticks and Tickborne Diseases on the Livelihood of Small-Scale and Marginal Livestock Owners in India and Eastern and Southern Africa. Edinburgh, 2003; p.124. Available online: http://www.cabdirect.org/abstracts/20063155090.html (accessed on 20 April 2022).
- Suarez, C.E.; Laughery, J.M.; Schneider, D.A.; Sondgeroth, K.S.; McElwain, T.F. Acute and Persistent Infection by a Transfected Mo7 Strain of Babesia bovis. Mol. Biochem. Parasitol. 2012, 185, 52–57. [Google Scholar] [CrossRef]
- Rahman, W.A.; Lye, Y.P.; Chandrawathani, P. The Seroprevalence of Bovine Babesiosis in Malaysia. Trop. Biomed. 2010, 27, 301–307. [Google Scholar]
- Ola-fadunsin, S.D.; Maizatul, A.; Ibrahim, A.R.; Amlizawathy, A.; Chandrawathani, P.; Jesse, F.A.; Sani, R.A.; Sharma, R.S. Molecular Prevalence and Species Co-Infection of Bovine Haemoparasites in Peninsular Malaysia. Malays. J. Vet. Res. 2017, 8, 13–22. [Google Scholar]
- Parey, V.P. Bovine Babesiosis in Nigeria: Detection of Babesia Organisms in Salivary Glands of Boophilus Decoloratus Collected on Trade Cattle. Zbl. Vet. Med. B 1983, 155, 153–155. [Google Scholar]
- Lorusso, V.; Wijnveld, M.; Majekodunmi, A.O.; Dongkum, C.; Fajinmi, A.; Dogo, A.G.; Thrusfield, M.; Mugenyi, A.; Vaumourin, E.; Igweh, A.C.; et al. Tick-Borne Pathogens of Zoonotic and Veterinary Importance in Nigerian Cattle. Parasites Vectors 2016, 9, 217. [Google Scholar] [CrossRef]
- Evans, D.E. Tick Infestation of Livestock and Tick Control Methods in Brazil: A Situation Report. Int. J. Trop. Insect Sci. 1992, 13, 629–643. [Google Scholar] [CrossRef]
- International Development Research Centre Bovine Babesiosis Disease Monograph Series- 14; 2016. Available online: https://www.cabi.org/isc/datasheet/121449 (accessed on 11 September 2021).
- World Organisation for Animal Health Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2008. Available online: http://www.oie.int/eng/normes/mmanual/A_summry.htm (accessed on 11 September 2021).
- Leeflang, P.; Ilemobade, A.A. Tick-Borne Diseases of Domestic Animals in Northern Nigeria H. Research Summary, 1966 to 1976. Trop. Anim. Health Prod. 1977, 9, 211–218. [Google Scholar] [CrossRef]
- Kamani, J.; Sannusi, A.; Egwu, O.K.; Dogo, G.I.; Tanko, T.J.; Kemza, S.; Tafarki, A.E.; Gbise, D.S. Prevalence and Significance of Haemoparasitic Infections of Cattle in North-Central, Nigeria. Vet. World 2010, 3, 445–448. [Google Scholar] [CrossRef]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of Cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Mosqueda, J.; Olvera-Ramirez, A.; Aguilar-Tipacamu, G.; Canto, G. Current Advances in Detection and Treatment of Babesiosis. Curr. Med. Chem. 2012, 19, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Charles, O.S.; Adedayo, A.P. Clinico-Haematological and Biochemical Features of Natural Babesiosis in Nigerian Breeds of Cattle. Bull. Anim. Health Prod. Africa 2018, 66, 509–520. [Google Scholar]
- Potgieter, F.T.; Els, H.J. The Fine Structure of Intra-Erythrocytic Stages of Babesia bigemina; The Government Printer: Pretoria, South Africa, 1977; Volume 44.
- Figueroa, J.V.; Chieves, L.P.; Johnson, G.S.; Buening, G.M. Detection of Babesia bigemina-Infected Carriers by Polymerase Chain Reaction Amplification. J. Clin. Microbiol. 1992, 30, 2576–2582. [Google Scholar] [CrossRef]
- Ravindran, G.; Saravanan, B.; Rao, J.; Mishra, A.; Bansal, G.; Ray, D. A PCR–RFLP Method for the Simultaneous Detection of Babesia bigemina and Theileria annulata Infections in Cattle on JSTOR. Curr. Sci. 2007, 93, 1840–1843. [Google Scholar]
- Adjou Moumouni, P.F.; Aboge, G.O.; Terkawi, M.A.; Masatani, T.; Cao, S.; Kamyingkird, K.; Jirapattharasate, C.; Zhou, M.; Wang, G.; Liu, M.; et al. Molecular Detection and Characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale Isolated from Cattle in Kenya. Parasites Vectors 2015, 8, 496. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.I.H. Southeast Asian Landscapes Are Facing Rapid Transition. Bull. Sci. Technol. Soc. 2016, 36, 118–127. [Google Scholar] [CrossRef]
- Baba, M.; Yelwa, J..; Yakubu, G.; Sanchi, I. Comparative Profitability Analysis of Watermelon and Pepper Production in Danko-Wasagu Local Government Area of Kebbi State, Nigeria. Rev. Knowl. Econ. 2014, 1, 39–47. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Hamid, N.A.; Yusri, U.K.; Ramanoon, S.Z.; Mansor, R.; Affandi, S.A.; Watanabe, M.; Kamaludeen, J.; Syed-Hussain, S.S. Ruminant Farmers’ Knowledge, Attitude and Practices towards Zoonotic Diseases in Selangor, Malaysia. Prev. Vet. Med. 2021, 196, 105489. [Google Scholar] [CrossRef]
- Yilmaz, M.; Taskin, T.; Bardakcioglu, H.E.; Loria, A.D.; Medica, C.; Studi, U.; Catanzaro-italy, M.G. Effect of Body Condition Score on Some Blood Parameters for Anemia Level in Goats. Vet. Ir Zootech. 2014, 67, 41–46. [Google Scholar]
- Agina, O.A.; Shaari, M.R.; Isa, N.M.M.; Ajat, M.; Zamri-Saad, M.; Mazlan, M.; Muhamad, A.S.; Kassim, A.A.; Ha, L.C.; Rusli, F.H.; et al. Molecular Detection of Theileria species, Anaplasma species, Candidatus mycoplasma haemobos, Trypanosoma evansi and First Evidence of Theileria sinensis-Associated Bovine Anaemia in Crossbred Kedah-Kelantan x Brahman Cattle. BMC Vet. Res. 2021, 17, 246. [Google Scholar] [CrossRef]
- Lorenz, T.C. Polymerase Chain Reaction: Basic Protocol plus Troubleshooting and Optimization Strategies. J. Vis. Exp. 2012, 63, e3998. [Google Scholar] [CrossRef]
- Cho, J.-C.; Jeon, W.-J.; Kim, S.-S.; Kim, S.-G. Veterinary Service A Survey for Tick-Borne Pathogens in Korean Native Cattle from Northern Area of Gyeongbuk. Korean J. Vet. Serv. 2016, 39, 2287–7630. [Google Scholar] [CrossRef]
- Terkawi, M.A.; Huyen, N.X.; Shinuo, C.; Inpankaew, T.; Maklon, K.; Aboulaila, M.; Ueno, A.; Goo, Y.K.; Yokoyama, N.; Jittapalapong, S.; et al. Molecular and Serological Prevalence of Babesia bovis and Babesia bigemina in Water Buffaloes in the Northeast Region of Thailand. Vet. Parasitol. 2011, 178, 201–207. [Google Scholar] [CrossRef]
- Niu, Q.; Liu, Z.; Yu, P.; Yang, J.; Abdallah, M.O.; Guan, G.; Liu, G.; Luo, J.; Yin, H. Genetic Characterization and Molecular Survey of Babesia bovis, Babesia bigemina and Babesia ovata in Cattle, Dairy Cattle and Yaks in China. Parasites Vectors 2015, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Aliyu, A.; Natala, A.; Adamu, S.; Igbokwe, I.; Esievo, K.; Useh, N. A Comparative Study on the Haematology, Biochemical Alterations in Serum Composition and Pathologic Changes in the Kidneys of Cachectic and Non-Cachectic Cattle in Zaria, Nigeria. Int. J. Biochem. Res. Rev. 2017, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using The Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rohaya, M.; Tuba Thabitah, A.; Kasmas, S.; Azzura, L.; Chandrawathani, P.; Saipul Bahari, A.R. Common Blood Parasites Diagnosed in Ruminants from 2011 to 2015 at the Central Veterinary Laboratory, Sepang, Malaysia. Malaysian J. Vet. Res. 2017, 8, 163–167. [Google Scholar]
- Sawitri, D.H.; Wardhana, A.H.; Ekawasti, F.; Dewi, D.A. Parasitological and Molecular Detection of Babesiosis in Cattle and Buffalo in West and Central Java. Adv. Biol. Sci. Res. 2022, 18, 135–140. [Google Scholar]
- Wagner, G.; Cruz, D.; Holman, P.; Waghela, S.; Perrone, J.; Shompole, S.; Rurangirwa, F. Non-Immunologic Methods of Diagnosis of Babesiosis. Mem. Inst. Oswaldo Cruz 1992, 87 (Suppl. 3), 193–199. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Rojas, C.; Figueroa, J.V. Diagnostic Tools for the Identification of Babesia sp. in Persistently Infected Cattle. Pathogens 2019, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Sequeira, T.C.G.; Oliveira, M.C.S.; Araujo, J.P.; Amarante, A.F.T. PCR-Based Detection of Babesia bovis and Babesia bigemina in Their Natural Host Boophilus microplus and Cattle. Int. J. Parasitol. 2005, 35, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ola-Fadunsin, S.D.; Sharma, R.S.K.; Abdullah, D.A.; Gimba, F.I.; Abdullah, F.F.J.; Sani, R.A. The Molecular Prevalence, Distribution and Risk Factors Associated with Babesia bigemina Infection in Peninsular Malaysia. Ticks Tick. Borne. Dis. 2021, 12, 101653. [Google Scholar] [CrossRef] [PubMed]
- Guswanto, A.; Allamanda, P.; Mariamah, E.S.; Sodirun, S.; Wibowo, P.E.; Indrayani, L.; Nugroho, R.H.; Wirata, I.K.; Jannah, N.; Dias, L.P.; et al. Molecular and Serological Detection of Bovine Babesiosis in Indonesia. Parasites Vectors 2017, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, D.F.; Mirre, G.B. Bovine Babesiasis: Estimation of Infection Rates in the Tick Vector Boophilus microplus (canestrini). Ann. Trop. Med. Parasitol. 1971, 65, 309–317. [Google Scholar] [CrossRef]
- Mahoney, D.F.; Wright, I.G.; Goodger, B.V.; Mirre, G.B.; Sutherst, R.W.; Utech, K.B.W. The Transmission of Babesia bovis in Herds of European and Zebu X European Cattle Infested with the Tick, Boophilus microplus. Aust. Vet. J. 1981, 57, 461–469. [Google Scholar] [CrossRef]
- AL-Hosary, A.A.T. Comparison between Conventional and Molecular Methods for Diagnosis of Bovine Babesiosis (Babesia bovis Infection) in Tick Infested Cattle in Upper Egypt. J. Parasit. Dis. 2017, 41, 243–246. [Google Scholar] [CrossRef]
- Irvin, A.D.; Mcdermott, J.J.; Perry, B.D. Epidemiology of Ticks and Tick-Borne Diseases in Eastern, Central and Southern Africa. In Proceedings of the Food and Agriculture Organization of the United Nations in association with the International Livestock Research Institute A Workshop Held in Harare, Nairobi, Kenya, 12–13 March 1996; Volume 174, pp. 1–20. [Google Scholar]
- Sivakumar, T.; Tuvshintulga, B.; Zhyldyz, A.; Kothalawala, H.; Yapa, P.R.; Kanagaratnam, R.; Caniciyas Vimalakumar, S.; Abeysekera, T.S.; Weerasingha, A.S.; Yamagishi, J.; et al. Genetic Analysis of Babesia Isolates from Cattle with Clinical Babesiosis in Sri Lanka. J. Clin. Microbiol. 2018, 56, 10-1128. [Google Scholar] [CrossRef]
- Sharma, P.; Baldock, C. Epidemiology and Dynamics of Major Livestock Diseases in Southeast Asia. In Understanding Animal Health in South East Asia: Advances in the Collection, Management and Use of Animal Health Information; Australian Centre for International Agricultural Research: Canberra, Australia, 1999; pp. 25–30. [Google Scholar]
- Adjou Moumouni, P.F.; Aplogan, G.L.; Katahira, H.; Gao, Y.; Guo, H.; Efstratiou, A.; Jirapattharasate, C.; Wang, G.; Liu, M.; Ringo, A.E.; et al. Prevalence, Risk Factors, and Genetic Diversity of Veterinary Important Tick-Borne Pathogens in Cattle from Rhipicephalus microplus-Invaded and Non-Invaded Areas of Benin. Ticks Tick. Borne. Dis. 2018, 9, 450–464. [Google Scholar] [CrossRef]
- Hötzel, I.; Suarez, C.E.; McElwain, T.F.; Palmer, G.H. Genetic Variation in the Dimorphic Regions of RAP-1 Genes and Rap-1 Loci of Babesia bigemina. Mol. Biochem. Parasitol. 1997, 90, 479–489. [Google Scholar] [CrossRef]
- Nigeria Product Imports from Mexico 2019|WITS Data. Available online: https://wits.worldbank.org/CountryProfile/en/Country/NGA/Year/2019/TradeFlow/Import/Partner/MEX/Product/All-Groups (accessed on 26 April 2022).
- Akwa Ibom Set to Import 2000 Pregnant Cattle from Mexico|THISDAYLIVE. Available online: https://www.thisdaylive.com/index.php/2018/03/07/aibom-set-to-import-2000-pregnant-cattle-from-mexico/ (accessed on 14 June 2022).
- Impact of Import Quota Liberalization Policy towards Malaysia’s Meat Industry|FFTC Agricultural Policy Platform (FFTC-AP). Available online: https://ap.fftc.org.tw/article/1837 (accessed on 14 June 2022).
- Adamu, S.; Adebayo, I.T.; Useh, N.M.; Bisalla, M.; Sambo, S.J.; Esievo, N.A. Chemical Analysis of Urinary Constituents in Cattle Presented for Slaughter at Zaria Abattoir. Vet. Res. 2007, 1, 57–60. [Google Scholar]
- Jeremiah, S.A.; Taiwo, O.; Akanni, A.S. The Trend of Aetiologies of Chronic Emaciation in Off-Take Cattle in Ibadan Metropolis. J. Vet. Med. Anim. Health 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Ezanno, P.; Ickowicz, A.; Bocquier, F. Factors Affecting the Body Condition Score of N’Dama Cows under Extensive Range Management in Southern Senegal. Anim. Res. 2003, 52, 37–48. [Google Scholar] [CrossRef]
- Wagener, M.G.; Neubert, S.; Punsmann, T.M.; Wiegand, S.B.; Ganter, M. Relationships between Body Condition Score (Bcs), Famacha©-Score and Haematological Parameters in Alpacas (Vicugna pacos), and Llamas (Lama glama) Presented at the Veterinary Clinic. Animals 2021, 11, 2517. [Google Scholar] [CrossRef]
- Stilwell, G.; Peleteiro, M.C. Uterine Adenocarcinoma with Pulmonary, Liver and Mesentery Metastasis in a Holstein Cow. Vet. Med. Int. 2010, 2010, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Fesseha, H.; Mathewos, M.; Eshetu, E.; Tefera, B. Babesiosis in Cattle and Ixodid Tick Distribution in Dasenech and Salamago Districts, Southern Ethiopia. Sci. Rep. 2022, 12, 6385. [Google Scholar] [CrossRef]
- Heylen, D.J.A.; Kumsa, B.; Kimbita, E.; Frank, M.N.; Muhanguzi, D.; Jongejan, F.; Adehan, S.B.; Toure, A.; Aboagye-Antwi, F.; Ogo, N.I.; et al. Tick-Borne Pathogens and Body Condition of Cattle in Smallholder Rural Livestock Production Systems in East and West Africa. Parasites Vectors 2023, 16, 117. [Google Scholar] [CrossRef]
Pathogen Target Gene | Assays | Primer Sequence (5′-3′) | Product Size (bp) | Reference |
---|---|---|---|---|
Babesia species 18S rRNA | PCR | * | 932 | [26] |
B. bigemina RAP-1a | PCR | GAGTCTGCCAAATCCTTAC TCCTCTACAGCTGCTTCG | 879 | [27] |
Nested PCR | AGCTTGCTTTCACAACTCGCC TTGGTGCTTTGACCGACGACA | 412 | ||
B. bovis SBP-4 | PCR | AGTTGTTGGAGGAGGCTAAT TCCTTCTCGGCGTCCTTTTC | 907 | [27] |
Nested PCR | GAAATCCCTGTTCCAGAG TCGTTGATAACACTGCAA | 503 |
Target Gene | Step | Temperature (°C) | Time | Cycles | Reference |
---|---|---|---|---|---|
B. bigemina 18S rRNA | Pre denaturation | 95 | 5 min | 40 | [26] |
Denaturation | 95 | 20 s | |||
Annealing and extension | 65 | 1 min | |||
Final extention | 72 | 5 min | |||
B. bigemina Rap-1a | Pre denaturation | 95 | 5 min | 40 | [27] |
Denaturation | 95 | 30 s | |||
Annealing | 58 | 1 min | |||
Extension | 72 | 30 s | |||
Final extension | 72 | 5 min | |||
B. bovis SPB-4 | Pre denaturation | 95 | 5 min | 40 | |
Denaturation | 95 | 30 s | |||
Annealing | 58 | 1 min | |||
Extension | 72 | 30 s | |||
Final extension | 72 | 5 min |
Parasite Isolate | Target Gene | Accession Number | Sequence Length |
---|---|---|---|
B. bigemina | RAP-1A | OM406331 | 412 |
OM406332 | 412 | ||
OM406333 | 412 | ||
OM406334 | 412 | ||
OM406335 | 412 | ||
OM406336 | 412 | ||
OM406337 | 412 | ||
OM406338 | 412 | ||
OM406339 | 412 | ||
OM406340 | 412 | ||
OM406341 | 412 | ||
OM406342 | 412 | ||
B. bovis | SPB-4 | OM406343 | 503 |
OM406344 | 503 | ||
OM406345 | 503 | ||
OM406346 | 503 |
Babesia Infection Status Selangor | Body Condition Score (BCS) (1–2) (3–4) | Total | |
---|---|---|---|
Infected | 3 (8.5) a | 6 (17.6) a | 9 (25.7) |
Not infected | 15 (42.8) a | 11 (31.4) a | 26 (74.2) |
Total | 18 (51.4) | 17 (48.5) | 35 (100) |
Ribah Infected | 12 (24.0) a | 4 (8.0) a | 16 (32) |
Not infected | 13 (26.0) a | 21 (42.0) b | 34 (68) |
Total | 25 (50) | 25 (50) | 50 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gano, A.I.; Ramanoon, S.Z.; Abdul Aziz, N.-A.; Mazlan, M.; Shaari, M.R.; Aliyu, A.; Bello, M.B.; Imam, M.U.; Hamzah, H. Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria. Pathogens 2024, 13, 247. https://doi.org/10.3390/pathogens13030247
Gano AI, Ramanoon SZ, Abdul Aziz N-A, Mazlan M, Shaari MR, Aliyu A, Bello MB, Imam MU, Hamzah H. Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria. Pathogens. 2024; 13(3):247. https://doi.org/10.3390/pathogens13030247
Chicago/Turabian StyleGano, Adamu Isah, Siti Zubaidah Ramanoon, Nor-Azlina Abdul Aziz, Mazlina Mazlan, Mohd Rosly Shaari, Abdullahi Aliyu, Muhammad Bashir Bello, Mustapha Umar Imam, and Hazilawati Hamzah. 2024. "Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria" Pathogens 13, no. 3: 247. https://doi.org/10.3390/pathogens13030247
APA StyleGano, A. I., Ramanoon, S. Z., Abdul Aziz, N. -A., Mazlan, M., Shaari, M. R., Aliyu, A., Bello, M. B., Imam, M. U., & Hamzah, H. (2024). Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria. Pathogens, 13(3), 247. https://doi.org/10.3390/pathogens13030247