Echinococcus multilocularis and Other Intestinal Parasites of the Red Fox (Vulpes vulpes) from the Pomerania Region, Northern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Characteristics of the Sampling Regions
2.1.1. Western Pomerania
2.1.2. Eastern Pomerania
2.2. Animals
2.3. Parasitological Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Contesse, P.; Hegglin, D.; Gloor, S.; Bontadina, F.; Deplazes, P. The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm. Biol. 2004, 69, 81–95. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. Big city life: Carnivores in urban environments. J. Zool. 2012, 287, 1–23. [Google Scholar] [CrossRef]
- Stepkovitch, B.; Martin, J.M.; Dickman, C.R.; Welbergen, J.A. Urban lifestyle supports larger red foxes in Australia: An investigation into the morphology of an invasive predator. J. Zool. 2019, 309, 287–294. [Google Scholar] [CrossRef]
- Hegglin, D.; Bontadina, F.; Contesse, P.; Gloor, S.; Deplazes, P. Plasticity of predation behaviour as a putative driving force for parasite life-cycle dynamics: The case of urban foxes and Echinococcus multilocularis tapeworm. Funct. Ecol. 2007, 21, 552–560. [Google Scholar] [CrossRef]
- Romig, T.; Bilger, B.; Dinkel, A.; Merli, M.; Mackenstedt, U. Echinococcus multilocularis in animal hosts: New data from western Europe. Helminthologia 1999, 36, 185–191. [Google Scholar]
- Hofer, S.; Gloor, S.; Müller, U.; Mathis, A.; Hegglin, D.; Deplazes, P. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 2000, 2, 135–142. [Google Scholar] [CrossRef]
- Fischer, C.; Reperant, L.A.; Weber, J.M.; Hegglin, D.; Deplazes, P. Echinococcus multilocularis infections of rural, residential and urban foxes (Vulpes vulpes) in the canton of Geneva, Switzerland. Parasite 2005, 12, 339–346. [Google Scholar] [CrossRef]
- Goszczyński, J. Fox. Nature and Hunting Monograph; Oficyna wydawnicza “Oikos”: Warszawa, Poland, 1995. (In Polish) [Google Scholar]
- Panek, M.; Budny, M. The Situation of Game Animals in Poland—Monitoring Results, 2022; Stacja Badawcza PZŁ: Czempiń, Poland, 2022. (In Polish) [Google Scholar]
- The Regulation of the Minister Agriculture and Rural Development of 17 December 2013 of Protective Vaccination of Free Living Foxes Against Rabies (Journal Laws, Item 1737). Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/przeprowadzanie-ochronnych-szczepien-lisow-wolno-zyjacych-przeciwko-18054836 (accessed on 29 May 2024).
- ACT of 15 January 2015 on the Protection of Animals Used for Scientific or Educational Purposes (Journal Laws of 2023, Item 465). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000266/U/D20150266Lj.pdf (accessed on 10 May 2024).
- Eckert, J. Predictive values and quality control of techniques for the diagnosis of Echinococcus multilocularis in definitive hosts. Acta Trop. 2003, 85, 157–163. [Google Scholar] [CrossRef]
- Khalil, L.F.; Jones, A.; Bray, R.A. Keys to the Cestode Parasites of Vertebrates; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Yamaguti, S. Systema Helminthum, The Nematodes of Vertebrates, Vol 3; Interscience: New York, NY, USA, 1961. [Google Scholar]
- Bray, R.A.; Gibson, D.I.; Jones, A. Keys to the Trematoda, Vol 1; CAB International Publishing: Oxfordshire, UK; The Natural History Museum: Oxfordshire, UK, 2008. [Google Scholar]
- Anderson, R.C.; Chabaud, A.G.; Willmott, S. Keys to the Nematode Parasites of Vertebrates: Archival Volume (Nos. 1–10); CAB International Publishing: Oxfordshire, UK; The Natural History Museum: Oxfordshire, UK, 2009. [Google Scholar]
- Agresti, A.; Coull, B.A. Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar] [CrossRef]
- Oksanen, A.; Siles-Lucas, M.; Karamon, J.; Possenti, A.; Conraths, F.J.; Romig, T.; Wysocki, P.; Mannocci, A.; Mipatrini, D.; La Torre, G.; et al. The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: A systematic review and meta-analysis. Parasites Vectors 2016, 9, 1–23. [Google Scholar] [CrossRef]
- Karamon, J.; Kochanowski, M.; Sroka, J.; Cencek, T.; Rozycki, M.; Chmurzynska, E.; Bilska-Zając, E. The prevalence of Echinococcus multilocularis in red foxes in Poland-current results (2009–2013). Parasitol. Res. 2014, 113, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Walton, Z.; Samelius, G.; Odden, M.; Willebrand, T. Long-distance dispersal in red foxes Vulpes vulpes revealed by GPS tracking. Eur. J. Wildl. Res. 2018, 64, 64. [Google Scholar] [CrossRef]
- Staubach, C.; Hoffmann, L.; Schmid, V.J.; Ziller, M.; Tackmann, K.; Conraths, F.J. Bayesian spacetime analysis of Echinococcus multilocularis—Infections in foxes. Vet. Parasitol. 2011, 179, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Denzin, N.; Schliephake, A.; Froehlich, A.; Ziller, M.; Conraths, F.J. On the move? Echinococcus multilocularis in red foxes of Saxony–Anhalt (Germany). Transbound. Emerg. Dis. 2014, 61, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Kośka, K.; Sojka, F.; Sadowski, J. Density and distribution of the common fox Vulpes vulpes and the volume of harvest. Stud. I Mater. CEPL W Rogowie 2013, 36, 296–301. (In Polish) [Google Scholar]
- Korpysa-Dzirba, W.; Różycki, M.; Bilska-Zając, E.; Karamon, J.; Sroka, J.; Bełcik, A.; Wasiak, M.; Cencek, T. Alaria alata in Terms of Risks to Consumers’ Health. Foods 2021, 10, 1614. [Google Scholar] [CrossRef]
- Bilska-Zajac, E.; Marucci, G.; Piróg-Komorowska, A.; Cichocka, M.; Rózycki, M.; Karamon, J.; Sroka, J.; Bełcik, A.; Mizak, I.; Cencek, T. Occurrence of Alaria alata in wild boars (Sus scrofa) in Poland and detection of genetic variability between isolates. Parasitol. Res. 2021, 120, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Miterpáková, M.; Hurníková, Z.; Antolová, D.; Dubinský, P. Endoparasites of red fox (Vulpes vulpes) in the Slovak Republic with the emphasis on zoonotic species Echinococcus multilocularis and Trichinella spp. Helminthologia 2009, 46, 73–79. [Google Scholar] [CrossRef]
- Fiocchi, A.; Gustinelli, A.; Gelmini, L.; Rugna, G.; Renzi, M.; Fontana, M.C.; Poglayen, G. Helminth parasites of the red fox Vulpes vulpes (L. 1758) and the wlf Canis lupus italicus Altobello, 1921 in Emilia-Romagna, Italy. Ital. J. Zool. 2016, 83, 503–513. [Google Scholar] [CrossRef]
- Miljević, M.; Čabrilo, O.B.; Simin, V.; Čabrilo, B.; Miljević, J.B.; Lalošević, D. Significance of the red fox as a natural reservoir of intestinal zoonoses in Vojvodina, Serbia. Acta Vet. Hung. 2019, 67, 561–571. [Google Scholar] [CrossRef]
- Bruţinskaitė-Schmidhalter, R.; Šarkūnas, M.; Malakauskas, A.; Mathis, A.; Torgerson, P.R.; Deplazes, P. Helminths of red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in Lithuania. Parasitology 2012, 139, 120–127. [Google Scholar] [CrossRef]
- Tylkowska, A.; Pilarczyk, B.; Pilarczyk, R.; Zyśko, M.; Tomza-Marciniak, A. The presence of Alaria alata fluke in the red fox (Vulpes vulpes) in the north-western Poland. Jpn. J. Vet. Res. 2018, 66, 203–208. [Google Scholar]
- Karamon, J.; Dąbrowska, J.; Kochanowski, J.; Samorek-Pieróg, M.; Sroka, J.; Różycki, M.; Bilska-Zając, E.; Zdybel, J.; Cencek, T. Prevalence of intestinal helminths of red foxes (Vulpes vulpes) in central Europe (Poland): A significant zoonotic threat. Parasites Vectors 2018, 11, 436. [Google Scholar] [CrossRef]
- Karamon, J.; Sroka, J.; Dąbrowska, J.; Bilska-Zając, E.; Skrzypek, K.; Różycki, M.; Zdybel, J.; Cencek, T. Distribution of Parasitic Helminths in the Small Intestine of the Red Fox (Vulpes vulpes). Pathogens 2020, 9, 477. [Google Scholar] [CrossRef]
- Raissi, V.; Masoumi, M.T.; Ibrahim, A.; Etemadi, S.; Gesto, M.; Jalali, P.; Babaei Pouya, N.; Zareie, M.; Ehsani Amraei, F.; Raiesi, O. Spatial Analysis of Toxocara spp. Eggs in Soil as a Potential for Serious Human Infection. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101619. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Holland, C.V.; Wang, T.; Hofmann, A.; Fan, C.K.; Maizels, R.M.; Hotez, P.J.; Gasser, R.B. Human toxocariasis. Lancet Infect. Dis. 2018, 18, 14–24. [Google Scholar] [CrossRef]
- Rajkovic-Janje, R.; Marinculic, A.; Bosnic, S.; Benic, M.; Vinkovic, B.; Mihaljevic, A. Prevalence and seasonal distribution of helminth parasites in red foxes (Vulpes vulpes) from the Zagreb County (Croatia). Jagdwiss 2002, 48, 151–160. [Google Scholar] [CrossRef]
- Loos Frank, B.; Zeyhle, E. The intestinal helminths of the red fox and some other carnivores in southwest Germany. Parasitenkd 1982, 67, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Shimalov, V.V. Helminth fauna of the red fox (Vulpes vulpes Linnaeus, 1758) in southern Belarus. Parasitol Res 2003, 89, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Magi, M.; Macchioni, F.; Dell’omodarme, M.; Prati, M.C.; Calderini, P.; Gabrielli, S.; Iori, A.; Cancrini, G. Endoparasites of red fox (Vulpes vulpes) in central Italy. J. Wildl. Dis. 2009, 45, 881–885. [Google Scholar] [CrossRef]
- Smith, G.C.; Gangadharan, B.; Taylor, Z.; Laurenson, M.K.; Bradshaw, H.; Hide, G.; Hughes, J.M.; Dinkel, A.; Romig, T.; Craig, P.S. Prevalence of zoonotic important parasites in the red fox (Vulpes vulpes) in Great Britain. Vet. Parasitol. 2003, 118, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Franssen, F.; Nijsse, R.; Mulder, J.; Cremers, H.; Dam, C.; Takumi, K.; Giessen, J. Increase in number of helminth species from Dutch red foxes over a 35-year period. Parasit. Vectors 2014, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabi, M.N.S.; Chriél, M.; Jensen, T.H.; Enemark, H.L. Endoparasites of the raccoon dog (Nyctereutes procyonoides) and the red fox (Vulpes vulpes) in Denmark 2009-2012—A comparative study. Int. J. Parasitol. Parasites Wildl. 2013, 2, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Reperant, L.; Hegglin, D.; Fischer, C.; Kohler, L.; Weber, J.; Deplazes, P. Influence of urbanization on the epidemiology of intestinal helminths of the red fox (Vulpes vulpes) in Geneva, Switzerland. Parasitol. Res. 2007, 101, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Vergles Rataj, A.; Posedi, J.; Zele, D.; Vengušt, G. Intestinal parasites of the red fox (Vulpes vulpes) in Slovenia. Acta Vet. Hung. 2013, 61, 454–462. [Google Scholar] [CrossRef]
- Wnukowska, N.; Bitkowska, E.; Dzbeński, T.H. Serological verification of clinical diagnoses of toxocariasis in 13,714 people examined in the years 1995–2002. In Proceedings of the Conference “Parasitoses—Clinical problems”, Białystok, Poland, 6 June 2003. (In Polish). [Google Scholar]
- Żarnowska, H.; Borecka, A.; Gawor, J.; Marczyńska, M.; Dobosz, S.; Basiak, W. A serological and epidemiological evaluation of risk factors for toxocariasis in children in central Poland. J. Helminth. 2008, 82, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Cvetkova, T.; Stoyanova, K.; Paunov, T. High seroprevalence for toxocariasis among minority groups of Varna region, Bulgaria. J. IMAB 2021, 27, 3858–3862. [Google Scholar] [CrossRef]
- Deutz, A.; Fuchs, K.; Auer, H.; Kerbl, U.; Aspöck, H.; Köfer, J. Toxocara-infestations in Austria: A study on the risk of infection of farmers, slaughterhouse staff, hunters and veterinarians. Parasitol. Res. 2005, 97, 390–394. [Google Scholar] [CrossRef]
- Feckováa, M.; Antolováa, D.; Zalesny, G.; Halánovác, M.; Strkolcová, G.; Goldová, M.; Weissová, T.; Lukác, B.; Nováková, M. Seroepidemiology of human toxocariasis in selected population groups in Slovakia: A cross-sectional study. J. Infect. Public Health 2020, 13, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Melewska, K.; Mania, A.; Figlerowicz, M.; Kemnitz, P.; Służewski, W.; Michalak, M. The influence of age on a clinical presentation of Toxocara spp. infection in children. Ann. Agric. Environ. Med. 2012, 19, 233–236. [Google Scholar]
- Sviben, M.; Čavlek, T.V.; Missoni, E.M.; Galinović, G.M. Seroprevalence of Toxocara canis infection among asymptomatic children with eosinophilia in Croatia. J. Helminthol. 2009, 83, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Jankovská, I.; Brožová, A.; Matějů, Z.; Langrová, I.; Lukešová, D.; Sloup, V. Parasites with possible zoonotic potential in the small intestines of red foxes (Vulpes vulpes) from Northwest Bohemia (CzR). Helminthologia 2016, 53, 290–293. [Google Scholar] [CrossRef]
- Bagrade, G.; Deksne, G.; Ozoliņa, Z.; Howlett, S.J.; Interisano, M.; Casulli, A.; Pozio, E. Echinococcus multilocularis in foxes and raccoon dogs: An increasing concern for Baltic countries. Parasites Vectors 2016, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Karamon, J.; Samorek-Pieróg, M.; Moskwa, B.; Różycki, M.; Bilska-Zając, E.; Zdybel, J. Intestinal helminths of racoon dogs (Nyctereutes procyonoides) and red foxes (Vulpes vulpes) from the Augustów Primeval Forest (north-eastern Poland). J. Vet. Res. 2016, 60, 273–277. [Google Scholar] [CrossRef]
- Tylkowska, A.; Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R. The prevalence of intestinal nematodes among red foxes (Vulpes vulpes) in north-western Poland. Acta Vet. Scand. 2021, 63, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schnieder, T.; Laabs, E.M.; Welz, C. Larval development of Toxocara canis in dogs. Vet. Parasitol. 2011, 10, 193–206. [Google Scholar] [CrossRef]
n | % | 95% CI | |
---|---|---|---|
Echinococcus multilocularis | 18 | 10.9 | 6.6–16.7 |
Toxocara canis | 47 | 28.5 | 22.1–35.8 |
Toxascaris leonina | 19 | 11.5 | 7.4–17.4 |
Alaria alata | 29 | 17.6 | 12.5–24.2 |
Taenia spp. | 26 | 15.8 | 10.9–22.1 |
Uncinaria stenocephala | 39 | 23.6 | 17.8–30.7 |
Mesocestoides spp. | 66 | 40.0 | 32.8–47.6 |
Dipylidium caninum | 9 | 5.5 | 2.8–10.2 |
Total | 102 | 61.8 | 54.2–68.9 |
Parasite | Area | Number of Foxes Infected/Tested | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | GM | Median | Range | Mann–Whitney U-Test Value | |||||
Echinococcus multilocularis | WP | 2/68 | 2.9 (0.2–10.7) | χ2 = 7.6; p = 0.006 | 11 | 11 | 11 | 8–14 | U = 9.0 Z = −0.91 p = 0.39 |
EP | 16/97 | 16.5 (10.3–25.2) | 21 | 16 | 17 | 5–50 | |||
Toxocara canis | WP | 20/68 | 29.4 (19.9–41.2) | χ2 = 0.05; p = 0.82 | 8 | 8 | 8 | 2–14 | U = 207.5 Z = −1.35 p = 0.18 |
EP | 27/97 | 27.8 (19.9–37.5) | 10 | 10 | 9 | 6–20 | |||
Toxascaris leonina | WP | 5/68 | 7.4 (2.8–16.5) | χ2 = 2.0; p = 0.16 | 8 | 7 | 8 | 3–12 | U = 27.0 Z = −0.69 p = 0.50 |
EP | 14/97 | 14.4 (8.7–22.9) | 10 | 9 | 10 | 2–16 | |||
Alaria alata | WP | 9/68 | 13.2 (6.9–23.5) | χ2 = 1.5; p = 0.22 | 22 | 17 | 19 | 6–45 | U = 72.5 Z = 0.80 p = 0.42 |
EP | 20/97 | 20.6 (13.7–29.8) | 18 | 14 | 13 | 5–70 | |||
Taenia spp. | WP | 11/68 | 16.2 (9.1–26.9) | χ2 = 0.02 p = 0.9 | 3 | 2 | 2 | 1–6 | U = 55.00 Z = −1.44 p = 0.15 |
EP | 15/97 | 15.5 (9.5–24.1) | 5 | 4 | 4 | 1–15 | |||
Uncinaria stenocephal | WP | 13/68 | 19.1 (11.4–30.2) | χ2 = 1.3; p = 0.25 | 8 | 5 | 6 | 1–20 | U = 368.5 Z = 0.02 p = 0.99 |
EP | 26/97 | 26.8 (19.0–36.4) | 7 | 6 | 6 | 1–18 | |||
Mesocestoides spp. | WP | 22/68 | 32.4 (22.4–44.2) | χ2 = 2.8; p = 0.09 | 16 | 11 | 16 | 1–51 | U = 368.50 Z = 1.58 p = 0.11 |
EP | 44/97 | 45.4 (35.8–55.3) | 12 | 6 | 9 | 1–42 | |||
Dipylidium caninum | WP | 5/68 | 7.4 (2.8–16.5) | χ2 = 0.8; p = 0.37 | 3 | 3 | 4 | 2–4 | U = 6.5 Z = −0.73 p = 0.41 |
EP | 4/97 | 4.1 (1.3–10.5) | 5 | 4 | 5 | 1–10 | |||
Total | WP | 37/68 | 54.4 (42.7–65.7) | χ2 = 2.7; p = 0.10 | 25 | 19 | 17 | 3–72 | U = 1063.0 Z = −0.97 p = 0.33 |
EP | 65/97 | 67.0 (57.1–75.6) | 30 | 20 | 25 | 1–146 |
Parasite | Age | Number of Foxes Infected/Tested | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | GM | Median | Range | Mann–Whitney U-Test Value | |||||
Echinococcus multilocularis | Young | 5/74 | 6.8 (2.6–15.2) | χ2 = 2.4; p = 0.12 | 8 | 8 | 9 | 5–11 | U = 7.0 Z = −2.46 p = 0.01 |
Adult | 13/91 | 14.3 (8.4–23.1) | 24 | 20 | 17 | 8–50 | |||
Toxocara canis | Young | 30/74 | 40.5 (30.1–51.9) | χ2 = 9.6; p = 0.002 | 10 | 9 | 9 | 2–20 | U = 230.5 Z = 0.54 p = 0.59 |
Adult | 17/91 | 18.7 (11.9–28.0) | 9 | 9 | 9 | 6–12 | |||
Toxascaris leonina | Young | 10/74 | 13.5 (7.3–23.3) | χ2 = 0.5; p = 0.47 | 8 | 7 | 10 | 2–14 | U = 30.0 Z = −1.18 p = 0.24 |
Adult | 9/91 | 9.9 (5.1–17.9) | 11 | 10 | 12 | 6–16 | |||
Alaria alata | Young | 8/74 | 10.8 (5.4–20.2) | χ2 = 4.2; p = 0.04 | 10 | 9 | 10 | 5–19 | U = 34.0 Z = −2.42 p = 0.01 |
Adult | 21/91 | 23.1 (15.6–32.8) | 23 | 18 | 15 | 6–70 | |||
Taenia spp. | Young | 10/74 | 13.5 (7.3–23.3) | χ2 = 0.5; p = 0.48 | 5 | 4 | 4 | 1–15 | U = 70.0 Z = 0.51 p = 0.61 |
Adult | 16/91 | 17.6 (11.0–26.8) | 4 | 3 | 2 | 1–9 | |||
Uncinaria stenocephal | Young | 14/74 | 18.9 (11.5–29.4) | χ2 = 1.7; p = 0.20 | 8 | 6 | 6 | 1–20 | U = 173.0 Z = 0.04 p = 0.96 |
Adult | 25/91 | 27.5 (19.3–37.5) | 7 | 6 | 4 | 1–20 | |||
Mesocestoides spp. | Young | 20/74 | 27.0 (18.2–38.2) | χ2 = 9.4; p = 0.002 | 16 | 11 | 15 | 1–51 | U = 363.0 Z = 1.36 p = 0.17 |
Adult | 46/91 | 50.6 (40.5–60.6) | 12 | 6 | 12 | 1–42 | |||
Dipylidium caninum | Young | 3/74 | 4.0 (0.9–11.7) | χ2 = 0.5; p = 0.48 | 6 | 5 | 4 | 4–10 | U = 4.0 Z = 1.16 p = 0.26 |
Adult | 6/91 | 6.6 (2.8–13.9) | 3 | 3 | 3 | 1–5 | |||
Total | Young | 45/74 | 60.8 (49.4–71.2) | χ2 = 0.06; p = 0.81 | 22 | 18 | 20 | 3–72 | U = 976.0 Z = −2.06 p = 0.04 |
Adult | 57/91 | 62.6 (52.4–71.9) | 33 | 22 | 28 | 1–146 |
Parasite | Sex | Number of Foxes Infected/Tested | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | GM | Median | Range | Mann–Whitney U-Test Value | |||||
Echinococcus multilocularis | ♂ | 9/82 | 11.0 (5.7–19.8) | χ2 = 0.0; p = 0.98 | 19 | 17 | 16 | 9–45 | U = 34.5 Z = 0.49 p = 0.60 |
♀ | 9/83 | 10.8 (5.6–19.6) | 20 | 15 | 10 | 5–50 | |||
Toxocara canis | ♂ | 23/82 | 28.1 (19.4–38.6) | χ2 = 0.02; p = 0.90 | 9 | 8 | 8 | 2–20 | U = 226.5 Z = −1.05 p = 0.30 |
♀ | 24/83 | 28.9 (20.2–39.5) | 10 | 9 | 9 | 3–20 | |||
Toxascaris leonina | ♂ | 8/82 | 9.8 (4.8–18.3) | χ2 = 0.5; p = 0.48 | 9 | 8 | 9 | 3–14 | U = 40.5 Z = −0.25 p = 0.78 |
♀ | 11/83 | 13.3 (7.4–22.4) | 10 | 9 | 10 | 2–16 | |||
Alaria alata | ♂ | 15/82 | 18.3 (11.3–28.1) | χ2 = 0.06; p = 0.81 | 18 | 15 | 14 | 5–45 | U = 100.0 Z = 0.20 p = 0.84 |
♀ | 14/83 | 16.9 (10.2–26.5) | 21 | 15 | 13 | 6–70 | |||
Taenia spp. | ♂ | 12/82 | 14.6 (8.4–24.0) | χ2 = 0.2; p = 0.69 | 4 | 3 | 2 | 1–8 | U = 76.0 Z = −0.40 p = 0.69 |
♀ | 14/83 | 16.9 (10.2–26.5) | 5 | 3 | 4 | 1–15 | |||
Uncinaria stenocephal | ♂ | 23/82 | 28.1 (19.4–38.6) | χ2 = 1.6; p = 0.18 | 7 | 6 | 6 | 2–20 | U = 183.5 Z = 0.00 p = 1.00 |
♀ | 16/83 | 19.3 12.1–29.2) | 8 | 5 | 6 | 1–20 | |||
Mesocestoides spp. | ♂ | 36/82 | 43.9 (33.7–54.7) | χ2 = 1.0; p = 0.31 | 13 | 7 | 13 | 1–51 | U = 512.0 Z = −0.32 p = 0.72 |
♀ | 30/83 | 36.1 (26.6–46.9) | 14 | 8 | 11 | 1–42 | |||
Dipylidium caninum | ♂ | 6/82 | 7.3 (3.1–15.4) | χ2 = 1.1; p = 0.30 | 4 | 3 | 4 | 1–10 | U = 7.5 Z = 0.26 p = 0.71 |
♀ | 3/83 | 3.6 (0.8–10.5) | 3 | 3 | 4 | 2–4 | |||
Total | ♂ | 56/82 | 68.3 (57.6–77.4) | χ2 = 2.9; p = 0.09 | 25 | 18 | 23 | 1–72 | U = 1151.5 Z = −0.91 p = 0.36 |
♀ | 46/83 | 55.4 (44.7–65.6) | 31 | 22 | 25 | 1–146 |
Number of Parasite Species | WP | EP | Total | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
0 | 31 | 45.6 | 32 | 33.0 | 63 | 38.2 |
1 | 12 | 17.6 | 16 | 16.5 | 28 | 17.0 |
2 | 11 | 16.2 | 20 | 20.6 | 31 | 18.8 |
3 | 3 | 4.4 | 12 | 12.4 | 15 | 9.1 |
4 | 8 | 11.8 | 11 | 11.3 | 19 | 11.5 |
5 | 1 | 1.5 | 6 | 6.2 | 7 | 4.2 |
6 | 2 | 2.9 | 0 | 0.0 | 2 | 1.2 |
Total | 68 | 97 | 165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Bąkowska, M.; Rząd, I.; Stapf, A.; Felska-Błaszczyk, L.; Tylkowska, A.; Seremak, B. Echinococcus multilocularis and Other Intestinal Parasites of the Red Fox (Vulpes vulpes) from the Pomerania Region, Northern Poland. Pathogens 2024, 13, 490. https://doi.org/10.3390/pathogens13060490
Pilarczyk B, Tomza-Marciniak A, Pilarczyk R, Bąkowska M, Rząd I, Stapf A, Felska-Błaszczyk L, Tylkowska A, Seremak B. Echinococcus multilocularis and Other Intestinal Parasites of the Red Fox (Vulpes vulpes) from the Pomerania Region, Northern Poland. Pathogens. 2024; 13(6):490. https://doi.org/10.3390/pathogens13060490
Chicago/Turabian StylePilarczyk, Bogumiła, Agnieszka Tomza-Marciniak, Renata Pilarczyk, Małgorzata Bąkowska, Izabella Rząd, Agata Stapf, Lidia Felska-Błaszczyk, Agnieszka Tylkowska, and Beata Seremak. 2024. "Echinococcus multilocularis and Other Intestinal Parasites of the Red Fox (Vulpes vulpes) from the Pomerania Region, Northern Poland" Pathogens 13, no. 6: 490. https://doi.org/10.3390/pathogens13060490
APA StylePilarczyk, B., Tomza-Marciniak, A., Pilarczyk, R., Bąkowska, M., Rząd, I., Stapf, A., Felska-Błaszczyk, L., Tylkowska, A., & Seremak, B. (2024). Echinococcus multilocularis and Other Intestinal Parasites of the Red Fox (Vulpes vulpes) from the Pomerania Region, Northern Poland. Pathogens, 13(6), 490. https://doi.org/10.3390/pathogens13060490