Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms and Cows
2.2. Sample Collection
2.3. Isolation and Identification of Bacterial Pathogens
2.4. MIC Determination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PVD | Purulent vaginal discharge |
CFU | Colony-forming units |
MALDI-TOF | Matrix-assisted laser desorption ionization -time of flight |
TMR | Total mixed ration |
DM | Dry matter |
CLSI | Clinical and Laboratory Standards Institute |
MIC | Minimum inhibitory concentration |
T. | Trueperella |
E. | Escherichia |
Appendix A
References | Antimicrobial Agent(s) | MIC50 | MIC90 |
---|---|---|---|
Trinh et al. [20] (n = 6) | Chlortetracycline | 0.12 | 8 |
Clindamycin | ≤0.06 | 64 | |
Erythromycin | ≤0.06 | 64 | |
Oxytetracycline | 0.25 | 8 | |
Tetracycline | 0.25 | 16 | |
Tylosin | ≤0.06 | 64 | |
Liu et al. [22] (n = 23) | Amikacin | 4 | ≥64 |
Amoxicillin | 1 | 4 | |
Azithromycin | 0.25 | 0.25 | |
Bacitracin zinc | ≥32 | ≥32 | |
Cefazolin | 1 | 16 | |
Ceftiofur | 8 | 16 | |
Ciprofloxacin | 2 | 2 | |
Clindamycin | 0.25 | 32 | |
Doxycycline | 0.5 | 16 | |
Enrofloxacin | 0.25 | 1 | |
Erythromycin | 0.125 | 2 | |
Florfenicol | 1 | 4 | |
Gatifloxacin | 0.5 | 0.5 | |
Gentamicin | 0.5 | 8 | |
Ofloxacin | 2 | 2 | |
Oxacillin | 1 | 4 | |
Oxytetracycline | 8 | 32 | |
Penicillin G | 2 | 4 | |
Streptomycin | ≥64 | ≥64 | |
Sulfadiazine | ≥128 | ≥128 | |
Sulfamethoxydiazine | ≥128 | ≥128 | |
Tetracycline | 1 | 32 | |
Tilmicosin | 0.25 | 0.25 | |
de Boer et al. [24] (n = 9) | Ampicillin | 0.06 | 0.06 |
Ceftiofur | 1 | 2 | |
Cephapirin | 0.25 | 0.25 | |
Cefuroxime | 0.06 | 0.12 | |
Clindamycin | 0.06 | 0.12 | |
Cloxacillin | 0.25 | 0.5 | |
Enrofloxacin | 1 | 1 | |
Oxytetracycline | 0.5 | 1 | |
Ticarcillin/ Clavulanic acid | 0.06 | 0.06 | |
Zhang et al. [23] (n = 5) | Chlortetracycline | 1 | 16 |
Doxycyclin | 0.5 | 16 | |
Metacycline | 0.5 | 8 | |
Oxytetracycline | 8 | 32 | |
Tetracycline | 1 | 32 |
References | Antimicrobial Agent(s) | MIC50 | MIC90 |
---|---|---|---|
Cohen et al. [19] (n = 14) | Amoxycillin | 0.05 | 0.10 |
Apramycin | 3.12 | 6.15 | |
Cefotaxime | 3.12 | 6.25 | |
Cephalothin | 0.10 | 0.10 | |
Chloramphenicol | 3.12 | 12.50 | |
Enrofloxacin | 0.39 | 1.56 | |
Gentamicin | 3.12 | 3.12 | |
Lincomycin | 0.025 | 0.10 | |
Norfloxacin | 3.12 | 12.50 | |
Oxytetracycline | 50 | >100 | |
Penicillin G | 0.05 | 0.10 | |
Streptomycin | 3.12 | 50 | |
Sulfadiazine/ Trimethoprim | >10 | >10 | |
Tylosin | 0.05 | 0.10 | |
Sheldon et al. [21] (n = 6) | Ceftiofur | <0.06 | 0.125 |
Cefquinome | <0.05 | 0.125 | |
Cephapirin | <0.06 | <0.06 | |
Cephapirin/ Mecillinam | <0.06 | 0.06 | |
Enrofloxacin | 1 | 1 | |
Oxytetracycline | 16 | 32 |
References
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Szenci, O.; Szelényi, Z.; Lénárt, L.; Buják, D.; Kovács, L.; Fruzsina Kézér, L.; Han, B.; Horváth, A. Importance of monitoring the peripartal period to increase reproductive performance in dairy cattle. Vet. Stanica 2018, 49, 297–307. [Google Scholar]
- Williams, E.J.; Fischer, D.P.; Pfeiffer, D.U.; England, G.C.; Noakes, D.E.; Dobson, H.; Sheldon, I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 2005, 63, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Földi, J.; Kulcsár, M.; Pécsi, A.; Huyghe, B.; de Sa, C.; Lohuis, J.A.; Cox, P.; Huszenicza, G. Bacterial complications of postpartum uterine involution in cattle. Anim. Reprod. Sci. 2006, 96, 265–281. [Google Scholar] [CrossRef]
- Noakes, D. The puerperium. In Veterinary Reproduction and Obstetrics, 9th ed.; Noakes, D.E., Parkinson, T.J., England, G.C.W., Eds.; Saunders: Helena, MT, USA, 2009; pp. 194–205. [Google Scholar]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Definitions and diagnosis of postpartum endometritis in dairy cows. J. Dairy Sci. 2010, 93, 5225–5233. [Google Scholar] [CrossRef]
- Esslemont, R.J. Measuring dairy herd fertility. Vet. Rec. 1992, 131, 209–212. [Google Scholar] [CrossRef]
- de Bois, C.H.W. Uterine cultures and their interpretation. In Current Therapy in Theriogenology, 2nd ed.; Morrow, D.A., Ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1986; pp. 422–424. [Google Scholar]
- Sibbald, B. Farm-grown superbugs: While the world acts, Canada dawdles. CMAJ 2012, 184, 1553. [Google Scholar] [CrossRef]
- Stein, R.A.; Katz, D.E. Escherichia coli, cattle and the propagation of disease. FEMS Microbiol. Lett. 2017, 364, fnx050. [Google Scholar] [CrossRef]
- Carneiro, L.C.; Cronin, J.G.; Sheldon, I.M. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod. Biol. 2016, 16, 1–7. [Google Scholar] [CrossRef]
- Gilbert, R.O.; Santos, N.R. Dynamics of postpartum endometrial cytology and bacteriology and their relationship to fertility in dairy cows. Theriogenology 2016, 85, 1367–1374. [Google Scholar] [CrossRef]
- Potter, T.J.; Guitian, J.; Fishwick, J.; Gordon, P.J.; Sheldon, I.M. Risk factors for clinical endometritis in postpartum dairy cattle. Theriogenology 2010, 74, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, M.L.; Machado, V.S.; Oikonomou, G.; Gilbert, R.O.; Bicalho, R.C. Association between virulence factors of Escherichia coli, Fusobacterium necrophorum, and Arcanobacterium pyogenes and uterine diseases of dairy cows. Vet. Microbiol. 2012, 157, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.M.; Bicalho, R.C. Diversity and succession of bacterial communities in the uterine fluid of postpartum metritic, endometritic and healthy dairy cows. PLoS ONE 2012, 7, e53048. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.; Suthar, V.; Plöntzke, J.; Heuwieser, W. Relationship between bacteriological findings in the second and fourth weeks postpartum and uterine infection in dairy cows considering bacteriological results. J. Dairy Sci. 2012, 95, 7105–7114. [Google Scholar] [CrossRef]
- Bicalho, M.; Santin, T.; Rodrigues, M.; Marques, C.; Lima, S.; Bicalho, R. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 2017, 100, 3043–3058. [Google Scholar] [CrossRef]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef]
- Cohen, R.O.; Bernstein, M.; Zivz, G. Isolation and antimicrobial susceptibility of Actinomyces pyogenes recovered from the uterus of dairy cows with retained fetal membranes and post parturient endometritis. Theriogenology 1995, 43, 1389–1397. [Google Scholar] [CrossRef]
- Trinh, H.T.; Billington, S.J.; Field, A.C.; Songer, J.G.; Jost, B.H. Susceptibility of Arcanobacterium pyogenes from different sources to tetracycline, macrolide and lincosamide antimicrobial agents. Vet. Microbiol. 2002, 85, 353–359. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Bushnell, M.; Montgomery, J.; Rycroft, A.N. Minimum inhibitory concentrations of some antimicrobial drugs against bacteria causing uterine infections in cattle. Vet. Rec. 2004, 155, 383–387. [Google Scholar] [CrossRef]
- Liu, M.; Wu, C.; Liu, Y.; Zhao, J.; Yang, Y.; Shen, J. Identification, susceptibility, and detection of integron-gene cassettes of Arcanobacterium pyogenes in bovine endometritis. J. Dairy Sci. 2009, 92, 3659–3666. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, Q.; Liu, Y.; Tian, C.; Zhao, Y.; Yu, L.; Liu, M. Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution. Microb. Pathog. 2017, 105, 51–56. [Google Scholar] [CrossRef]
- de Boer, M.; Heuer, C.; Hussein, H.; McDougall, S. Minimum inhibitory concentrations of selected antimicrobials against Escherichia coli and Trueperella pyogenes of bovine uterine origin. J. Dairy Sci. 2015, 98, 4427–4438. [Google Scholar] [CrossRef] [PubMed]
- Kovács, L.; Kézér, F.L.; Szenci, O. Parturition progress, outcomes of calving and postpartum health of dairy cows underwent assisted and spontaneous calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, NJ, USA, 2020. [Google Scholar]
- EUCAST (European Committee on Antimicrobial Susceptibility Testing). Antimicrobial Wild-Type Distributions of Microorganisms; EUCAST: Växjö, Sweden, 2023; Available online: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=1&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50 (accessed on 1 December 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 17 August 2018).
- Liu, N.; Shan, Q.; Wu, X.; Xu, L.; Li, Y.; Wang, J.; Wang, X.; Zhu, Y. Phenotypic Characteristics, Antimicrobial Susceptibility and Virulence Genotype Features of Trueperella pyogenes Associated with Endometritis of Dairy Cows. Int. J. Mol. Sci. 2024, 25, 3974. [Google Scholar] [CrossRef] [PubMed]
- Messier, S.; Higgins, R.; Couture, Y.; Morin, M. Comparison of swabbing and biopsy for studying the flora of the bovine uterus. Can. Vet. J. 1984, 25, 283–288. [Google Scholar] [PubMed]
- Werckenthin, C.; Alesík, E.; Grobbel, M.; Lübke-Becker, A.; Schwarz, S.; Wieler, L.H.; Wallmann, J. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004–2006. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 412–422. [Google Scholar]
- Feßler, A.T.; Schwarz, S. Antimicrobial resistance in Corynebacterium spp., Arcanobacterium spp., and Trueperella pyogenes. Microbiol. Spectr. 2017, 5, ARBA-0021-2017. [Google Scholar] [CrossRef]
- Santos, T.M.; Caixeta, L.S.; Machado, V.S.; Rauf, A.K.; Gilbert, R.O.; Bicalho, R.C. Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Vet. Microbiol. 2010, 145, 84–89. [Google Scholar] [CrossRef]
- Pohl, A.; Lübke-Becker, A.; Heuwieser, W. Minimum inhibitory concentrations of frequently used antibiotics against Escherichia coli and Trueperella pyogenes isolated from uteri of postpartum dairy cows. J. Dairy Sci. 2018, 101, 1355–1364. [Google Scholar] [CrossRef]
- Zastempowska, E.; Lassa, H. Genotypic characterization and evaluation of an antibiotic resistance of Trueperella pyogenes (Arcanobacterium pyogenes) isolated from milk of dairy cows with clinical mastitis. Vet. Microbiol. 2012, 161, 153–158. [Google Scholar] [CrossRef]
- Jousimies-Somer, H.; Pyörälä, S.; Kanervo, A. Susceptibilities of bovine summer mastitis bacteria to antimicrobial agents. Antimicrob. Agents Chemother. 1996, 40, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Persson-Waller, K.; Pedersen, K. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals 2021, 11, 2113. [Google Scholar] [CrossRef] [PubMed]
- Appiah, M.O.; Wang, J.; Lu, W. Microflora in the reproductive tract of cattle: A review. Agriculture 2020, 10, 232. [Google Scholar] [CrossRef]
- Marchionatti, E.; Kittl, S.; Sendi, P.; Perreten, V. Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Vet. Microbiol. 2024, 294, 110102. [Google Scholar] [CrossRef]
- Moore, S.G.; Feehily, C.; Doyle, R.C.; Buckley, F.; Lonergan, P.; Cotter, P.D.; Butler, S.T. Associations between the postpartum uterine and vaginal microbiota and the subsequent development of purulent vaginal discharge vary with dairy cow breed and parity. J. Dairy Sci. 2023, 106, 8133–8151. [Google Scholar] [CrossRef]
Pathogens | Farm A (n = 67) | Farm B (n = 41) |
---|---|---|
n (%) | n (%) | |
Trueperella pyogenes | 31 (46.3) | 9 (22.0) ** |
Escherichia coli | 1 (1.5) | 11 (26.8) *** |
Prevotella spp. | 1 (1.5) | 0 |
Uterine pathogens totals | 33 (49.3) | 20 (48.8) |
Any bacteria | 26 (38.8) | 40 (97.6) *** |
Culture-positive | 59 (88.1) | 40 (97.6) |
Culture-negative | 8 (11.9) | 1 (2.4) |
Antimicrobials | <0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | >32 | MIC50 | MIC90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin | 22 | 67 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.06 | 0.06 |
Amoxicillin/Clavulanic acid | 8 | 67 | 17 | 6 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0.06 | 0.125 |
Tylosin | 0 | 69 | 6 | 14 | 0 | 0 | 3 | 8 | 0 | 0 | 0 | 0 | <0.06 | 0.25 |
Ceftiofur | 50 | 25 | 19 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.125 |
Cefquinome | 0 | 3 | 14 | 33 | 28 | 8 | 6 | 0 | 3 | 6 | 0 | 0 | 0.25 | 2 |
Cephalexin | 0 | 0 | 0 | 0 | 0 | 11 | 78 | 11 | 0 | 0 | 0 | 0 | 2 | 2 |
Tulathromycin | 0 | 0 | 0 | 0 | 0 | 17 | 36 | 39 | 6 | 0 | 3 | 0 | 2 | 4 |
Lincomycin | 0 | 0 | 6 | 25 | 36 | 6 | 11 | 3 | 6 | 6 | 0 | 3 | 0.5 | 8 |
Florfenicol | 0 | 0 | 0 | 0 | 0 | 11 | 56 | 19 | 3 | 11 | 0 | 0 | 2 | 8 |
Doxycycline | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 25 | 47 | 19 | 0 | 0 | 8 | 16 |
Enrofloxacin | 0 | 0 | 0 | 0 | 3 | 17 | 14 | 14 | 11 | 39 | 3 | 0 | 8 | 16 |
Oxytetracycline | 0 | 0 | 0 | 8 | 0 | 3 | 0 | 3 | 44 | 14 | 28 | 0 | 8 | 32 |
Gentamicin | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 47 | 11 | 28 | 3 | 8 | 32 |
Sulfamethoxazole/Trimethoprim | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 94 | >32 | >32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szenci, O.; Jerzsele, Á.; Somogyi, Z.; Kerek, Á.; Répási, A.; Lénárt, L.; Makrai, L. Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis. Pathogens 2025, 14, 405. https://doi.org/10.3390/pathogens14050405
Szenci O, Jerzsele Á, Somogyi Z, Kerek Á, Répási A, Lénárt L, Makrai L. Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis. Pathogens. 2025; 14(5):405. https://doi.org/10.3390/pathogens14050405
Chicago/Turabian StyleSzenci, Ottó, Ákos Jerzsele, Zoltán Somogyi, Ádám Kerek, Attila Répási, Lea Lénárt, and László Makrai. 2025. "Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis" Pathogens 14, no. 5: 405. https://doi.org/10.3390/pathogens14050405
APA StyleSzenci, O., Jerzsele, Á., Somogyi, Z., Kerek, Á., Répási, A., Lénárt, L., & Makrai, L. (2025). Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis. Pathogens, 14(5), 405. https://doi.org/10.3390/pathogens14050405