Green Antimicrobials: Innovative Applications of Hops Extracts as Biocontrol Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Compounds and Biomasses
2.2. Microbial Cultures and Growth Conditions
2.3. Preparation of Antimicrobial Solutions
2.4. Minimum Inhibitory Concentration (MIC)
2.5. Minimum Bactericidal Concentration (MBC)
2.6. Antifungal Activity Determination
3. Results
3.1. Minimum Inhibitory Concentration (MIC) of Natural Compounds
3.2. Minimum Inhibitory Concentration (MIC) of Hop Extracts
3.3. Minimum Bactericidal Concentration (MBC) of Natural Compounds
3.4. Minimum Bactericidal Concentration (MBC) of Hop Extracts
3.5. Antifungal Effect of Both Natural Compounds and Hop Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CECT | Colección española de cultivos tipo (Spanish type culture collection) |
DSMZ | Deutsche sammlung von mikroorganismen und zellkulturen (German collection of microorganisms and cell cultures) |
GAE | Gallic acid equivalents |
MBC | Minimum Bactericidal Concentration |
MBC99 | Lowest concentration of the antimicrobial compound required to kill 99% of the viable cells |
MBC99.9 | Lowest concentration of the antimicrobial compound required to kill 99.9% of the viable cells |
MBC99.99 | Lowest concentration of the antimicrobial compound required to kill 99.99% of the viable cells |
MIC | Minimum Inhibitory Concentration |
MIC50 | Lowest concentration of antimicrobial compound required to inhibit the growth of the 50% of the viable cells |
MIC90 | Lowest concentration of antimicrobial compound required to inhibit the growth of the 90% of the viable cells |
MRB | Multidrug-resistant bacterial |
NA | Not analyzed |
ND | Not detected |
PEP | Phosphoenolpyruvate |
TPC | Total phenolic compounds |
References
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Barreiro, C.; García-Estrada, C. Proteomics and Penicillium chrysogenum: Unveiling the Secrets behind Penicillin Production. J. Proteom. 2019, 198, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.; Hata, S. Die Experimentelle Chemotherapie Der Spirillosen; Springer: Berlin/Heidelberg, Germany, 1910; ISBN 978-3-642-64911-0. [Google Scholar]
- Domagk, G. Ein Beitrag Zur Chemotherapie Der Bakteriellen Infektionen. DMW—Dtsch. Med. Wochenschr. 1935, 61, 250–253. [Google Scholar] [CrossRef]
- Abraham, E.P.; Chain, E. An Enzyme from Bacteria Able to Destroy Penicillin. 1940. Rev. Infect. Dis. 1988, 10, 677–678. [Google Scholar]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a New Antibiotic Resistance Mechanism in India, Pakistan, and the UK: A Molecular, Biological, and Epidemiological Study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Aminov, R.I. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef]
- Busch, C.; Noor, S.; Leischner, C.; Burkard, M.; Lauer, U.M.; Venturelli, S. Anti-Proliferative Activity of Hop-Derived Prenylflavonoids against Human Cancer Cell Lines. Wien. Med. Wochenschr. 2015, 165, 258–261. [Google Scholar] [CrossRef]
- Girisa, S.; Saikia, Q.; Bordoloi, D.; Banik, K.; Monisha, J.; Daimary, U.D.; Verma, E.; Ahn, K.S.; Kunnumakkara, A.B. Xanthohumol from Hop: Hope for Cancer Prevention and Treatment. IUBMB Life 2021, 73, 1016–1044. [Google Scholar] [CrossRef]
- Kubeš, J. Geography of World Hop Production 1990–2019. J. Am. Soc. Brew. Chem. 2022, 80, 84–91. [Google Scholar] [CrossRef]
- Veiga, B.A.; Hamerski, F.; Clausen, M.P.; Errico, M.; de Paula Scheer, A.; Corazza, M.L. Compressed Fluids Extraction Methods, Yields, Antioxidant Activities, Total Phenolics and Flavonoids Content for Brazilian Mantiqueira Hops. J. Supercrit. Fluids 2021, 170, 105155. [Google Scholar] [CrossRef]
- Olšovská, J.; Kameník, Z.; Čejka, P.; Jurková, M.; Mikyška, A. Ultra-High-Performance Liquid Chromatography Profiling Method for Chemical Screening of Proanthocyanidins in Czech Hops. Talanta 2013, 116, 919–926. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What Is New on the Hop Extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Bocquet, L.; Sahpaz, S.; Rivière, C. An Overview of the Antimicrobial Properties of Hop; Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–54. [Google Scholar]
- Paniagua-García, A.I.; Ruano-Rosa, D.; Díez-Antolínez, R. Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure. Antioxidants 2023, 13, 45. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A Story That Begs to Be Told. A Review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Fahle, A.; Bereswill, S.; Heimesaat, M.M. Antibacterial Effects of Biologically Active Ingredients in Hop Provide Promising Options to Fight Infections by Pathogens Including Multi-Drug Resistant Bacteria. Eur. J. Microbiol. Immunol. 2022, 12, 22–30. [Google Scholar] [CrossRef]
- Lewis, J.C.; Alderton, G.; Carson, J.F.; Reynolds, D.M.; Maclay, W.D. Lupulon and Humulon: Antibiotic Constituents of Hops. J. Clin. Investig. 1949, 28, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Etxeberria, I.; Garcia, J.; Ibáñez, A.; García-Moyano, A.; Paniagua-García, A.I.; Díaz, Y.; Díez-Antolínez, R.; Barrio, A. Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol. Coatings 2025, 15, 445. [Google Scholar] [CrossRef]
- Wongchum, N.; Dechakhamphu, A. Xanthohumol Prolongs Lifespan and Decreases Stress-Induced Mortality in Drosophila Melanogaster. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 244, 108994. [Google Scholar] [CrossRef]
- Natarajan, P.; Katta, S.; Andrei, I.; Babu Rao Ambati, V.; Leonida, M.; Haas, G.J. Positive Antibacterial Co-Action between Hop (Humulus lupulus) Constituents and Selected Antibiotics. Phytomedicine 2008, 15, 194–201. [Google Scholar] [CrossRef]
- Sommella, E.; Pagano, F.; Salviati, E.; Chieppa, M.; Bertamino, A.; Manfra, M.; Sala, M.; Novellino, E.; Campiglia, P. Chemical Profiling of Bioactive Constituents in Hop Cones and Pellets Extracts by Online Comprehensive Two-dimensional Liquid Chromatography with Tandem Mass Spectrometry and Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Sep. Sci. 2018, 41, 1548–1557. [Google Scholar] [CrossRef]
- Rúa, J.; del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of Carvacrol and Thymol: Antimicrobial Activity against Staphylococcus aureus and Antioxidant Activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L. The Antimicrobic Susceptibility Test: Principles and Practices; Lea & Febiger, Ed.; Lea & Febiger: Philadelphia, NY, USA, 1976. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The Use of Plant Antimicrobial Compounds for Food Preservation. Biomed. Res. Int. 2015, 2015, 246264. [Google Scholar] [CrossRef] [PubMed]
- Barberis, S.; Quiroga, H.G.; Barcia, C.; Talia, J.M.; Debattista, N. Natural Food Preservatives against Microorganisms. In Food Safety and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 621–658. [Google Scholar]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; Var, I., Uzunlu, S., Eds.; IntechOpen: London, UK, 2019; Volume 18, pp. 7–23. [Google Scholar]
- Langezaal, C.R.; Chandra, A.; Scheffer, J.J.C. Antimicrobial Screening of Essential Oils and Extracts of Some Humulus lupulus L. Cultivars. Pharm. Weekbl. Sci. 1992, 14, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Hrncic, M.K.; Španinger, E.; Košir, I.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Antifungal Activity, Mycotoxin Inhibitory Efficacy, and Mode of Action of Hop Essential Oil Nanoemulsion against Fusarium graminearum. Food Chem. 2023, 400, 134016. [Google Scholar] [CrossRef]
- Duarte, P.F.; do Nascimento, L.H.; Fischer, B.; Lohmann, A.M.; Bandiera, V.J.; Fernandes, I.A.; Magro, J.D.; Valduga, E.; Cansian, R.L.; Paroul, N.; et al. Effect of Extraction Time on the Yield, Chemical Composition, and Antibacterial Activity of Hop Essential Oil against Lactic Acid Bacteria (Lactobacillus brevis and Lactobacillus casei) Beer Spoilage. Curr. Microbiol. 2023, 80, 237. [Google Scholar] [CrossRef]
- Almeida, A.d.R.; Maciel, M.V.d.O.B.; Cardoso Gasparini Gandolpho, B.; Machado, M.H.; Teixeira, G.L.; Bertoldi, F.C.; Noronha, C.M.; Vitali, L.; Block, J.M.; Barreto, P.L.M. Brazilian Grown Cascade Hop (Humulus lupulus L.): LC-ESI-MS-MS and GC-MS Analysis of Chemical Composition and Antioxidant Activity of Extracts and Essential Oils. J. Am. Soc. Brew. Chem. 2021, 79, 156–166. [Google Scholar] [CrossRef]
- Lira, M.H.P.d.; Andrade Júnior, F.P.d.; Moraes, G.F.Q.; Macena, G.d.S.; Pereira, F.d.O.; Lima, I.O. Antimicrobial Activity of Geraniol: An Integrative Review. J. Essent. Oil Res. 2020, 32, 187–197. [Google Scholar] [CrossRef]
- Pontes, E.K.U.; Melo, H.M.; Nogueira, J.W.A.; Firmino, N.C.S.; de Carvalho, M.G.; Catunda Júnior, F.E.A.; Cavalcante, T.T.A. Antibiofilm Activity of the Essential Oil of Citronella (Cymbopogon nardus) and Its Major Component, Geraniol, on the Bacterial Biofilms of Staphylococcus Aureus. Food Sci. Biotechnol. 2019, 28, 633–639. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Pawlińska, J.; Wróblewska, A.; Łuś, A. Evaluation of the Antimicrobial Activity of Geraniol and Selected Geraniol Transformation Products against Gram-Positive Bacteria. Molecules 2024, 29, 950. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.; Lima, E.d.O.; Souza, E.L.d.; Diniz, M.d.F.F.M.; Trajano, V.N.; Medeiros, I.A. de Inhibitory Effect of Beta-Pinene, Alpha-Pinene and Eugenol on the Growth of Potential Infectious Endocarditis Causing Gram-Positive Bacteria. Rev. Bras. Ciências Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef]
- Silva, A.C.R.d.; Lopes, P.M.; Azevedo, M.M.B.d.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of A-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Teuber, M.; Schmalreck, A.F. Membrane Leakage in Bacillus subtilis 168 Induced by the Hop Constituents Lupulone, Humulone, Isohumulone and Humulinic Acid. Arch. Mikrobiol. 1973, 94, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial Activity of Hop Extracts against Foodborne Pathogens for Meat Applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef]
- Sleha, R.; Radochova, V.; Mikyska, A.; Houska, M.; Bolehovska, R.; Janovska, S.; Pejchal, J.; Muckova, L.; Cermak, P.; Bostik, P. Strong Antimicrobial Effects of Xanthohumol and Beta-Acids from Hops against Clostridioides difficile Infection in Vivo. Antibiotics 2021, 10, 392. [Google Scholar] [CrossRef]
- Yan, Y.-F.; Wu, T.-L.; Du, S.-S.; Wu, Z.-R.; Hu, Y.-M.; Zhang, Z.-J.; Zhao, W.-B.; Yang, C.-J.; Liu, Y.-Q. The Antifungal Mechanism of Isoxanthohumol from Humulus lupulus Linn. Int. J. Mol. Sci. 2021, 22, 10853. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.-L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal Activity of Hop Extracts and Compounds against the Wheat Pathogen Zymoseptoria Tritici. Ind. Crops Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Boulter-Bitzer, J.; Ahn, T.; Odumeru, J.A. Vanillin Inhibits Pathogenic and Spoilage Microorganisms in Vitro and Aerobic Microbial Growth in Fresh-Cut Apples. Food Res. Int. 2006, 39, 575–580. [Google Scholar] [CrossRef]
- Ngarmsak, M.; Delaquis, P.; Toivonen, P.; Ngarmsak, T.; Ooraikul, B.; Mazza, G. Antimicrobial Activity of Vanillin against Spoilage Microorganisms in Stored Fresh-Cut Mangoes. J. Food Prot. 2006, 69, 1724–1727. [Google Scholar] [CrossRef]
- Stroescu, M.; Stoica-Guzun, A.; Isopencu, G.; Jinga, S.I.; Parvulescu, O.; Dobre, T.; Vasilescu, M. Chitosan-Vanillin Composites with Antimicrobial Properties. Food Hydrocoll. 2015, 48, 62–71. [Google Scholar] [CrossRef]
- Rakchoy, S.; Suppakul, P.; Jinkarn, T. Antimicrobial Effects of Vanillin Coated Solution for Coating Paperboard Intended for Packaging Bakery Products. Asian J. Food Agro-Ind. 2009, 2, 138–147. [Google Scholar]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The Antimicrobial Activity of Microencapsulated Thymol and Carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, H.; Pour Nikfardjam, M.S. Influence of Phenolic Compounds and Tannins on Wine-Related Microorganisms. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer International Publishing: Cham, Switzerland, 2017; pp. 421–454. [Google Scholar]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial Activity of Phenolic Acids against Commensal, Probiotic and Pathogenic Bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef]
Hop Variety | Nugget | Columbus | Chinook | Magnum | Cascade | Fuggle |
---|---|---|---|---|---|---|
β-Pinene (%, rel) | 0.16 | 0.66 | 0.23 | 0.37 | 0.40 | 0.25 |
Myrcene (%, rel) | 51.84 | 56.43 | 29.70 | 64.00 | 44.18 | 42.30 |
Limonene (%, rel) | 0.66 | 0.66 | 0.50 | 0.84 | 0.61 | 0.61 |
Linalool (%, rel) | 1.15 | 0.77 | 0.59 | 0.63 | 0.61 | 0.75 |
Geraniol (%, rel) | 0.08 | 0.75 | 0.51 | 0.62 | 1.64 | 0.27 |
2-Undecanone (%, rel) | 0.52 | 0.19 | 0.32 | 0.62 | 0,24 | 0.49 |
β-Cariophyllene (%, rel) | 9.01 | 7.69 | 10.39 | 5.96 | 7.34 | 9.75 |
β-Farnesene (%, rel) | ND | ND | ND | ND | 7.96 | 4.37 |
Humulene (%, rel) | 19.84 | 15.03 | 24.42 | 14.29 | 18.16 | 25.74 |
Weight (g) | α-Acids (g/100 g) | β-Acids (g/100 g) | Xanthohumol (g/100 g) | TPC (g GAE/100 g) | |
---|---|---|---|---|---|
Nugget | |||||
Initial Hops | 20.00 | 10.26 ± 0.12 | 3.65 ± 0.04 | 0.68 ± 0.01 | 2.10 ± 0.02 |
Soft Resins | 4.15 ± 0.18 | 39.19 ± 1.03 | 15.05 ± 0.58 | 0.21 ± 0.00 | NA |
Hard Resins | 1.96 ± 0.07 | 6.94 ± 0.40 | 0.89 ± 0.05 | 5.56 ± 0.25 | 3.07 ± 0.15 |
Spent Solid | 14.33 ± 0.08 | 0.36 ± 0.13 | 0.06 ± 0.02 | 0.02 ± 0.01 | 1.97 ± 0.04 |
Columbus | |||||
Initial Hops | 20.00 | 11.96 ± 0.13 | 4.13 ± 0.02 | 0.70 ± 0.01 | 1.75 ± 0.03 |
Soft Resins | 3.92 ± 0.22 | 38.37 ± 1.47 | 15.29 ± 0.54 | 0.23 ± 0.00 | NA |
Hard Resins | 1.64 ± 0.07 | 12.39 ± 1.21 | 1.45 ± 0.30 | 5.61 ± 0.14 | 3.31 ± 0.23 |
Spent Solid | 14.57 ± 0.06 | 1.45 ± 0.08 | 0.43 ± 0.03 | 0.08 ± 0.01 | 1.75 ± 0.04 |
Chinook | |||||
Initial Hops | 20.00 | 9.02 ± 0.29 | 2.58 ± 0.09 | 0.55 ± 0.01 | 2.75 ± 0.03 |
Soft Resins | 3.30 ± 0.13 | 43.22 ± 2.84 | 13.31 ± 0.54 | 0.36 ± 0.03 | NA |
Hard Resins | 1.19 ± 0.42 | 5.54 ± 0.93 | 0.98 ± 0.04 | 7.36 ± 2.93 | 4.29 ± 0.68 |
Spent Solid | 15.03 ± 0.25 | 0.37 ± 0.06 | 0.07 ± 0.02 | 0.02 ± 0.00 | 2.94 ± 0.09 |
Magnum | |||||
Initial Hops | 20.00 | 6.84 ± 0.08 | 2.62 ± 0.03 | 0.53 ± 0.01 | 2.81 ± 0.02 |
Soft Resins | 2.76 ± 0.05 | 41.89 ± 0.64 | 17.01 ± 0.31 | 0.67 ± 0.01 | NA |
Hard Resins | 0.85 ± 0.07 | 6.96 ± 0.86 | 1.68 ± 0.10 | 9.13 ± 0.74 | 5.24 ± 0.49 |
Spent Solid | 15.73 ± 0.06 | 0.23 ± 0.05 | 0.05 ± 0.02 | 0.02 ± 0.00 | 2.78 ± 0.07 |
Cascade | |||||
Initial Hops | 20.00 | 4.68 ± 0.01 | 4.58 ± 0.04 | 0.33 ± 0.00 | 2.75 ± 0.01 |
Soft Resins | 2.76 ± 0.02 | 26.54 ± 0.38 | 29.29 ± 0.78 | 0.51 ± 0.02 | NA |
Hard Resins | 1.10 ± 0.20 | 6.79 ± 0.49 | 1.98 ± 0.48 | 4.28 ± 0.88 | 5.93 ± 0.68 |
Spent Solid | 15.77 ± 0.12 | 0.19 ± 0.02 | 0.08 ± 0.01 | 0.01 ± 0.00 | 2.74 ± 0.03 |
Fuggle | |||||
Initial Hops | 20.00 | 6.30 ± 0.10 | 2.99 ± 0.03 | 0.40 ± 0.00 | 3.28 ± 0.03 |
Soft Resins | 3.30 ± 0.54 | 30.42 ± 3.71 | 16.15 ± 1.98 | 0.57 ± 0.11 | NA |
Hard Resins | 1.01 ± 0.13 | 8.62 ± 2.63 | 2.04 ± 0.81 | 5.71 ± 0.82 | 4.73 ± 0.71 |
Spent Solid | 15.97 ± 0.15 | 0.19 ± 0.04 | 0.05 ± 0.01 | 0.01 ± 0.00 | 3.56 ± 0.17 |
Natural Compound | Solvent | Concentration (µg/mL) |
---|---|---|
3,4-Dihydroxybenzoic acid | Mueller Hinton Medium | 12,000 |
3-Hydroxybenzoic acid | Mueller Hinton Medium + 10% (v/v) Ethanol | 6000 |
4-Hydroxybenzoic acid | Mueller Hinton Medium + 10% (v/v) Ethanol | 6000 |
Caffeic acid | Mueller Hinton Medium + 2% (v/v) Tween 80 | 10,000 |
Carvacrol | Mueller Hinton Medium | 4000 |
Chlorogenic acid | Mueller Hinton Medium + 2% (v/v) Tween 80 | 5000 |
Curcumine | Mueller Hinton Medium + 10% (v/v) Ethanol | 50 |
Eugenol | Mueller Hinton Medium + 10% (v/v) Ethanol | 2000 |
β-Farnesene | Mueller Hinton Medium + 10% (v/v) Ethanol | 2000 |
Ferulic acid | Mueller Hinton Medium + 10% (v/v) Ethanol | 5000 |
Gallic acid | Mueller Hinton Medium | 12,000 |
Humulene | Mueller Hinton Medium | 2000 |
Myrcene | Mueller Hinton Medium | 3000 |
Myricetin | Mueller Hinton Medium + 2% (v/v) Tween 80 | 200 |
p-Coumaric acid | Mueller Hinton Medium + 10% (v/v) Ethanol | 5000 |
Syringic acid | Mueller Hinton Medium + 10% (v/v) Ethanol | 6000 |
Thymol | Mueller Hinton Medium | 4000 |
Vanillic acid | Mueller Hinton Medium + 2% (v/v) Tween 80 | 5000 |
Vanillin | Mueller Hinton Medium | 10,000 |
Xanthohumol | Mueller Hinton Medium | 50 |
β-Caryophyllene | Mueller Hinton Medium + 10% (v/v) Ethanol | 3000 |
E. coli | S. aureus | ||||
---|---|---|---|---|---|
Natural Compound | Range (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) |
3,4-Dihydroxybenzoic acid | 0–3000 | 1500 | 3000 | 1500 | 3000 |
3-Hydroxybenzoic acid | 0–1500 | 750 | 1500 | 750 | 1500 |
4-Hydroxybenzoic acid | 0–1500 | 750 | 1500 | 750 | 1500 |
Caffeic acid | 0–5000 | 2500 | 5000 | 2500 | 5000 |
Carvacrol | 0–2150 | 65 | 130 | 180 | 280 |
Chlorogenic acid | 0–2500 | ND | ND | ND | ND |
p-Coumaric acid | 0–2500 | 625 | 1250 | 625 | 1250 |
Curcumine | 0–25 | ND | ND | ND | ND |
Eugenol | 0–1000 | 250 | 500 | 500 | 1000 |
β-Farnesene | 0–1100 | ND | ND | ND | ND |
Ferulic acid | 0–2500 | 625 | 1250 | 630 | 1250 |
Gallic acid | 0–6000 | 6000 | ND | 1500 | 6000 |
Humulene | 0–900 | ND | ND | ND | ND |
Myrcene | 0–1450 | ND | ND | ND | ND |
Myricetin | 0–100 | ND | ND | ND | ND |
Syringic acid | 0–3000 | 750 | 1500 | 1500 | 3000 |
Thymol | 0–2000 | 60 | 250 | 60 | 250 |
Vanillic acid | 0–2500 | 625 | 1250 | 625 | 2500 |
Vanillin | 0–5000 | 1250 | 2500 | 2500 | 5000 |
Xanthohumol | 0–25 | ND | ND | 2 | 3 |
β-Caryophyllene | 0–1500 | ND | ND | ND | ND |
E. coli | S. aureus | ||||
---|---|---|---|---|---|
Hop Variety | Range (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) |
Essential oils | |||||
Nugget | 0–900 | ND | ND | 900 | ND |
Cascade | 0–900 | ND | ND | 10 | 30 |
Columbus | 0–900 | ND | ND | 30 | 110 |
Fuggle | 0–900 | ND | ND | 15 | 60 |
Magnum | 0–900 | ND | ND | 30 | 115 |
Chinook | 0–900 | ND | ND | 5 | ND |
Soft resins | |||||
Nugget | 0–800 | 50 | 200 | 15 | 50 |
Cascade | 0–800 | 25 | 200 | 15 | 50 |
Columbus | 0–800 | 25 | 200 | 15 | 50 |
Fuggle | 0–800 | 50 | 200 | 15 | 25 |
Magnum | 0–800 | 25 | 400 | 15 | 50 |
Chinook | 0–800 | 12 | 50 | 25 | 100 |
Hard resins | |||||
Nugget | 0–800 | 750 | ND | 25 | 100 |
Cascade | 0–800 | 100 | ND | 25 | 100 |
Columbus | 0–800 | 800 | ND | 25 | 200 |
Fuggle | 0–800 | 775 | ND | 50 | 200 |
Magnum | 0–800 | ND | ND | 50 | 100 |
Chinook | 0–800 | ND | ND | 50 | 100 |
Total resins | |||||
Nugget | 0–800 | 400 | ND | 50 | 100 |
Cascade | 0–800 | 800 | ND | 15 | 50 |
Columbus | 0–800 | 800 | ND | 15 | 50 |
Fuggle | 0–800 | 800 | ND | 50 | 100 |
Magnum | 0–800 | ND | ND | 15 | 50 |
Chinook | 0–800 | 800 | ND | 25 | 100 |
Spent solids | |||||
Nugget | 0–300 | ND | ND | 5 | ND |
Cascade | 0–300 | ND | ND | 450 | ND |
Columbus | 0–300 | ND | ND | 10 | ND |
Fuggle | 0–300 | ND | ND | 550 | ND |
Magnum | 0–300 | ND | ND | 450 | ND |
Chinook | 0–300 | ND | ND | 450 | ND |
E. coli | S. aureus | ||||||
---|---|---|---|---|---|---|---|
Natural Compound | Range (μg/mL) | MBC99 (μg/mL) | MBC99.9 (μg/mL) | MBC99.99 (μg/mL) | MBC99 (μg/mL) | MBC99.9 (μg/mL) | MBC99.99 (μg/mL) |
3,4-Dihydroxybenzoic acid | 0–3000 | NA | NA | 3000 | NA | NA | 3000 |
3-Hydroxybenzoic acid | 0–1500 | NA | NA | 3000 | NA | NA | 3000 |
4-Hydroxybenzoic acid | 0–1500 | NA | NA | 3000 | NA | NA | 3000 |
Caffeic acid | 0–5000 | NA | NA | 5000 | NA | NA | 5000 |
Carvacrol | 0–2150 | NA | NA | 125 | NA | 250 | ND |
Chlorogenic acid | 0–2500 | ND | ND | ND | ND | ND | ND |
p-Coumaric acid | 0–2500 | NA | NA | 1250 | NA | 2500 | ND |
Curcumine | 0–25 | ND | ND | ND | ND | ND | ND |
Eugenol | 0–1000 | NA | NA | 500 | NA | 1000 | ND |
β-Farnesene | 0–1100 | ND | ND | ND | ND | ND | ND |
Ferulic acid | 0–2500 | NA | 1250 | ND | NA | NA | 2500 |
Gallic acid | 0–6000 | ND | ND | ND | NA | 6000 | ND |
Humulene | 0–900 | ND | ND | ND | ND | ND | ND |
Myrcene | 0–1450 | ND | ND | ND | ND | ND | ND |
Myricetin | 0–100 | ND | ND | ND | ND | ND | ND |
Syringic acid | 0–3000 | NA | NA | 3000 | NA | 3000 | ND |
Thymol | 0–2000 | NA | NA | 250 | NA | 250 | ND |
Vanillic acid | 0–2500 | NA | NA | 2500 | NA | NA | 2500 |
Vanillin | 0–5000 | NA | NA | 5000 | NA | 5000 | ND |
Xanthohumol | 0–25 | ND | ND | ND | 25 | ND | ND |
β-Caryophyllene | 0–1500 | ND | ND | ND | ND | ND | ND |
S. aureus | ||||
---|---|---|---|---|
Hop | Range | MBC99 | MBC99.9 | MBC99.99 |
Variety | (μg/mL) | (μg/mL) | (μg/mL) | (μg/mL) |
Essential oils | ||||
Nugget | 0–900 | ND | ND | ND |
Cascade | 0–900 | 895 | ND | ND |
Columbus | 0–900 | 445 | ND | ND |
Fuggle | 0–900 | NA | 445 | ND |
Magnum | 0–900 | NA | 900 | ND |
Chinook | 0–900 | ND | ND | ND |
Soft resins | ||||
Nugget | 0–800 | NA | NA | 400 |
Cascade | 0–800 | NA | NA | 200 |
Columbus | 0–800 | NA | NA | 100 |
Fuggle | 0–800 | NA | NA | 200 |
Magnum | 0–800 | NA | NA | 200 |
Chinook | 0–800 | NA | NA | 400 |
Hard resins | ||||
Nugget | 0–800 | NA | NA | 400 |
Cascade | 0–800 | NA | NA | 800 |
Columbus | 0–800 | NA | NA | 400 |
Fuggle | 0–800 | NA | NA | 800 |
Magnum | 0–800 | NA | NA | 400 |
Chinook | 0–800 | NA | NA | 400 |
Total resins | ||||
Nugget | 0–800 | NA | NA | 400 |
Cascade | 0–800 | NA | NA | 200 |
Columbus | 0–800 | NA | NA | 200 |
Fuggle | 0–800 | NA | NA | 400 |
Magnum | 0–800 | NA | NA | 400 |
Chinook | 0–800 | NA | NA | 400 |
Spent soilds | ||||
Nugget | 0–300 | ND | ND | ND |
Cascade | 0–300 | ND | ND | ND |
Columbus | 0–300 | ND | ND | ND |
Fuggle | 0–300 | ND | ND | ND |
Magnum | 0–300 | ND | ND | ND |
Chinook | 0–300 | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paniagua-García, A.I.; Ibáñez, A.; Díez-Antolínez, R. Green Antimicrobials: Innovative Applications of Hops Extracts as Biocontrol Agents. Pathogens 2025, 14, 418. https://doi.org/10.3390/pathogens14050418
Paniagua-García AI, Ibáñez A, Díez-Antolínez R. Green Antimicrobials: Innovative Applications of Hops Extracts as Biocontrol Agents. Pathogens. 2025; 14(5):418. https://doi.org/10.3390/pathogens14050418
Chicago/Turabian StylePaniagua-García, Ana I., Ana Ibáñez, and Rebeca Díez-Antolínez. 2025. "Green Antimicrobials: Innovative Applications of Hops Extracts as Biocontrol Agents" Pathogens 14, no. 5: 418. https://doi.org/10.3390/pathogens14050418
APA StylePaniagua-García, A. I., Ibáñez, A., & Díez-Antolínez, R. (2025). Green Antimicrobials: Innovative Applications of Hops Extracts as Biocontrol Agents. Pathogens, 14(5), 418. https://doi.org/10.3390/pathogens14050418