GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Effects of Primer and Probe-Template Mismatches
2.2. Real-Time PCR
- (1)
- ExciteTM UF 2x Master Mix (ExciteTM UF) (Quantig Ltd., Camberley, UK), a Taq-based rPCR kit, was selected as it required minimal reaction set-up, increasing the likelihood of assay variation being attributed to target sequence differences rather than human variability. Reactions were performed in a total of 20 µL, containing: 5 µL template, 10 µL 2x master mix, 50 nM ROX reference dye, 1.6 µL of each primer (16 pmol), 1.2 µL of probe (6 pmol) (primers and probes final concentrations as previously described [28]) and made up to volume with nuclease-free water (NFW). Thermal cycling conditions were 95 °C for 3 min, followed by 50 cycles of 95 °C for 5 s and 60 °C for 20 s.
- (2)
- SuperScript™ III Platinum™ One-Step qRT-PCR Kit (SSIIITM) (Thermo Fisher Scientific, Waltham, MA, USA) was chosen as it is a commonly used Taq-based kit. Reagents, parameters, primer/probe final concentrations and thermal cycling conditions were as previously reported [28]. Reactions were performed in a total of 25 µL, containing: 5 µL template, 12.5 µL 2x buffer, 0.5 µL of Superscript III enzyme mix (both supplied with the kit), 50 nM ROX reference dye, 2 µL of each primer (20 pmol), 1.5 µL of probe (7.5 pmol) [27] and made up to volume with NFW. Thermal cycling conditions were 95 °C for 10 min, followed by 50 cycles of 95 °C for 15 s and 60 °C for 1 min. The reverse transcription (RT) step was omitted from the published protocol [28].
2.3. Development of GoPrime
2.4. Evaluating GoPrime as a Predictor of rPCR Performance
2.5. Statistical and Phylogenetic Analysis
3. Results
3.1. The Effects of Primer/Probe-Template Mismatches on rPCR
3.2. Development of GoPrime
3.3. Evaluating GoPrime as a Predictor of rPCR Performance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292–1305. [Google Scholar] [CrossRef] [Green Version]
- Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.C.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R.; et al. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing. Clin. Microbiol. Rev. 2006, 19, 165–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, B.; Beer, M.; Reid, S.M.; Mertens, P.; Oura, C.A.; van Rijn, P.A.; Slomka, M.J.; Banks, J.; Brown, I.H.; Alexander, D.J.; et al. A review of RT-PCR technologies used in veterinary virology and disease control: Sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet. Microbiol. 2009, 139, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, R.S.; Thilly, W.G. Specificity, Efficiency, and Fidelity of PCR. PCR Methods Appl. 1992, 3, S18–S29. [Google Scholar] [CrossRef]
- Domingo, E.; Martínez-Salas, E.; Sobrino, F.; de la Torre, J.C.; Portela, A.; Ortín, J.; López-Galindez, C.; Pérez-Breña, P.; Villanueva, N.; Nájera, R.; et al. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: Biological relevance—A review. Gene 1985, 40, 1–8. [Google Scholar] [CrossRef]
- Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96, 13910–13913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, S.M.; Mioulet, V.; Knowles, N.J.; Shirazi, N.; Belsham, G.J.; King, D.P. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. J. Virol. Methods 2014, 207, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, S.M.; Belsham, G.J. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia. PLoS ONE 2015, 10, e0135559. [Google Scholar] [CrossRef] [PubMed]
- Bachanek-Bankowska, K.; Mero, H.R.; Wadsworth, J.; Mioulet, V.; Sallu, R.; Belsham, G.J.; Kasanga, C.J.; Knowles, N.J.; King, D.P. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. J. Virol. Methods 2016, 237, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Saduakassova, M.A.; Sultanov, A.A.; Kutumbetov, L.B.; Wadsworth, J.A.; Wood, B.; Knowles, N.J.; King, D.P.; Bachanek-Bankowska, K. Development and evaluation of a novel real-time RT-PCR to detect foot-and-mouth disease viruses from the emerging A/ASIA/G-VII lineage. J. Virol. Methods 2018, 252, 37–41. [Google Scholar] [CrossRef]
- Kwok, S.; Kellogg, D.E.; Mckinney, N.; Spasic, D.; Goda, L.; Levenson, C.; Sninsky, J.J. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990, 18, 999–1005. [Google Scholar] [CrossRef]
- Huang, M.M.; Arnheim, N.; Goodman, M.F. Extension of base mispairs by Taq DNA polymerase: Implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992, 20, 4567–4573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopherson, C.; Sninsky, J.; Kwok, S. The effects of internal primer-template mismatches on RT-PCR: HIV-1 model studies. Nucleic Acids Res. 1997, 25, 654–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, D.; Leutenegger, C.; Bahula, C.; Gold, P.; Hofmann-Lehmann, R.; Salmons, B.; Lutz, H.; Gunzburg, W. Influence of preassay and sequence variations on viral load determination by a multiplex real-time reverse transcriptase-polymerase chain reaction for feline immunodeficiency virus. J. Acquir. Immune Defic. Syndr. 2001, 26, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Vigilant, L.; Morin, P.A. The effects of sequence length and oligonucleotide mismatches on 5’ exonuclease assay efficiency. Nucleic Acids Res. 2002, 30, e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiley, D.M.; Sloots, T.P. Sequence variation in primer targets affects the accuracy of viral quantitative PCR. J. Clin. Virol. 2005, 34, 104–107. [Google Scholar] [CrossRef]
- Yao, Y.; Nellåker, C.; Karlsson, H. Evaluation of minor groove binding probe and Taqman probe PCR assays: Influence of mismatches and template complexity on quantification. Mol. Cell. Probes 2006, 20, 311–316. [Google Scholar] [CrossRef]
- Bru, D.; Martin-Laurent, F.; Philippot, L. Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl. Environ. Microbiol. 2008, 74, 1660–1663. [Google Scholar] [CrossRef] [Green Version]
- Boyle, B.; Dallaire, N.; MacKay, J. Evaluation of the impact of single nucleotide polymorphisms and primer mismatches on quantitative PCR. BMC Biotechnol. 2009, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Süß, B.; Flekna, G.; Wagner, M.; Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 2009, 76, 316–319. [Google Scholar] [CrossRef]
- Klungthong, C.; Chinnawirotpisan, P.; Hussem, K.; Phonpakobsin, T.; Manasatienkij, W.; Ajariyakhajorn, C.; Rungrojcharoenkit, K.; Gibbons, R.V.; Jarman, R.G. The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J. Clin. Virol. 2010, 48, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Stadhouders, R.; Pas, S.D.; Anber, J.; Voermans, J.; Mes, T.H.; Schutten, M. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J. Mol. Diagn. 2010, 12, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Dyer, M.D.; Gardner, S.N.; Smith, J.R.; Vitalis, B.; Torres, C.; Kuczmarski, T.A.; Slezak, T. TaqSim—TaqMan PCR Simulator. 2008. Available online: http://staff.vbi.vt.edu/dyermd/publications/taqsim.html (accessed on 10 July 2017).
- Lemmon, G.H.; Gardner, S.N. Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 2008, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, J.D.; Brown, F.; Osorio, F.A.; Sur, J.H.; Kramer, E.; Long, G.W.; Lubroth, J.; Ellis, S.J.; Shoulars, K.S.; Gaffney, K.L.; et al. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J. Am. Vet. Med. Assoc. 2002, 220, 1636–1642. [Google Scholar] [CrossRef]
- Shaw, A.E.; Reid, S.M.; Ebert, K.; Hutchings, G.H.; Ferris, N.P.; King, D.P. Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. J. Virol. Methods 2007, 143, 81–85. [Google Scholar] [CrossRef]
- Chambers, J.M. Linear Models. In Statistical Models in S; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 10 October 2017).
- Rambaut, A. FigTree v1.4.3. 2016. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 10 October 2017).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
Forward Primer Target | Probe Target | Reverse Primer Target | |
---|---|---|---|
R | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
1 | ACTGGGTTTTACAAACCTGTGG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
2 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
3 | ACTGGGTTTTACAAACCTGTGG | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
4 | ACTGGGTTTTACAAACCTGTGC | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
5 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
6 | ACTGGGTTTTACAAACCTGTGC | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
7 | ACTGGGTTTTACAAACCTATAA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
8 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TTCATGGCAGGACTCGC |
9 | ACTGGGTTTTACAAACCTATAA | TCCTTTGCACGCCGTGGGAC | TTCATGGCAGGACTCGC |
10 | ACTGGGTTTTACAAACCTTTTA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
11 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TACTTGGCAGGACTCGC |
12 | ACTGGGTTTTACAAACCTTTTA | TCCTTTGCACGCCGTGGGAC | TACTTGGCAGGACTCGC |
13 | ACTGGATTCTACGAACTTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
14 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTAGCGGGACTTGC |
15 | ACTGGATTCTACGAACTTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTAGCGGGACTTGC |
16 | ACTGGTTTGTACCAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
17 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCCGGACTAGC |
18 | ACTGGTTTGTACCAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCCGGACTAGC |
19 | ATTAGATTCTGCGAACTTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
20 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTAGCGGGGCTTGT |
21 | ATTAGATTCTGCGAACTTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTAGCGGGGCTTGT |
22 | AATTGTTTGTCCCAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
23 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCCGGCCTAGA |
24 | AATTGTTTGTCCCAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCCGGCCTAGA |
25 | AATAGTTTCTCCGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
26 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGCCTTGA |
27 | AATAGTTTCTCCGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGCCTTGA |
28 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
29 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
30 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
31 | ACTGGTTTTTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
32 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTTGC |
33 | ACTGGTTTTTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTCGC |
34 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
35 | ACTGGGTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTCGC |
36 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
37 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
38 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TTCGTGGCAGGACTCGC |
39 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TACGTGGCAGGACTCGC |
40 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
28 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
29 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
30 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
31 | ACTGGTTTTTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCGGGACTTGC |
32 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTTGC |
33 | ACTGGTTTTTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTCGC |
34 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
35 | ACTGGGTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTTGCAGGACTCGC |
36 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
37 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
38 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TTCGTGGCAGGACTCGC |
39 | ACTGGTTTCTACGAACATGTGA | TCCTTTGCACGCCGTGGGAC | TACGTGGCAGGACTCGC |
40 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
41 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
42 | ACTGGGTTTTACAAACCTGAGG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
43 | ACTGGGTTTTACAAACCTGCGG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
44 | ACTGGGTTTTACAAACCTGAGC | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
45 | ACTGGGTTTTACAAACCTGTTG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
46 | ACTGGGTTTTACAAACCTGTAG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
47 | ACTGGGTTTTACAAACCTGTTC | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
48 | ACTGGGTTTTACAAACCTGGAA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
49 | ACTGGGTTTTACAAACCTGCAA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
50 | ACTGGGTTTTACAAACCTGGTA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
51 | ACTGGGTTTTACAAACCTTTGG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
52 | ACTGGGTTTTACAAACCTATGG | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
53 | ACTGGGTTTTACAAACCTTTGC | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
54 | ACTGGGTTTTACAAACCTGTAA | TCCTTTGCACGCCGTGGGAC | TTCGTGGCAGGACTCGC |
55 | ACTGGGTTTTACAAACCTGTTA | TCCTTTGCACGCCGTGGGAC | TACGTGGCAGGACTCGC |
56 | ACTGGGTTTTACAAACCTGTAA | TCCTTTGCACGCCGTGGGAC | TACGTGGCAGGACTCGC |
57 | ACTGGGTTTTACAAACCTATTA | TCCTTTGCACGCCGTGGGAC | TCTGTGGCAGGACTCGC |
58 | ACTGGGTTTTACAAACCTATTA | TCCTTTGCACGCCGTGGGAC | TCAGTGGCAGGACTCGC |
59 | ACTGGGTTTTACAAACCTATTA | TCCTTTGCACGCCGTGGGAC | CCCGTGGCAGGACTCGC |
60 | ACTGGGTTTTACAAACCTATTA | TCCTTTGCACGCCGTGGGAC | GCCGTGGCAGGACTCGC |
61 | ACTGGGTTTTACAAACCTGTGA | TCCTTGGCGCACAGCGGTAC | TCCGTGGCAGGACTCGC |
62 | ACTGGGTTTTACAAACCTGTGA | TCCTTGGCGCACCGCGGTAC | TCCGTGGCAGGACTCGC |
63 | ACTGGGTTTTACAAACCTGTGA | TCCTTGGCACACCGCGGTAC | TCCGTGGCAGGACTCGC |
64 | ACTGGGTTTTACAAACCTGTGA | TCCTTGGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
65 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
66 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACACCGTGGGAC | TCCGTGGCAGGACTCGC |
67 | ACTGGGTTTTACAAACCTGTGA | CCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
68 | ACTGGGTTTTACAAACCTGTGA | GCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
69 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAT | TCCGTGGCAGGACTCGC |
70 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAA | TCCGTGGCAGGACTCGC |
71 | ACTGGGTTTTACAAACCTGTGA | GGCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
72 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGCT | TCCGTGGCAGGACTCGC |
73 | ACTGGGTTTTACAAACCTGTGA | CCATTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
74 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGTAT | TCCGTGGCAGGACTCGC |
75 | ACTGGGTTTTACAAACCTGTGA | TTCGTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
76 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGTGGC | TCCGTGGCAGGACTCGC |
77 | ACTGGGTTTTACAAACCTGTGA | CCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
78 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACACCGCGGGAT | TCCGTGGCAGGACTCGC |
79 | ACTGGGTTTTACAAACCTGTGA | CACTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
80 | ACTGGGTTTTACAAACCTGTGG | TCCTTGGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
81 | ACTGGGTTTTACAAACCTGTGG | TCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
82 | ACTGGGTTTTACAAACCTGTGC | TCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
83 | ACTGGGTTTTACAAACCTTTGG | TCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
84 | ACTGGGTTTTACAAACCTGTGG | CCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
85 | ACTGGGTTTTACAAACCTGTGG | TCCTTTGCACGCCGTGGGAT | TCCGTGGCAGGACTCGC |
86 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACACCGCGGGAC | TCCGTTGCAGGACTTGC |
87 | ACTGGTTTTTACAAACATGTGA | TCCTTTGCACACCGCGGGAC | TCCGTGGCAGGACTCGC |
88 | ACTGGGTTTTACAAACATGTGA | TCCTTTGCACACCGTGGGAC | TCCGTTGCAGGACTCGC |
89 | ACTGGGTTTTACAAACATGTGA | CCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
90 | ACTGGGTTTTACAAACATGTGA | TCCTTTGCACGCCGTGGGAT | TCCGTGGCAGGACTCGC |
The primer/probe target sequences of the 90 DNA templates (109 base pairs in length) in 5′-3′ orientation. Non-target regions between the primer/probe targets were identical to O/UKG/35/2001 (accession number KR265074: nucleotides 7862-7970). The black sequence (top row) represents the reference template (R); grey sequences represent the varying DNA templates, black highlighted bases depict primer/probe-template mismatch sites. |
Mismatch Type | Variable |
---|---|
Primers (forward or reverse) | Percentage mismatch (forward and reverse combined) |
Type 1 mismatch at the 3′-end (nucleotide 1) | |
Type 2 mismatch at the 3′-end (nucleotide 1) | |
Type 1 mismatch at the 3′-end (nucleotide 2) | |
Type 2 mismatch at the 3′-end (nucleotide 2) | |
Type 1 mismatch at the 3′-end (nucleotides 3-4) | |
Type 2 mismatch at the 3′-end (nucleotides 3-4) | |
Probe | Percentage mismatch |
Mismatches were grouped as one of two types: (type 1) purine-pyrimidine mismatch (G-T or C-A nucleotide base pairing, leading to a minor conformational change in the primer/probe-template duplex); (type 2) purine-purine or pyrimidine-pyrimidine mismatch (G-A, A-A, G-G, C-T, T-T or C-C nucleotide base pairing, leading to a major conformational change in the primer/probe-template duplex). |
Forward Primer Target | Probe Target | Reverse Primer Target | |
---|---|---|---|
R | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
JX040500 | ACTGGGTTTTACAAACCTATGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
KC440884 | ACTGGATTTTATAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
AY593802 | ACTGGGTTTTACAAACCTGTGA | TCCTTCGCACGCCGTGGGAC | TCTGTGGCAGGGCTCGC |
KC440883 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCTGTGGCGGGACTCGC |
AY593812 | ACTGGGTTTTACAAACCTGTGA | TCCTTTGCACGCCGTGGGAC | TCAGTGGCAGGACTCGC |
KF112882 | ACTGGGTTTTACAAACCTGTGA | CCCTTTGCACGCCGTGGGAC | TCCGTGGCAGGACTCGC |
HM191257 | ACTGGGTTTTACAAACCTGTGA | TCCTTCGCACGCCGTGGGAC | TCTGTGGCAGGACTCGC |
The primer/probe binding regions of the seven DNA oligonucleotides ordered to test the program (109 base pairs in length, with regions between primers consistent with the sequences for each accession number. The black sequence (top row) represents the reference template (R); grey sequences represent the varying DNA templates, with black highlighted bases depicting primer/probe-template mismatch sites. FMDV serotypes were as follows: JX040500 (O); KC440884 (Southern African Territories 2); AY593802 (A); KC440883 (O); AY593812 (O); KF112882 (O); HM191257 (O). |
Factor | Mismatch Type | ΔCT | SE | t Value | p Value |
---|---|---|---|---|---|
Primer | % mismatch (forward/reverse combined) * | 0.87 | 0.02 | 39.39 | <0.001 |
(minimum of 82.05% match is required [combined % for the pair]) | |||||
nt 1 mismatch (type 1) | 1.64 | 0.24 | 6.86 | <0.001 | |
2× nt 1 mismatch (type 1) | 4.88 | 0.81 | 6.02 | <0.001 | |
nt 1 mismatch (type 2) | 4.10 | 0.34 | 12.03 | <0.001 | |
2× nt 1 mismatch (type 2) | 8.71 | 1.25 | 6.97 | <0.001 | |
nt 2 mismatch (type 1) | 0.90 | 0.36 | 2.51 | 0.012 | |
2× nt 2 mismatch (type 1) | 3.32 | 0.76 | 4.40 | <0.001 | |
nt 2 mismatch (type 2) | 3.44 | 0.39 | 8.82 | <0.001 | |
2× nt 2 mismatch (type 2) | 6.13 | 1.06 | 5.79 | <0.001 | |
nt 3-4 mismatch (type 1) | 1.07 | 0.40 | 2.69 | 0.007 | |
2× nt 3-4 mismatch (type 1) | 2.14 ** | ||||
nt 3-4 mismatch (type 2) | 2.99 | 0.34 | 8.79 | <0.001 | |
2× nt 3-4 mismatch (type 2) | 4.83 | 2.97 | 1.63 | 0.105 | |
Maximum of two mismatches can be tolerated in the 3′-ends (within or between primers) | |||||
Probe | % mismatch | 0.50 | 0.03 | 18.35 | <0.001 |
(minimum of 85.00% match is required) | |||||
(nt) nucleotide; (ΔCT) change in cycle threshold; (SE) standard error. For multiple mismatches, the linear model was able to calculate the effect of having the same type of mutation in both the primers (2×), if two mismatches were present but different the linear model calculated the additive/dampening effect: two 3′-end primer mismatches (ΔCT: −0.27 [2dp]); one primer and one probe mismatch (ΔCT: +0.43 [2dp]). Mismatches were grouped as one of two types: (type 1) purine-pyrimidine mismatch (G-T; C-A: minor conformational change in the primer/probe-template duplex); (type 2) purine-purine or pyrimidine-pyrimidine mismatch (G-A; A-A; G-G; C-T; T-T; C-C: major conformational change in the primer/probe-template duplex). One linear model looked primer-template mismatches; a second linear model was used to look at probe-template mismatches. * If (for example) a type nt 1 mismatch was present, the percentage mismatch ΔCT would be calculated and an additional nt 1 mismatch ΔCT penalty added. ΔCT, SE, and t value given to 2 decimal places. ** Insufficient oligos to calculate with accuracy, therefore GoPrime calculates this based on ΔCT of nt 3–4 mismatch (type 1) × 2. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howson, E.L.A.; Orton, R.J.; Mioulet, V.; Lembo, T.; King, D.P.; Fowler, V.L. GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens 2020, 9, 303. https://doi.org/10.3390/pathogens9040303
Howson ELA, Orton RJ, Mioulet V, Lembo T, King DP, Fowler VL. GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens. 2020; 9(4):303. https://doi.org/10.3390/pathogens9040303
Chicago/Turabian StyleHowson, Emma L A, Richard J Orton, Valerie Mioulet, Tiziana Lembo, Donald P King, and Veronica L Fowler. 2020. "GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model" Pathogens 9, no. 4: 303. https://doi.org/10.3390/pathogens9040303
APA StyleHowson, E. L. A., Orton, R. J., Mioulet, V., Lembo, T., King, D. P., & Fowler, V. L. (2020). GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens, 9(4), 303. https://doi.org/10.3390/pathogens9040303