Artificial Intelligence Models for Zoonotic Pathogens: A Survey
Abstract
:1. Introduction
2. Artificial Intelligence Models
- K-Nearest Neighbors (K-NN): A KNN classifier is a non-parametric classifier that uses proximity to determine whether or not an individual data point belongs to a particular group. The nearest neighbors determine the class label by majority vote.
- Logistic Regression: It is a parametric, supervised algorithm that uses a logistic (sigmoid) function to model independent variables, viz.,
- Random Forest (RT): A random forest is an ensemble learning technique that constructs an output class through a majority voting approach from a multitude of decision trees.
- Naive Bayes (NB): A Naive Bayes classifier is a probabilistic classifier that makes predictions applying Bayes’ theorem, assuming that features are independent.
- Support Vector Machine (SVM): Support vector machines are supervised classification algorithms that produce a hyperplane (decision boundary) that separates inputs into different categories.
- eXtreme Gradient Boosting (XGBoost): It is an ensemble-based boosting approach that consists of multiple decision trees that run sequentially and are aimed at minimizing the error from the previous model.
- Artificial Neural Network: Neural networks are composed of layers of artificial neurons that are processed in a forward direction. This method is intended to identify underlying relationships in a set of data. The system comprises three or more layers: the input layer that accepts the input, any number of hidden layers of neurons, and the output layer that produces the output.
- Recurrent neural network (RNN): RNNs are a type of artificial neural network used to address ordinal or temporal problems. Their distinct characteristic is their ability to draw on information from previous inputs to influence current inputs and outputs.
- Long Short Term Memory network (LSTM): LSTMs are a special class of RNN with the ability to learn long-term relationships.
- Generative Adversarial Network (GAN): A GAN is a supervised deep learning method that learns from the regularities in data. The model is composed of two submodels: a generator model and a discriminator model. A generator model attempts to generate new samples from negative data, while a discriminator model attempts to predict whether a sample is positive or negative.
- Auto-Encoder: An autoencoder is an unsupervised method using stacked layers of neural networks composed of an encoder layer, a latent layer, and a decoder layer. By embedding unlabeled data into a latent layer, the original input can be recreated by the decoder layer. A supervised prediction layer can be added to the latent layer to make predictions based on the low-dimensional meaningful representations derived from the input samples.
3. Literature Review
4. Contact-Based Zoonoses
4.1. Disease Prediction
4.1.1. Machine Learning Models
4.1.2. Deep Learning Models
4.2. Risk Factors for Pathogen Prevalence
5. Food-Borne Pathogens
5.1. Pathogen Prediction
5.2. Bacterial Growth Dynamics
6. Discussion
- Support Vector Machine (SVM): SVM is capable of understanding both the dynamics of population growth for foodborne diseases as well as the prediction of disease and pathogens. It is a memory-efficient algorithm that performs well when there is a clear margin of separation between the samples. It is also capable of handling high-dimensional data. The SVM, however, is not suited to handling large or highly noisy datasets.
- Logistic Regression: Several studies have demonstrated the effectiveness of logistic regression as a method for analyzing the influencing factors of zoonotic diseases and those that affect their incidence and distribution. The logistic regression method is suitable for both binary classification as well as multiclassification. In general, it is effective when the data can be separated linearly and the coefficients of the model can be used to determine the importance of the features in the prediction. However, logistic regression does not provide a great deal of insight into nonlinear or complex relationships.
- Random Forest (RF): Most studies that employed RF demonstrated that it outperformed other traditional machine learning models. The method is robust to outliers, non-linear data, and high dimensional data. In addition, it is capable of handling unbalanced data and exhibits low bias and variance.
- eXtreme Gradient Boosting (XGBoost): Similar to other ensemble approaches, XGBoost is capable of handling outliers, imbalanced data, high dimensional data, and large datasets. The model is less susceptible to overfitting. Research studies have demonstrated that XGBoost paired with SHAP, an explainable AI framework, is an effective methodology for identifying the factors that contribute to the presence of pathogens.
- Artificial Neural Network: The ability to model complex, noisy, high dimensional input enables neural network models to effectively use vocal features to distinguish healthy chickens from unhealthy chickens. The use of sound or images in such studies may provide new avenues for the control of diseases. On the other hand, we have found that neural network models are not as effective as ensemble approaches when no complex algorithm is required to learn the data.
- Long Short Term Memory network (LSTM): LSTM can be used to address ordinal or temporal problems. LSTM’s distinct characteristic is its ability to draw on information from previous inputs to influence current inputs and outputs. The results of our survey indicate that LSTM can be effectively used for datasets with temporal properties such as food supply, population, and GDP statistics. In situations where the data necessitates the study of spatial or temporal associations, LSTM or RNN can be selected as the algorithm of choice.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlson, C.J.; Farrell, M.J.; Grange, Z.; Han, B.A.; Mollentze, N.; Phelan, A.L.; Rasmussen, A.L.; Albery, G.F.; Bett, B.; Brett-Major, D.M.; et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B 2021, 376, 20200358. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B Methodol. 1958, 20, 215–232. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ntampaka, P.; Niragire, F.; Nyaga, P.N.; Habarugira, G. Canine gastrointestinal nematodiases and associated risk factors in Kigali city, Rwanda. J. Parasitol. Res. 2021, 2021, 9956256. [Google Scholar] [CrossRef]
- Kiambi, S.G.; Fèvre, E.M.; Omolo, J.; Oundo, J.; De Glanville, W.A. Risk factors for acute human brucellosis in Ijara, north-eastern Kenya. PLoS Negl. Trop. Dis. 2020, 14, e0008108. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.K.; Chen, W.; Ruan, Z.; Pant, G.P.; Yang, Y.; Shah, L.P.; Cao, C.; Xu, Z.; Dhimal, M.; Lin, H. Mapping environmental suitability of scrub typhus in Nepal using MaxEnt and random forest models. Int. J. Environ. Res. Public Health 2019, 16, 4845. [Google Scholar] [CrossRef]
- Boleratz, B.L.; Oscar, T.P. Use of ComBase data to develop an artificial neural network model for nonthermal inactivation of Campylobacter jejuni in milk and beef and evaluation of model performance and data completeness using the acceptable prediction zones method. J. Food Saf. 2022, 42, e12983. [Google Scholar] [CrossRef]
- ZareBidaki, M.; Allahyari, E.; Zeinali, T.; Asgharzadeh, M. Occurrence and risk factors of brucellosis among domestic animals: An artificial neural network approach. Trop. Anim. Health Prod. 2022, 54, 62. [Google Scholar] [CrossRef]
- Denholm, S.; Brand, W.; Mitchell, A.; Wells, A.; Krzyzelewski, T.; Smith, S.; Wall, E.; Coffey, M. Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning. J. Dairy Sci. 2020, 103, 9355–9367. [Google Scholar] [CrossRef]
- Buccioni, F.; Purgatorio, C.; Maggio, F.; Garzoli, S.; Rossi, C.; Valbonetti, L.; Paparella, A.; Serio, A. Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms 2022, 10, 920. [Google Scholar] [CrossRef]
- Seekatz, A.M.; Panda, A.; Rasko, D.A.; Toapanta, F.R.; Eloe-Fadrosh, E.A.; Khan, A.Q.; Liu, Z.; Shipley, S.T.; DeTolla, L.J.; Sztein, M.B.; et al. Differential response of the cynomolgus macaque gut microbiota to Shigella infection. PLoS ONE 2013, 8, e64212. [Google Scholar] [CrossRef] [PubMed]
- Schiraldi, A.; Foschino, R. A phenomenological model to infer the microbial growth: A case study for psychrotrophic pathogenic bacteria. J. Appl. Microbiol. 2022, 132, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Adamczewski, K.; Staniewski, B.; Kowalik, J. The applicability of predictive microbiology tools for analysing Listeria monocytogenes contamination in butter produced by the traditional batch churning method. Int. Dairy J. 2022, 132, 105400. [Google Scholar] [CrossRef]
- Herron, C. Predicting the Food Safety and Shelf-Life Implications of Less-Than-Truckload (LTL) Temperature Abuse (TA) on Boneless Skinless Chicken Breast Fillets. Master’s Thesis, Auburn University, Auburn, AL, USA, 2022. [Google Scholar]
- UNEP and ILRI Report. Preventing the Next Pandemic—Zoonotic Diseases and How to Break the Chain of Transmission. 2020. Available online: https://www.unep.org/news-and-stories/statements/preventing-next-pandemic-zoonotic-diseases-and-how-break-chain?_ga=2.70220884.593849062.1660620561-341674026.1659287590 (accessed on 18 September 2022).
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chinnathambi, R.A.; Marquette, A.; Clark, T.; Johnson, A.; Selvaraj, D.F.; Vaughan, J.; Hanson, T.; Hanson, S.; Ranganathan, P.; Kaabouch, N. Visualizing and predicting culex tarsalis trapcounts for West Nile Virus (WNV) disease incidence using machine learning models. In Proceedings of the 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 581–587. [Google Scholar]
- Kirjušina, M.; Bakasejevs, E.; Pezzotti, P.; Pozio, E. Trichinella britovi biomass in naturally infected pine martens (Martes martes) of Latvia. Vet. Parasitol. 2016, 231, 110–114. [Google Scholar] [CrossRef]
- Mencía-Ares, O.; Argüello, H.; Puente, H.; Gómez-García, M.; Álvarez-Ordóñez, A.; Manzanilla, E.G.; Carvajal, A.; Rubio, P. Effect of antimicrobial use and production system on Campylobacter spp., Staphylococcus spp. and Salmonella spp. resistance in Spanish swine: A cross-sectional study. Zoonoses Public Health 2021, 68, 54–66. [Google Scholar] [CrossRef]
- Qekwana, D.N.; Oguttu, J.W.; Sithole, F.; Odoi, A. Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary academic hospital in South Africa. BMC Vet. Res. 2017, 13, 116. [Google Scholar] [CrossRef]
- Conner, J.G.; Smith, J.; Erol, E.; Locke, S.; Phillips, E.; Carter, C.N.; Odoi, A. Temporal trends and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory. PLoS ONE 2018, 13, e0200719. [Google Scholar] [CrossRef]
- Eberhard, F.E.; Klimpel, S.; Guarneri, A.A.; Tobias, N.J. Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput. Struct. Biotechnol. J. 2021, 19, 3051–3057. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 25, 1189–1232. [Google Scholar] [CrossRef]
- Price, A.; Okumura, A.; Haddock, E.; Feldmann, F.; Meade-White, K.; Sharma, P.; Artami, M.; Lipkin, W.I.; Threadgill, D.W.; Feldmann, H.; et al. Transcriptional correlates of tolerance and lethality in mice predict Ebola virus disease patient outcomes. Cell Rep. 2020, 30, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- Ak, Ç.; Ergönül, Ö.; Gönen, M. A prospective prediction tool for understanding Crimean–Congo haemorrhagic fever dynamics in Turkey. Clin. Microbiol. Infect. 2020, 26, 123.e1–123.e7. [Google Scholar] [CrossRef] [PubMed]
- Ak, Ç.; Ergönül, Ö.; Şencan, İ.; Torunoğlu, M.A.; Gönen, M. Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean–Congo hemorrhagic fever. PLoS Negl. Trop. Dis. 2018, 12, e0006737. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Khazaee, M.; Soleimani, M. An intelligent procedure for the detection and classification of chickens infected by clostridium perfringens based on their vocalization. Braz. J. Poult. Sci. 2015, 17, 537–544. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Chenar, S.S.; Deng, Z. Hybrid modeling and prediction of oyster norovirus outbreaks. J. Water Health 2021, 19, 254–266. [Google Scholar] [CrossRef]
- Yoon, H.; Jang, A.R.; Jung, C.; Ko, H.; Lee, K.N.; Lee, E. Risk Assessment Program of Highly Pathogenic Avian Influenza with Deep Learning Algorithm. Osong Public Health Res. Perspect. 2020, 11, 239. [Google Scholar] [CrossRef]
- Cuan, K.; Zhang, T.; Li, Z.; Huang, J.; Ding, Y.; Fang, C. Automatic Newcastle disease detection using sound technology and deep learning method. Comput. Electron. Agric. 2022, 194, 106740. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shen, L.; Jiang, C.; Sun, M.; Qiu, X.; Qian, J.; Song, S.; Hu, Q.; Yelixiati, H.; Liu, K. Predicting the Spatial-Temporal Distribution of Human Brucellosis in Europe Based on Convolutional Long Short-Term Memory Network. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 7658880. [Google Scholar] [CrossRef] [PubMed]
- Arning, N.; Sheppard, S.K.; Bayliss, S.; Clifton, D.A.; Wilson, D.J. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet. 2021, 17, e1009436. [Google Scholar] [CrossRef] [PubMed]
- Rizk, G.; Lavenier, D.; Chikhi, R. DSK: K-mer counting with very low memory usage. Bioinformatics 2013, 29, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zheng, Y.J.; Xue, Y.; Sheng, W.G.; Zhao, M.R. An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing 2017, 226, 16–22. [Google Scholar] [CrossRef]
- Liou, C.Y.; Cheng, W.C.; Liou, J.W.; Liou, D.R. Autoencoder for words. Neurocomputing 2014, 139, 84–96. [Google Scholar] [CrossRef]
- Pang, H.; McEgan, R.; Mishra, A.; Micallef, S.A.; Pradhan, A.K. Identifying and modeling meteorological risk factors associated with pre-harvest contamination of Listeria species in a mixed produce and dairy farm. Food Res. Int. 2017, 102, 355–363. [Google Scholar] [CrossRef]
- González-Barrio, D.; Maio, E.; Vieira-Pinto, M.; Ruiz-Fons, F. European rabbits as reservoir for Coxiella burnetii. Emerg. Infect. Dis. 2015, 21, 1055. [Google Scholar] [CrossRef]
- González-Barrio, D.; Velasco Avila, A.L.; Boadella, M.; Beltrán-Beck, B.; Barasona, J.Á.; Santos, J.P.; Queirós, J.; García-Pérez, A.L.; Barral, M.; Ruiz-Fons, F. Host and environmental factors modulate the exposure of free-ranging and farmed red deer (Cervus elaphus) to Coxiella burnetii. Appl. Environ. Microbiol. 2015, 81, 6223–6231. [Google Scholar] [CrossRef]
- Lupindu, A.M.; Dalsgaard, A.; Msoffe, P.L.; Ngowi, H.A.; Mtambo, M.M.; Olsen, J.E. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania. Prev. Vet. Med. 2015, 118, 477–482. [Google Scholar] [CrossRef]
- Xu, X.; Rothrock, M.J., Jr.; Reeves, J.; Kumar, G.D.; Mishra, A. Using E. coli population to predict foodborne pathogens in pastured poultry farms. Food Microbiol. 2022, 108, 104092. [Google Scholar] [CrossRef]
- Yoo, D.; Chun, B.C.; Hong, K.; Kim, J. Risk Prediction of Three Different Subtypes of Highly Pathogenic Avian Influenza Outbreaks in Poultry Farms: Based on Spatial Characteristics of Infected Premises in South Korea. Front. Vet. Sci. 2022, 9, 897763. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.P.; Chang, Y.M.; Brunton, L.A.; Parry, J.; Prosser, A.; Upton, P.; Rees, E.; Tearne, O.; Arnold, M.; Stevens, K.; et al. Decision tree machine learning applied to bovine tuberculosis risk factors to aid disease control decision making. Prev. Vet. Med. 2020, 175, 104860. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.P.; Chang, Y.M.; Brunton, L.A.; Prosser, A.; Upton, P.; Rees, E.; Tearne, O.; Arnold, M.; Stevens, K.; Drewe, J.A. A comparison of the value of two machine learning predictive models to support bovine tuberculosis disease control in England. Prev. Vet. Med. 2021, 188, 105264. [Google Scholar] [CrossRef] [PubMed]
- Britten, G.L.; Mohajerani, Y.; Primeau, L.; Aydin, M.; Garcia, C.; Wang, W.L.; Pasquier, B.; Cael, B.; Primeau, F.W. Evaluating the benefits of bayesian hierarchical methods for analyzing heterogeneous environmental datasets: A case study of marine organic carbon fluxes. Front. Environ. Sci. 2021, 9, 491636. [Google Scholar] [CrossRef]
- Tumusiime, D.; Isingoma, E.; Tashoroora, O.B.; Ndumu, D.B.; Bahati, M.; Nantima, N.; Mugizi, D.R.; Jost, C.; Bett, B. Mapping the risk of Rift Valley fever in Uganda using national seroprevalence data from cattle, sheep and goats. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hwang, D.; Rothrock, M.J., Jr.; Pang, H.; Guo, M.; Mishra, A. Predicting Salmonella prevalence associated with meteorological factors in pastured poultry farms in southeastern United States. Sci. Total Environ. 2020, 713, 136359. [Google Scholar] [CrossRef]
- Xu, X.; Rothrock, M.J., Jr.; Mohan, A.; Kumar, G.D.; Mishra, A. Using farm management practices to predict Campylobacter prevalence in pastured poultry farms. Poult. Sci. 2021, 100, 101122. [Google Scholar] [CrossRef]
- Bishop, A.P.; Amatulli, G.; Hyseni, C.; Pless, E.; Bateta, R.; Okeyo, W.A.; Mireji, P.O.; Okoth, S.; Malele, I.; Murilla, G.; et al. A machine learning approach to integrating genetic and ecological data in tsetse flies (Glossina pallidipes) for spatially explicit vector control planning. Evol. Appl. 2021, 14, 1762–1777. [Google Scholar] [CrossRef]
- Yoo, D.; Song, Y.; Choi, D.; Lim, J.S.; Lee, K.; Kang, T. Machine learning-driven dynamic risk prediction for highly pathogenic avian influenza at poultry farms in Republic of Korea: Daily risk estimation for individual premises. Transbound. Emerg. Dis. 2021. ahead of print. [Google Scholar] [CrossRef]
- Schreuder, J.; de Knegt, H.J.; Velkers, F.C.; Elbers, A.R.; Stahl, J.; Slaterus, R.; Stegeman, J.A.; de Boer, W.F. Wild Bird Densities and Landscape Variables Predict Spatial Patterns in HPAI Outbreak Risk across The Netherlands. Pathogens 2022, 11, 549. [Google Scholar] [CrossRef]
- Assefa, A.; Bihon, A.; Tibebu, A. Anthrax in the Amhara regional state of Ethiopia; spatiotemporal analysis and environmental suitability modeling with an ensemble approach. Prev. Vet. Med. 2020, 184, 105155. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, A.; Byrne, C. Creutzfeldt-Jakob Disease Prediction Using Machine Learning Techniques. In Proceedings of the 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), Victoria, BC, Canada, 9–12 August 2021; pp. 535–542. [Google Scholar]
- Evans, M.V.; Dallas, T.A.; Han, B.A.; Murdock, C.C.; Drake, J.M. Data-driven identification of potential Zika virus vectors. eLife 2017, 6, e22053. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.P.; Ma, T.F.; Ip, H.S.; Zhu, J. Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses. Transbound. Emerg. Dis. 2019, 66, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Bello, B.; Chourasia, P.; Punathil, R.; Zhou, Y.; Patterson, M. PWM2Vec: An Efficient Embedding Approach for Viral Host Specification from Coronavirus Spike Sequences. Biology 2022, 11, 418. [Google Scholar] [CrossRef]
- Fischhoff, I.R.; Castellanos, A.A.; Rodrigues, J.P.; Varsani, A.; Han, B.A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. R. Soc. B 2021, 288, 20211651. [Google Scholar] [CrossRef]
- Brierley, L.; Fowler, A. Predicting the animal hosts of coronaviruses from compositional biases of spike protein and whole genome sequences through machine learning. PLoS Pathog. 2021, 17, e1009149. [Google Scholar] [CrossRef] [PubMed]
- Ndraha, N.; Hsiao, H.I.; Hsieh, Y.Z.; Pradhan, A.K. Predictive models for the effect of environmental factors on the abundance of Vibrio parahaemolyticus in oyster farms in Taiwan using extreme gradient boosting. Food Control 2021, 130, 108353. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. [Google Scholar]
- Mollentze, N.; Babayan, S.A.; Streicker, D.G. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 2021, 19, e3001390. [Google Scholar] [CrossRef] [PubMed]
- Bergner, L.M.; Mollentze, N.; Orton, R.J.; Tello, C.; Broos, A.; Biek, R.; Streicker, D.G. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 2021, 13, 252. [Google Scholar] [CrossRef]
- Wieland, R.; Kuhls, K.; Lentz, H.H.; Conraths, F.; Kampen, H.; Werner, D. Combined climate and regional mosquito habitat model based on machine learning. Ecol. Model. 2021, 452, 109594. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Ayoola, M.B.; Pillai, N.; Nanduri, B.; Rothrock, M.J.; Ramkumar, M. Preharvest Environmental and Management Drivers of Multidrug Resistance in Major Bacterial Zoonotic Pathogens in Pastured Poultry Flocks. Microorganisms 2022, 10, 1703. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.G.; Pattanaik, A.; Vyas, N.; Saxena, D.; Webb, C.; Sawleshwarkar, S.; Mukhopadhyay, C. High risk landscapes of Japanese encephalitis virus outbreaks in India converge on wetlands, rainfed agriculture, wild Ardeidae, and domestic pigs. medRxiv 2021. [Google Scholar] [CrossRef]
- Walsh, M.G.; Willem de Smalen, A.; Mor, S.M. Wetlands, wild Bovidae species richness and sheep density delineate risk of Rift Valley fever outbreaks in the African continent and Arabian Peninsula. PLoS Negl. Trop. Dis. 2017, 11, e0005756. [Google Scholar] [CrossRef] [PubMed]
- Valiakos, G.; Giannakopoulos, A.; Spanos, S.; Korbou, F.; Chatzopoulos, D.; Mavrogianni, V.; Spyrou, V.; Fthenakis, G.; Billinis, C. Use of geographical information system and ecological niche model to analyse potential exposure of small ruminants to Coxiella burnetii infection in central Greece. Small Rumin. Res. 2017, 147, 77–82. [Google Scholar] [CrossRef]
- Walsh, M.G.; Mor, S.M.; Hossain, S. The elephant—Livestock interface modulates anthrax suitability in India. Proc. R. Soc. B 2019, 286, 20190179. [Google Scholar] [CrossRef]
- Tu, T.; Xu, K.; Xu, L.; Gao, Y.; Zhou, Y.; He, Y.; Liu, Y.; Liu, Q.; Ji, H.; Tang, W. Association between meteorological factors and the prevalence dynamics of Japanese encephalitis. PLoS ONE 2021, 16, e0247980. [Google Scholar] [CrossRef]
- McMeekin, T.; Mellefont, L.; Ross, T. Predictive microbiology: Past, present and future. Model. Microorg. Food 2007, 1, 7–11. [Google Scholar]
- Franssen, F.; Swart, A.; van der Giessen, J.; Havelaar, A.; Takumi, K. Parasite to patient: A quantitative risk model for Trichinella spp. in pork and wild boar meat. Int. J. Food Microbiol. 2017, 241, 262–275. [Google Scholar] [CrossRef]
- Amado, T.M.; Bunuan, M.R.; Chicote, R.F.; Espenida, S.M.C.; Masangcay, H.L.; Ventura, C.H.; Tolentino, L.K.S.; Padilla, M.V.C.; Madrigal, G.A.M.; Enriquez, L.A.C. Development of predictive models using machine learning algorithms for food adulterants bacteria detection. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar]
- Tanui, C.K.; Benefo, E.O.; Karanth, S.; Pradhan, A.K. A Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens 2022, 11, 691. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Outbreak of Salmonella Infections Linked to Gravel Ridge Farms Shell Eggs-Final Update. 2018. Available online: https://www.cdc.gov/salmonella/enteritidis-09-18/index.html (accessed on 18 September 2022).
- Park, J.H.; Kang, M.S.; Park, K.M.; Lee, H.Y.; Ok, G.S.; Koo, M.S.; Hong, S.I.; Kim, H.J. A dynamic predictive model for the growth of Salmonella spp. and Staphylococcus aureus in fresh egg yolk and scenario-based risk estimation. Food Control 2020, 118, 107421. [Google Scholar] [CrossRef]
- Dourou, D.; Grounta, A.; Argyri, A.A.; Froutis, G.; Tsakanikas, P.; Nychas, G.J.E.; Doulgeraki, A.I.; Chorianopoulos, N.G.; Tassou, C.C. Rapid Microbial Quality Assessment of Chicken Liver Inoculated or Not With Salmonella Using FTIR Spectroscopy and Machine Learning. Front. Microbiol. 2021, 11, 623788. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, L.; Chen, M.; Yan, W. Modeling for predicting the time to detection of staphylococcal enterotoxin a in cooked chicken product. Front. Microbiol. 2018, 9, 1536. [Google Scholar] [CrossRef] [PubMed]
- Bulat, F.N.; Kılınç, B.; Atalay, S.D. Microbial ecology of different sardine parts stored at different temperatures and the development of prediction models. Food Biosci. 2020, 38, 100770. [Google Scholar] [CrossRef]
- Jeremy, W.; Dan, V.; Sean, W. A Theoretical Foundation for Inductive Transfer; Brigham Young University, College of Physical and Mahematical Sciences: Provo, UT, USA, 2005. [Google Scholar]
- Chang, M.W.; Ratinov, L.A.; Roth, D.; Srikumar, V. Importance of Semantic Representation: Dataless Classification. In Proceedings of the 23rd National Conference on Artificial Intelligence, Chicago IL, USA, 13–17 July 2008; Volume 2, pp. 830–835. [Google Scholar]
Model | Application | Etiology | Reference |
---|---|---|---|
Logistic Regression | disease prediction | Campylobacter Salmonella Staphylococcus | Mencía-Ares et al., 2021 [21] |
disease prediction | Staphylococcus spp. | Qekwana et al., 2017 [22] | |
disease prediction | Staphylococcus spp. | Conner et al., 2018 [23] | |
contamination factor | Coxiella burnetii | González-Barrio et al., 2015 [41] | |
contamination factor | Coxiella burnetii | González-Barrio et al., 2015 [42] | |
contamination factor | Escherichia coli | Lupindu et al., 2015 [43] | |
contamination factor | Campylobacter Salmonella Listeria | Xu et al., 2022 [44] | |
Random forest | disease prediction | Ebola virus | Price et al., 2020 [26] |
contamination factor | Salmonella | hwang et al., 2020 [50] | |
contamination factor | Campylobacter | Xu et al., 2021 [51] | |
contamination factor | Glossina pallidipes | Bishop et al., 2021 [52] | |
contamination factor | Avian influenza | Schreuder et al., 2022 [54] | |
contamination factor | SARS-CoV-2 | Brierley and Fowler 2021 [61] | |
contamination factor | SARS-CoV-2 | Fischhoff et al., 2021 [60] | |
Gradient boosted regression | contamination factor | Zika Virus | Evans et al., 2017 [57] |
contamination factor | Avian influenza viruses | Walsh et al., 2019 [58] | |
Poisson Point Process | contamination factor | Japanese encephalitis virus | Walsh et al., 2021 [69] |
Baysian Model | contamination factor | Rift Valley fever | Tumusiime et al., 2022 [49] |
Gaussian Process | disease prediction | Crimean-Congo haemorrhagic fever | Ak et al., 2020 [27] Ak et al., 2018 [28] |
Maximum Entropy Model | contamination factor | Rift Valley fever | Walsh et al., 2017 [70] |
contamination factor | C. burnetii | Valiakos et al., 2017 [71] | |
contamination factor | Anthrax | Walsh et al., 2019 [72] | |
Logistic regression, Random forest, Gradient boosting | disease prediction | Trypanosoma cruzi | Eberhard et al., 2021 [24] |
Logistic regression, Random Forest | contamination factor | Listeria spp. | Pang et al., 2017 [40] |
Linear Regression | disease prediction | Trichinella spp. | Kirjušina et al., 2016 [20] |
Support Vector Machine, least square regression | disease prediction | Culex Tarsalis | Chinnathambi et al., 2020 [19] |
XGBoost SHAP | contamination factor | Vibrio parahaemolyticus | Ndraha et al., 2021 [62] |
contamination factor | Rabies virus, Hepeviridae, CoronaviridaeReoviridae, Astroviridae, Picornaviridae | Bergner et al., 2021 [65] | |
contamination factor | West Nile virus | Wieland et al., 2021 [66] | |
Artificial Neural Network | disease prediction | Clostridium perfringens | Sadeghi et al., 2015 [29] |
disease prediction | Norovirus | Chenar and Deng 2021 [31] | |
disease prediction | Avian influenza virus | Yoon et al., 2020 [32] | |
disease prediction | Bovine tuberculosis | Denholm et al., 2020 [10] | |
Long short term memory | disease prediction | Newcastle disease Virus | Cuan et al., 2022 [33] |
disease prediction | Brucellosis | Shen et al., 2022 [35] | |
contamination factor | Japanese encephalitis virus | Tu et al., 2021 [73] | |
Long short-term memory network, XGboost Recurrent neural network, Random forest | disease prediction | Campylobacteriosis | Arning et al., 2021 [36] |
Auto-Encoder | disease prediction | Campylobacteriosis | Song et al., 2017 [38] |
Bayesian logistic regression, XGBoost | contamination factor | Avian influenza virus | Yoo et al., 2022 [45] |
Decision trees, Logistic regression | contamination factor | Bovine tuberculosis | Romero et al., 2020 [46] |
Random Forest, LASSO regression | contamination factor | Bovine tuberculosis | Romero et al., 2021 [47] |
Random Forest, XGBoost | contamination factor | Avian influenza | Yoo et al., 2021 [53] |
Neural Network, Random forest, Maximum Entropy | contamination factor | Anthrax | Assefa et al., 2020 [55] |
Recurrent neural network, Random forest | contamination factor | Creutzfeldt-Jakob disease | Bhakta and Byrne 2021 [56] |
Random Forest, XGBoost, Multilayer Perceptron Generative Adversarial Network, Auto-Encoder, SHAP | contamination factor | Salmonella, Listeria, and Campylobacter | Ayoola et al., 2022 [68] |
Model | Application | Etiology | Datasource | Reference |
---|---|---|---|---|
Monte Carlo simulation | population growth | Salmonella spp. | fresh eggs | Park et al., 2020 [79] |
Support Vector Regression | population growth | Salmonella spp. | chicken | Dourou et al., 2021 [80] |
Polynomial Regression | population growth | Staphylococcus aureus | chicken | Hu et al., 2018 [81] |
K-Nearest Neighbors, Support Vector Machine, Random Forest, Naive Bayes Classifier and Artificial Neural Network | pathogen detection | Escherichia coli Staphylococcus aureus | beef | Amado et al., 2019 [76] |
Random forest, Support vector machine, Radial kernel, Stochastic gradient boosting, Logistic boost | pathogen detection | Listeria monocytogenes | dairy, fruits, leafy greens, meat, poultry, seafood | Tanui et al., 2022 [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillai, N.; Ramkumar, M.; Nanduri, B. Artificial Intelligence Models for Zoonotic Pathogens: A Survey. Microorganisms 2022, 10, 1911. https://doi.org/10.3390/microorganisms10101911
Pillai N, Ramkumar M, Nanduri B. Artificial Intelligence Models for Zoonotic Pathogens: A Survey. Microorganisms. 2022; 10(10):1911. https://doi.org/10.3390/microorganisms10101911
Chicago/Turabian StylePillai, Nisha, Mahalingam Ramkumar, and Bindu Nanduri. 2022. "Artificial Intelligence Models for Zoonotic Pathogens: A Survey" Microorganisms 10, no. 10: 1911. https://doi.org/10.3390/microorganisms10101911
APA StylePillai, N., Ramkumar, M., & Nanduri, B. (2022). Artificial Intelligence Models for Zoonotic Pathogens: A Survey. Microorganisms, 10(10), 1911. https://doi.org/10.3390/microorganisms10101911