Two-Drug Regimens for HIV—Current Evidence, Research Gaps and Future Challenges
Abstract
:1. Introduction
2. Methods and Search Strategy
2.1. Efficacy
2.1.1. DR Based on Boosted Protease Inhibitors
2.1.2. Integrase Strand Transfer Inhibitor-Based 2DR
2.1.3. Non-Nucleoside Reverse Transcriptase Inhibitor-Based 2DR
2.2. Safety
2.2.1. DR Based on Boosted Protease Inhibitors
2.2.2. Integrase Strand Transfer Inhibitor-Based 2DR
2.3. Emergence of Drug-Resistance Mutations
2.4. Inflammation and Low-Level Viremia
2.4.1. Inflammatory Biomarkers
2.4.2. Low-Level HIV Replication
2.5. Special Scenarios
2.5.1. Severe Immunosuppression
2.5.2. HIV Viral Load above 500,000 Copies/mL
2.5.3. Test-and-Treat Scenarios
2.6. Novel Formulations
2.6.1. Clinical Trials in Naïve-to-ART Patients
2.6.2. Clinical Trials in Treatment-Experienced Patients
2.7. Remaining Questions and Research Gap Areas
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorjee, K.; Choden, T.; Baxi, S.M.; Steinmaus, C.; Reingold, A.L. Risk of Cardiovascular Disease Associated with Exposure to Abacavir among Individuals with HIV: A Systematic Review and Meta-Analyses of Results from 17 Epidemiologic Studies. Int. J. Antimicrob. Agents 2018, 52, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Orden, S.; Andújar, I.; Collado-Diaz, V.; Núñez-Delgado, S.; Galindo, M.J.; Estrada, V.; Apostolova, N.; Esplugues, J.v. Cardiovascular Toxicity of Abacavir: A Clinical Controversy in Need of a Pharmacological Explanation. Aids 2017, 31, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Diallo, Y.L.; Ollivier, V.; Joly, V.; Faille, D.; Catalano, G.; Jandrot-Perrus, M.; Rauch, A.; Yeni, P.; Ajzenberg, N. Abacavir Has No Prothrombotic Effect on Platelets in Vitro. J. Antimicrob. Chemother. 2016, 71, 3506–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, E.; Larrousse, M.; Podzamczer, D.; Pérez, I.; Gutiérrez, F.; Loncá, M.; Barragán, P.; Deulofeu, R.; Casamitjana, R.; Mallolas, J.; et al. Abacavir-Based Therapy Does Not Affect Biological Mechanisms Associated with Cardiovascular Dysfunction. AIDS 2010, 24, F1–F9. [Google Scholar] [CrossRef]
- Madzime, M.; Rossouw, T.M.; Theron, A.J.; Anderson, R.; Steel, H.C. Interactions of HIV and Antiretroviral Therapy With Neutrophils and Platelets. Front. Immunol. 2021, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Amin, J.; Cooper, D.A.; Carr, A.; Kelleher, A.D.; Bloch, M.; Baker, D.; Woolley, I.; Emery, S. Abacavir Does Not Affect Circulating Levels of Inflammatory or Coagulopathic Biomarkers in Suppressed HIV: A Randomized Clinical Trial. Aids 2010, 24, 2657–2663. [Google Scholar] [CrossRef]
- Poveda, E.; Tabernilla, A.; Fitzgerald, W.; Salgado-Barreira, Á.; Grandal, M.; Pérez, A.; Mariño, A.; Álvarez, H.; Valcarce, N.; González-García, J.; et al. Massive Release of CD9+ Microvesicles in Human Immunodeficiency Virus Infection, Regardless of Virologic Control. J. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Taylor, K.A.; Smyth, E.; Rauzi, F.; Cerrone, M.; Khawaja, A.A.; Gazzard, B.; Nelson, M.; Boffito, M.; Emerson, M. Pharmacological Impact of Antiretroviral Therapy on Platelet Function to Investigate Human Immunodeficiency Virus-Associated Cardiovascular Risk. Br. J. Pharmacol. 2019, 176, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Mocroft, A.; Lundgren, J.D.; Ross, M.; Fux, C.A.; Reiss, P.; Moranne, O.; Morlat, P.; Monforte, A.d.A.; Kirk, O.; Ryom, L. Cumulative and Current Exposure to Potentially Nephrotoxic Antiretrovirals and Development of Chronic Kidney Disease in HIV-Positive Individuals with a Normal Baseline Estimated Glomerular Filtration Rate: A Prospective International Cohort Study. Lancet HIV 2016, 3, e23–e32. [Google Scholar] [CrossRef]
- Rao, M.; Dadey, L.; Glowa, T.; Veldkamp, P. Fanconi Syndrome Leading to Hypophosphatemic Osteomalacia Related to Tenofovir Use. Infect. Dis. Rep. 2021, 13, 448–453. [Google Scholar] [CrossRef]
- Hadzimuratovic, B.; Haschka, J.; Hartmann, M.A.; Blouin, S.; Fratzl-Zelman, N.; Zwerina, J.; Kocijan, R. Impact of Tenofovir Disoproxil-Induced Fanconi Syndrome on Bone Material Quality: A Case Report. JBMR Plus 2021, 5, e10506. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, L.; Williams, D.; Bailey, A.; Jones, R.; Ibrahim, F.; Musso, C.; Burling, K.; Barbini, B.; Campbell, L.; Post, F. Early Safety of Tenofovir Alafenamide in Patients with a History of Tubulopathy on Tenofovir Disoproxil Fumarate: A Randomized Controlled Clinical Trial. HIV Med. 2020, 21, 198–203. [Google Scholar] [CrossRef] [PubMed]
- DeJesus, E.; Haas, B.; Segal-Maurer, S.; Ramgopal, M.N.; Mills, A.; Margot, N.; Liu, Y.-P.; Makadzange, T.; McCallister, S. Superior Efficacy and Improved Renal and Bone Safety After Switching from a Tenofovir Disoproxil Fumarate- to a Tenofovir Alafenamide-Based Regimen Through 96 Weeks of Treatment. AIDS Res. Hum. Retrovir. 2018, 34, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Post, F.A.; Yazdanpanah, Y.; Schembri, G.; Lazzarin, A.; Reynes, J.; Maggiolo, F.; Yan, M.; Abram, M.E.; Tran-Muchowski, C.; Cheng, A.; et al. Efficacy and Safety of Emtricitabine/Tenofovir Alafenamide (FTC/TAF) vs. Emtricitabine/Tenofovir Disoproxil Fumarate (FTC/TDF) as a Backbone for Treatment of HIV-1 Infection in Virologically Suppressed Adults: Subgroup Analysis by Third Agent of a Randomized, Double-Blind, Active-Controlled Phase 3 Trial. HIV Clin. Trials 2017, 18, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Post, F.A.; Arribas, J.R.; Eron, J.J.; Wohl, D.A.; Clarke, A.E.; Sax, P.E.; Stellbrink, H.J.; Esser, S.; Pozniak, A.L.; et al. Renal Safety of Tenofovir Alafenamide vs. Tenofovir Disoproxil Fumarate: A Pooled Analysis of 26 Clinical Trials. AIDS 2019, 33, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Mallon, P.W.G.; Brunet, L.; Hsu, R.K.; Fusco, J.S.; Mounzer, K.C.; Prajapati, G.; Beyer, A.P.; Wohlfeiler, M.B.; Fusco, G.P. Weight Gain before and after Switch from TDF to TAF in a U.S. Cohort Study. J. Int. AIDS Soc. 2021, 24, 25–30. [Google Scholar] [CrossRef]
- Martínez-Sanz, J.; Blanco, J.; Muriel, A.; Pérez-Elías, M.J.; Rubio-Martín, R.; Berenguer, J.; Peraire, J.; Bernal, E.; Martínez, O.J.; Serrano-Villar, S.; et al. Weight Changes after Antiretroviral Therapy Initiation in CoRIS (Spain): A Prospective Multicentre Cohort Study. J. Int. AIDS Soc. 2021, 24, e25732. [Google Scholar] [CrossRef]
- Shokoohi, M.; Gupta, M.; Crouzat, F.; Smith, G.; Kovacs, C.; Brunetta, J.; Chang, B.; Knox, D.; Acsai, M.; Merkley, B.; et al. Changes in Renal and Metabolic Indices after Switching from Tenofovir Disoproxil Fumarate– to Tenofovir Alafenamide–Containing ART among Individuals with HIV in Canada: A Retrospective Study. Int. J. STD AIDS 2021, 32, 861–871. [Google Scholar] [CrossRef]
- Arribas, J.R.; Girard, P.-M.; Landman, R.; Pich, J.; Mallolas, J.; Martínez-Rebollar, M.; Zamora, F.X.; Estrada, V.; Crespo, M.; Podzamczer, D.; et al. Dual Treatment with Lopinavir–Ritonavir plus Lamivudine versus Triple Treatment with Lopinavir–Ritonavir plus Lamivudine or Emtricitabine and a Second Nucleos(t)Ide Reverse Transcriptase Inhibitor for Maintenance of HIV-1 Viral Suppression (OLE): A Random. Lancet Infect. Dis. 2015, 15, 785–792. [Google Scholar] [CrossRef]
- Cahn, P.; Andrade-Villanueva, J.; Arribas, J.R.; Gatell, J.M.; Lama, J.R.; Norton, M.; Patterson, P.; Madero, J.S.; Sued, O.; Figueroa, M.I.; et al. Dual Therapy with Lopinavir and Ritonavir plus Lamivudine versus Triple Therapy with Lopinavir and Ritonavir plus Two Nucleoside Reverse Transcriptase Inhibitors in Antiretroviral-Therapy-Naive Adults with HIV-1 Infection: 48 Week Results of the Randomise. Lancet Infect. Dis. 2014, 14, 572–580. [Google Scholar] [CrossRef]
- Perez-Molina, J.A.; Rubio, R.; Rivero, A.; Pasquau, J.; Suárez-Lozano, I.; Riera, M.; Estébanez, M.; Palacios, R.; Sanz-Moreno, J.; Troya, J.; et al. Simplification to Dual Therapy (Atazanavir/Ritonavir1lamivudine) versus Standard Triple Therapy [Atazanavir/Ritonavir1two Nucleos(t)Ides] in Virologically Stable Patients on Antiretroviral Therapy: 96 Week Results from an Open-Label, Non-Inferiority, Rand. J. Antimicrob. Chemother. 2017, 72, 246–253. [Google Scholar] [CrossRef] [PubMed]
- di Giambenedetto, S.; Fabbiani, M.; Quiros Roldan, E.; Latini, A.; D’Ettorre, G.; Antinori, A.; Castagna, A.; Orofino, G.; Francisci, D.; Chinello, P.; et al. Treatment Simplification to Atazanavir/Ritonavir+lamivudine versus Maintenance of Atazanavir/Ritonavir+two NRTIs in Virologically Suppressed HIV-1-Infected Patients: 48 Week Results from a Randomized Trial (ATLAS-M). J. Antimicrob. Chemother. 2017, 72, 1163–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, F.; Ribera, E.; Lagarde, M.; Pérez-Valero, I.; Palacios, R.; Iribarren, J.A.; Payeras, A.; Domingo, P.; Sanz, J.; Cervero, M.; et al. Dual Therapy with Darunavir and Ritonavir Plus Lamivudine vs Triple Therapy with Darunavir and Ritonavir Plus Tenofovir Disoproxil Fumarate and Emtricitabine or Abacavir and Lamivudine for Maintenance of Human Immunodeficiency Virus Type 1 Viral Suppressi. Clin. Infect. Dis. 2017, 65, 2112–2118. [Google Scholar] [CrossRef]
- Taiwo, B.; Zheng, L.; Gallien, S.; Matining, R.M.; Kuritzkes, D.R.; Wilson, C.C.; Berzins, B.I.; Acosta, E.P.; Bastow, B.; Kim, P.S.; et al. Efficacy of a Nucleoside-Sparing Regimen of Darunavir/Ritonavir plus Raltegravir in Treatment-Naive HIV-1-Infected Patients (ACTG A5262). AIDS 2011, 25, 2113–2122. [Google Scholar] [CrossRef] [Green Version]
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Durable Efficacy of Dolutegravir Plus Lamivudine in Antiretroviral Treatment–Naive Adults With HIV-1 Infection: 96-Week Results From the GEMINI-1 and GEMINI-2 Randomized Clinical Trials. JAIDS J. Acquir. Immune Defic. Syndr. 2020, 83, 310–318. [Google Scholar] [CrossRef] [Green Version]
- van Wyk, J.; Ajana, F.; Bisshop, F.; de Wit, S.; Osiyemi, O.; Portilla Sogorb, J.; Routy, J.-P.; Wyen, C.; Ait-Khaled, M.; Nascimento, M.C.; et al. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Fixed-Dose 2-Drug Regimen vs Continuing a Tenofovir Alafenamide–Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Phas. Clin. Infect. Dis. 2020, 71, 1920–1929. [Google Scholar] [CrossRef] [Green Version]
- GESIDA. Documento de Consenso de Gesida/Plan Nacional Sobre el Sida Respecto al Tratamiento Antirretroviral en Adultos Infectados por el Virus de la Inmunodeficiencia Humana; GESIDA: Madrid, Spain, 2019. [Google Scholar]
- Bartlett, J.G. DNSS Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Dep. Health Hum. Serv. 2018, 40, 42–43. [Google Scholar]
- EACS Guidelines Version11.0; October 2021. Available online: https://www.eacsociety.org/media/final2021eacsguidelinesv11.0_oct2021.pdf (accessed on 15 January 2022).
- Boyd, M. Ritonavir-Boosted Lopinavir plus Nucleoside or Nucleotide Reverse Transcriptase Inhibitors versus Ritonavir-Boosted Lopinavir plus Raltegravir for Treatment of HIV-1 Infection in Adults with Virological Failure of a Standard First-Line ART Regimen (SECOND. Lancet 2013, 381, 2091–2099. [Google Scholar] [CrossRef]
- la Rosa, A.M.; Harrison, L.J.; Taiwo, B.; Wallis, C.L.; Zheng, L.; Kim, P.; Kumarasamy, N.; Hosseinipour, M.C.; Jarocki, B.; Mellors, J.W.; et al. Raltegravir in Second-Line Antiretroviral Therapy in Resource-Limited Settings (SELECT): A Randomised, Phase 3, Non-Inferiority Study. Lancet HIV 2016, 3, e247–e258. [Google Scholar] [CrossRef] [Green Version]
- Paton, N.I.; Kityo, C.; Hoppe, A.; Reid, A.; Kambugu, A.; Lugemwa, A.; van Oosterhout, J.J.; Kiconco, M.; Siika, A.; Mwebaze, R.; et al. Assessment of Second-Line Antiretroviral Regimens for HIV Therapy in Africa. N. Engl. J. Med. 2014, 371, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Perez-Molina, J.A.; Pulido, F.; di Giambenedetto, S.; Ribera, E.; Moreno, S.; Zamora, J.; Coscia, C.; Alejos, B.; Pitch, J.; Gatell, J.M.; et al. Individual Patient Data Meta-Analysis of Randomized Controlled Trials of Dual Therapy with a Boosted PI plus Lamivudine for Maintenance of Virological Suppression: GeSIDA Study 9717. J. Antimicrob. Chemother. 2018, 73, 2927–2935. [Google Scholar] [CrossRef] [PubMed]
- Maggiolo, F.; Gianotti, N.; Comi, L.; di Filippo, E.; Fumagalli, L.; Nozza, S.; Galli, L.; Valenti, D.; Rizzi, M.; Castagna, A. Rilpivirine plus Cobicistat-Boosted Darunavir as a Two-Drug Switch Regimen in HIV-Infected, Virologically Suppressed Subjects on Steady Standard Three-Drug Therapy: A Randomized, Controlled, Non-Inferiority Trial (PROBE 2). J. Antimicrob. Chemother. 2020, 75, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Punekar, Y.S.; Parks, D.; Joshi, M.; Kaur, S.; Evitt, L.; Chounta, V.; Radford, M.; Jha, D.; Ferrante, S.; Sharma, S.; et al. Effectiveness and Safety of Dolutegravir Two-Drug Regimens in Virologically Suppressed People Living with HIV: A Systematic Literature Review and Meta-Analysis of Real-World Evidence. HIV Med. 2021, 22, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Llibre, J.M.; Hung, C.C.; Brinson, C.; Castelli, F.; Girard, P.M.; Kahl, L.P.; Blair, E.A.; Angelis, K.; Wynne, B.; Vandermeulen, K.; et al. Efficacy, Safety, and Tolerability of Dolutegravir-Rilpivirine for the Maintenance of Virological Suppression in Adults with HIV-1: Phase 3, Randomised, Non-Inferiority SWORD-1 and SWORD-2 Studies. Lancet 2018, 391, 839–849. [Google Scholar] [CrossRef]
- Molina, J.M.; Yazdanpanah, Y.; Afani Saud, A.; Bettacchi, C.; Chahin Anania, C.; DeJesus, E.; Olsen Klopfer, S.; Grandhi, A.; Eves, K.; Robertson, M.N.; et al. Efficacy and Safety of Switching to Dolutegravir with Boosted Darunavir in Virologically Suppressed Adults with HIV-1: A Randomized, Open-Label, Multicenter, Phase 3, Noninferiority Trial: The DUALIS Study. J. Microbiol. Immunol. Infect. 2019, 52, 1–8. [Google Scholar] [CrossRef]
- Navarro, J.; Santos, J.R.; Silva, A.; Burgos, J.; Falcó, V.; Ribera, E.; Imaz, A.; Curran, A. Effectiveness of Once/Day Dolutegravir Plus Boosted Darunavir as a Switch Strategy in Heavily Treated Patients with Human Immunodeficiency Virus. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 501–507. [Google Scholar] [CrossRef]
- Vizcarra, P.; Fontecha, M.; Monsalvo, M.; Vivancos, M.J.; Rojo, A.; Casado, J.L. Efficacy and Safety of Dolutegravir plus Boosted-Darunavir Dual Therapy among Highly Treatment-Experienced Patients. Antivir. Ther. 2019, 24, 467–471. [Google Scholar] [CrossRef]
- van Leth, F.; Phanuphak, P.; Ruxrungtham, K.; Baraldi, E.; Miller, S.; Gazzard, B.; Cahn, P.; Lalloo, U.G.; van der Westhuizen, I.P.; Malan, D.R.; et al. Comparison of First-Line Antiretroviral Therapy with Regimens Including Nevirapine, Efavirenz, or Both Drugs, plus Stavudine and Lamivudine: A Randomised Open-Label Trial, the 2NN Study. Lancet 2004, 363, 1253–1263. [Google Scholar] [CrossRef]
- Cahn, P.; Sierra Madero, J.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.C.; Rockstroh, J.K.; Girard, P.M.; Sievers, J.; et al. Three-Year Durable Efficacy of Dolutegravir plus Lamivudine in Antiretroviral Therapy—Naive Adults with Hiv-1 Infection. Aids 2022, 36, 39–48. [Google Scholar] [CrossRef]
- de Miguel, R.; Rial-Crestelo, D.; Dominguez-Dominguez, L.; Montejano, R.; Esteban-Cantos, A.; Aranguren-Rivas, P.; Stella-Ascariz, N.; Bisbal, O.; Bermejo-Plaza, L.; Garcia-Alvarez, M.; et al. Dolutegravir plus Lamivudine for Maintenance of HIV Viral Suppression in Adults with and without Historical Resistance to Lamivudine: 48-Week Results of a Non-Randomized, Pilot Clinical Trial (ART-PRO). EBioMedicine 2020, 55, 102779. [Google Scholar] [CrossRef]
- Joly, V.; Burdet, C.; Landman, R.; Vigan, M.; Charpentier, C.; Katlama, C.; Cabié, A.; Benalycherif, A.; Peytavin, G.; Yeni, P.; et al. Dolutegravir and Lamivudine Maintenance Therapy in HIV-1 Virologically Suppressed Patients: Results of the ANRS 167 Trial (LAMIDOL). J. Antimicrob. Chemother. 2019, 74, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Blick, G.; Cerreta, E.; Mancini, G.C.A. SOLAR 3D: A Prospective Study Switching to DTG/3TC from 3- or 4-Drug ART for Maintenance of Viral Suppression with Historic M184V/I Mutation and Prior Virological Failures: 48 Week Primary Endpoint Results. In Proceedings of the 18th European AIDS Conference (EACS), London, UK, 27–30 October 2021. [Google Scholar]
- Lambert-Niclot, S.; George, E.C.; Pozniak, A.; White, E.; Schwimmer, C.; Jessen, H.; Johnson, M.; Dunn, D.; Perno, C.F.; Clotet, B.; et al. Antiretroviral Resistance at Virological Failure in the NEAT 001/ANRS 143 Trial: Raltegravir plus Darunavir/Ritonavir or Tenofovir/Emtricitabine plus Darunavir/Ritonavir as First-Line ART. J. Antimicrob. Chemother. 2016, 71, 1056–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanal, S.; Schank, M.; el Gazzar, M.; Moorman, J.P.; Yao, Z.Q. Hiv-1 Latency and Viral Reservoirs: Existing Reversal Approaches and Potential Technologies, Targets, and Pathways Involved in Hiv Latency Studies. Cells 2021, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Banga, R.; Munoz, O.; Perreau, M. HIV Persistence in Lymph Nodes. Curr. Opin. HIV AIDS 2021, 16, 209–214. [Google Scholar] [CrossRef]
- Palmer, C.S.; Henstridge, D.C.; Yu, D.; Singh, A.; Balderson, B.; Duette, G.; Cherry, C.L.; Anzinger, J.J.; Ostrowski, M.; Crowe, S.M. Emerging Role and Characterization of Immunometabolism: Relevance to HIV Pathogenesis, Serious Non-AIDS Events, and a Cure. J. Immunol. 2016, 196, 4437–4444. [Google Scholar] [CrossRef] [Green Version]
- So-Armah, K.; Freiberg, M.S. HIV and Cardiovascular Disease: Update on Clinical Events, Special Populations, and Novel Biomarkers. Curr. HIV/AIDS Rep. 2018, 15, 233–244. [Google Scholar] [CrossRef]
- Bernardino, J.I.; Mocroft, A.; Mallon, P.W.; Wallet, C.; Gerstoft, J.; Russell, C.; Reiss, P.; Katlama, C.; de Wit, S.; Richert, L.; et al. Bone Mineral Density and Inflammatory and Bone Biomarkers after Darunavir-Ritonavir Combined with Either Raltegravir or Tenofovir-Emtricitabine in Antiretroviral-Naive Adults with HIV-1: A Substudy of the NEAT001/ANRS143 Randomised Trial. Lancet HIV 2015, 2, e464–e473. [Google Scholar] [CrossRef]
- Gianotti, N.; Galli, L.; Poli, A.; della Torre, L.; Vinci, C.; Carini, E.; Galli, A.; Nozza, S.; Spagnuolo, V.; Muccini, C.; et al. Residual viremia in HIV-infected patients who continue a two-drug or switch to a three-drug integrase strand transfer inhibitor based regimen. Res. Lett. 2021, 35, 1513–1516. [Google Scholar] [CrossRef]
- Mussini, C.; Lorenzini, P.; Cozzi-Lepri, A.; Marchetti, G.; Rusconi, S.; Gori, A.; Nozza, S.; Lichtner, M.; Antinori, A.; Cossarizza, A.; et al. Switching to Dual/Monotherapy Determines an Increase in CD8+ in HIV-Infected Individuals: An Observational Cohort Study. BMC Med. 2018, 16, 79. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H. Residual Proviral Reservoirs: A High Risk for Hiv Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021, 13, 335. [Google Scholar] [CrossRef]
- Lombardi, F.; Belmonti, S.; Quiros-Roldan, E.; Latini, A.; Castagna, A.; D’Ettorre, G.; Gagliardini, R.; Fabbiani, M.; Cauda, R.; de Luca, A.; et al. Evolution of Blood-Associated HIV-1 DNA Levels after 48 Weeks of Switching to Atazanavir/Ritonavir+lamivudine Dual Therapy versus Continuing Triple Therapy in the Randomized AtLaS-M Trial. J. Antimicrob. Chemother. 2017, 72, 2055–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younas, M.; Psomas, C.; Reynes, C.; Cezar, R.; Kundura, L.; Portalès, P.; Merle, C.; Atoui, N.; Fernandez, C.; le Moing, V.; et al. Residual Viremia Is Linked to a Specific Immune Activation Profile in HIV-1-Infected Adults Under Efficient Antiretroviral Therapy. Front. Immunol. 2021, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Elvstam, O.; Medstrand, P.; Jansson, M.; Isberg, P.E.; Gisslén, M.; Björkman, P. Is Low-Level HIV-1 Viraemia Associated with Elevated Levels of Markers of Immune Activation, Coagulation and Cardiovascular Disease? HIV Med. 2019, 20, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Darcis, G.; Maes, N.; Pasternak, A.O.; Sauvage, A.S.; Frippiat, F.; Meuris, C.; Uurlings, F.; Lecomte, M.; Léonard, P.; Elmoussaoui, M.; et al. Detectability of HIV Residual Viremia despite Therapy Is Highly Associated with Treatment with a Protease Inhibitor-Based Combination Antiretroviral Therapy. Antimicrob. Agents Chemother. 2020, 64, 1–8. [Google Scholar] [CrossRef]
- Elvstam, O.; Marrone, G.; Medstrand, P.; Treutiger, C.J.; Sönnerborg, A.; Gisslén, M.; Björkman, P. All-Cause Mortality and Serious Non-AIDS Events in Adults with Low-Level Human Immunodeficiency Virus Viremia during Combination Antiretroviral Therapy: Results from a Swedish Nationwide Observational Study. Clin. Infect. Dis. 2021, 72, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- Lambert-Niclot, S.; Boyd, A.; Fofana, D.; Valin, N.; Wirden, M.; Meynard, J.L.; Palich, R.; Agher, R.; Valantin, M.A.; Calvez, V.; et al. InsTi-Based Triple Regimens in Treatment-Naïve HIV-Infected Patients Are Associated with HIV-RNA Viral Load Suppression at Ultralow Levels. Open Forum Infect. Dis. 2019, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.J.; Sun, H.Y.; Chang, S.Y.; Cheng, A.; Huang, Y.S.; Huang, S.H.; Huang, Y.C.; Su, Y.C.; Liu, W.C.; Hung, C.C. Incidence and Impact of Low-Level Viremia among People Living with HIV Who Received Protease Inhibitor- or Dolutegravir-Based Antiretroviral Therapy. Int. J. Infect. Dis. 2021, 105, 147–151. [Google Scholar] [CrossRef]
- Morón-López, S.; Navarro, J.; Jimenez, M.; Rutsaert, S.; Urrea, V.; Puertas, M.C.; Torrella, A.; de Clercq, L.; Ribas, B.P.; Gálvez, C.; et al. Switching from a Protease Inhibitor-Based Regimen to a Dolutegravir-Based Regimen: A Randomized Clinical Trial to Determine the Effect on Peripheral Blood and Ileum Biopsies from Antiretroviral Therapy-Suppressed Human Immunodeficiency Virus-Infected Indi. Clin. Infect. Dis. 2019, 69, 1320–1328. [Google Scholar] [CrossRef]
- Underwood, M.; Urbaityte, R.; Wang, R.; Horton, J.; Yuan, L.; Wynne, B.; Koteff, J.; van Wyk, J.; Man, C. 1Jorg Sievers DTG + 3TC in Gemini 1 & -2: HIV-1 Replication at <50 C/ML and VL “BLIPS” through 144 Weeks. In Proceedings of the 11th IAS Conference on HIV Science, 18–21 July 2021; Available online: https://www.natap.org/2021/IAS/IAS_12.htm (accessed on 10 December 2021).
- Raffi, F.; Babiker, A.G.; Richert, L.; Molina, J.M.; George, E.C.; Antinori, A.; Arribas, J.R.; Grarup, J.; Hudson, F.; Schwimmer, C.; et al. Ritonavir-Boosted Darunavir Combined with Raltegravir or Tenofovir-Emtricitabine in Antiretroviral-Naive Adults Infected with HIV-1: 96 Week Results from the NEAT001/ANRS143 Randomised Non-Inferiority Trial. Lancet 2014, 384, 1942–1951. [Google Scholar] [CrossRef]
- Koenig, S.P.; Dorvil, N.; Dévieux, J.G.; Hedt-Gauthier, B.L.; Riviere, C.; Faustin, M.; Lavoile, K.; Perodin, C.; Apollon, A.; Duverger, L.; et al. Same-Day HIV Testing with Initiation of Antiretroviral Therapy versus Standard Care for Persons Living with HIV: A Randomized Unblinded Trial. PLoS Med. 2017, 14, e1002357. [Google Scholar] [CrossRef]
- Rosen, S.; Maskew, M.; Fox, M.P.; Nyoni, C.; Mongwenyana, C.; Malete, G.; Sanne, I.; Bokaba, D.; Sauls, C.; Rohr, J.; et al. Initiating Antiretroviral Therapy for HIV at a Patient’s First Clinic Visit: The RapIT Randomized Controlled Trial. PLoS Med. 2016, 13, e1002015. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, B.; Fabbiani, M.; di Carlo, D.; Incardona, F.; Abecasis, A.; Gomes, P.; Geretti, A.M.; Seguin-Devaux, C.; Garcia, F.; Kaiser, R.; et al. Effectiveness of Integrase Strand Transfer Inhibitor-Based Regimens in HIV-Infected Treatment-Naive Individuals: Results from a European Multi-Cohort Study. J. Antimicrob. Chemother. 2021, 76, 2394–2399. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.; Casas, P.; de Salazar, A.; Chueca, N.; Guerrero-Beltran, C.; Rodríguez, C.; Imaz, A.; Espinosa, N.; García-Bujalance, S.; Pérez-Elías, M.J.; et al. Surveillance of Transmitted Drug Resistance to Integrase Inhibitors in Spain: Implications for Clinical Practice. J. Antimicrob. Chemother. 2019, 74, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Huhn, G.D.; Crofoot, G.; Ramgopal, M.; Gathe, J.; Bolan, R.; Luo, D.; Simonson, R.B.; Nettles, R.E.; Benson, C.; Dunn, K. Darunavir/Cobicistat/Emtricitabine/Tenofovir Alafenamide in a Rapid-Initiation Model of Care for Human Immunodeficiency Virus Type 1 Infection: Primary Analysis of the DIAMOND Study. Clin. Infect. Dis. 2020, 71, 3110–3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbunkah, H.A.; Bertagnolio, S.; Hamers, R.L.; Hunt, G.; Inzaule, S.; Rinke De Wit, T.F.; Paredes, R.; Parkin, N.T.; Jordan, M.R.; Metzner, K.J. Low-Abundance Drug-Resistant HIV-1 Variants in Antiretroviral Drug-Naive Individuals: A Systematic Review of Detection Methods, Prevalence, and Clinical Impact. J. Infect. Dis. 2020, 221, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Yendewa, G.A.; Sahr, F.; Lakoh, S.; Ruiz, M.; Patinõ, L.; Tabernilla, A.; Deen, G.F.; Sesay, M.; Salata, R.A.; Poveda, E. Prevalence of Drug Resistance Mutations among ART-Naive and-Experienced HIV-Infected Patients in Sierra Leone. J. Antimicrob. Chemother. 2019, 74, 2024–2029. [Google Scholar] [CrossRef]
- Rolle, C.P.; Berhe, M.; Singh, T.; Ortiz, R.; Wurapa, A.; Ramgopal, M.; Leone, P.A.; Matthews, J.E.; Dalessandro, M.; Underwood, M.R.; et al. Dolutegravir/Lamivudine as a First-Line Regimen in a Test-and-Treat Setting for Newly Diagnosed People Living with HIV. AIDS (Lond. Engl.) 2021, 35, 1957–1965. [Google Scholar] [CrossRef]
- Margolis, D.A.; Gonzalez-Garcia, J.; Stellbrink, H.J.; Eron, J.J.; Yazdanpanah, Y.; Podzamczer, D.; Lutz, T.; Angel, J.B.; Richmond, G.J.; Clotet, B.; et al. Long-Acting Intramuscular Cabotegravir and Rilpivirine in Adults with HIV-1 Infection (LATTE-2): 96-Week Results of a Randomised, Open-Label, Phase 2b, Non-Inferiority Trial. Lancet 2017, 390, 1499–1510. [Google Scholar] [CrossRef]
- Orkin, C.; Bernal Morell, E.; Tan, D.H.S.; Katner, H.; Stellbrink, H.J.; Belonosova, E.; DeMoor, R.; Griffith, S.; Thiagarajah, S.; van Solingen-Ristea, R.; et al. Initiation of Long-Acting Cabotegravir plus Rilpivirine as Direct-to-Injection or with an Oral Lead-in in Adults with HIV-1 Infection: Week 124 Results of the Open-Label Phase 3 FLAIR Study. Lancet. HIV 2021, 8, e668–e678. [Google Scholar] [CrossRef]
- Overton, E.T.; Richmond, G.; Rizzardini, G.; Jaeger, H.; Orrell, C.; Nagimova, F.; Bredeek, F.; García Deltoro, M.; Swindells, S.; Andrade-Villanueva, J.F.; et al. Long-Acting Cabotegravir and Rilpivirine Dosed Every 2 Months in Adults with HIV-1 Infection (ATLAS-2M), 48-Week Results: A Randomised, Multicentre, Open-Label, Phase 3b, Non-Inferiority Study. Lancet 2020, 396, 1994–2005. [Google Scholar] [CrossRef]
- Barrett, S.E.; Teller, R.S.; Forster, S.P.; Li, L.; Mackey, M.A.; Skomski, D.; Yang, Z.; Fillgrove, K.L.; Doto, G.J.; Wood, S.L.; et al. Extended-Duration MK-8591-Eluting Implant as a Candidate for HIV Treatment and Prevention. Antimicrob. Agents Chemother. 2018, 62, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, J.M.; Yazdanpanah, Y.; Afani Saud, A.; Bettacchi, C.; Chahin Anania, C.; DeJesus, E.; Olsen Klopfer, S.; Grandhi, A.; Eves, K.; Robertson, M.N.; et al. Islatravir in Combination with Doravirine for Treatment-Naive Adults with HIV-1 Infection Receiving Initial Treatment with Islatravir, Doravirine, and Lamivudine: A Phase 2b, Randomised, Double-Blind, Dose-Ranging Trial. Lancet HIV 2021, 8, e324–e333. [Google Scholar] [CrossRef]
- Joseph, S.B.; Kincer, L.P.; Bowman, N.M.; Evans, C.; Vinikoor, M.J.; Lippincott, C.K.; Gisslén, M.; Spudich, S.; Menezes, P.; Robertson, K.; et al. Human Immunodeficiency Virus Type 1 RNA Detected in the Central Nervous System (CNS) After Years of Suppressive Antiretroviral Therapy Can Originate from a Replicating CNS Reservoir or Clonally Expanded Cells. Clin. Infect. Dis. 2019, 69, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.E.; Stein, D.J.; Joska, J.A.; Naud, P.J.W. Cerebrospinal Fluid Immune Markers and HIV-Associated Neurocognitive Impairments: A Systematic Review. J. Neuroimmunol. 2022, 358, 577649. [Google Scholar] [CrossRef]
- Letendre, S.L.; Mills, A.M.; Tashima, K.T.; Thomas, D.A.; Min, S.S.; Chen, S.; Song, I.H.; Piscitelli, S.C. ING116070: A Study of the Pharmacokinetics and Antiviral Activity of Dolutegravir in Cerebrospinal Fluid in HIV-1—Infected, Antiretroviral Therapy—Naive Subjects. Clin. Infect. Dis. 2014, 59, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Gelé, T.; Furlan, V.; Taburet, A.; Pallier, C.; Becker, P.; Goujard, C.; Gasnault, J. Dolutegravir Cerebrospinal Fluid Diffusion in HIV-1—Infected Patients with Central Nervous System Impairment. Open Forum Infect. Dis. 2019, 6, ofz174. [Google Scholar] [CrossRef]
- Mora-peris, B.; Watson, V.; Vera, J.H.; Weston, R.; Waldman, A.D.; Kaye, S.; Khoo, S.; Mackie, N.E.; Back, D.; Winston, A. Rilpivirine Exposure in Plasma and Sanctuary Site Compartments after Switching from Nevirapine-Containing Combined Antiretroviral Therapy. J. Antimicrob. Chemother. 2014, 69, 1642–1647. [Google Scholar] [CrossRef] [Green Version]
- Letendre, S.L.; Mills, A.; Hagins, D.; Swindells, S.; Felizarta, F.; Devente, J.; Bettacchi, C.; Lou, Y.; Ford, S.; Sutton, K.; et al. Pharmacokinetics and Antiviral Activity of Cabotegravir and Rilpivirine in Cerebrospinal Fluid Following Long-Acting Injectable Administration in HIV-Infected Adults. J. Antimicrob. Chemother. 2020, 75, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Antinori, A.; Perno, C.F.; Giancola, M.L.; Forbici, F.; Ippolito, G.; Hoetelmans, R.M.; Piscitelli, S.C. Efficacy of Cerebrospinal Fluid (CSF)– Penetrating Antiretroviral Drugs against HIV in the Neurological Compartment: Different Patterns of Phenotypic Resistance in CSF and Plasma. Clin. Infect. Dis. 2005, 41, 1787–1793. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, E.; Curran, A.; Else, L.; Gissle, M.; di Yacovo, M.S.; Tiraboschi, J.M.; Niubo, J.; Vila, A.; Zetterberg, H.; Back, D.; et al. Antiviral Activity and CSF Concentrations of 600 / 100 Mg of Darunavir / Ritonavir Once Daily in HIV-1 Patients with Plasma Viral Suppression. J. Antimicrob. Chemother. 2015, 70, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Moreno, S.; Perno, C.F.; Mallon, P.W.; Behrens, G.; Corbeau, P.; Routy, J.P.; Darcis, G. Two-Drug vs. Three-Drug Combinations for HIV-1: Do We Have Enough Data to Make the Switch? HIV Med. 2019, 20, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunfio, M.; Rugge, W.; Mighetto, L.; Vai, D.; Atzori, C.; Nigra, M.; Domini, S.; Borgogno, E.; Guastamacchia, G.; Bonora, S.; et al. Dual Antiretroviral Therapies Are Effective and Safe Regimens in the Central Nervous System of Neurologically Symptomatic People Living with HIV. AIDS 2020, 34, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- BHIVA. BHIVA Guidelines for the Management of HIV in Pregnancy and Postpartum 2018 (2020 Third Interim Update); BHIVA: Letchworth Garden City, UK, 2020; pp. 1–110. [Google Scholar]
- Soriano, V.; Poveda, E.; Vispo, E.; Barreiro, P. Hepatitis B in HIV-Infected Patients. Clin. Liver Dis. 2013, 17, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Han, Y.; Li, Y.; Zhu, T.; Song, X.; Huang, Y.; Yang, F.; Guan, S.; Xie, J.; Gohda, J.; et al. Emergence of Lamivudine-Resistant HBV during Antiretroviral Therapy Including Lamivudine for Patients Coinfected with HIV and HBV in China. PLoS ONE 2015, 10, e0134539. [Google Scholar] [CrossRef]
Naïve-to-ART Patients | ||||
GeSIDA | EACS | DHHS | Observations | |
DTG + 3TC | Recommended | Recommended | Recommended | HbS Ag-negative HIV VL < 500,000 copies/mL |
RAL + bDRV | Not recommended | Alternative | Alternative | CD 4 count > 200 cells/mm3 HIV VL < 100,000 copies/mL |
bDRV + 3TC | Not recommended | Not recommended | Alternative † | |
Simplification in Virologically Suppressed Patients | ||||
GeSIDA | EACS | DHHS | Observations | |
DTG + RPV | Recommended | Recommended | Recommended | |
DTG + 3TC | Recommended | Recommended | Recommended | |
bPI + 3TC | Alternative | Recommended | Alternative ‡ | ‡ DRV is preferred over LPV and ATV |
DTG + bDRV | Recommended | Alternative | Alternative | |
bDRV + RPV | Not recommended | Alternative | Not recommended |
Clinical Trial | 2DR Arm | Comparator | Subject Population | Sample Size | Follow-Up | HIV-RNA ≤ 50 cp/mL, Absolute Risk Difference (95% CI) | Virological Response in 2DR Arm vs. Comparator |
---|---|---|---|---|---|---|---|
GARDEL | LPV/r + 3TC | LPV/r + 2 NRTIs | Naive to ART | 214 vs. 202 | 48 weeks | 4.6 (–2.2 to 11.8) † | 88.3% vs. 83.7% † |
OLE | LPV/r + 3TC | LPV/r + 2 NRTIs | Virologically suppressed | 118 vs. 121 | 48 weeks | 1.19 (–7.10 to 9.50) † | 88.0% vs. 87.0% † |
SALT | ATV/r + 3TC | ATV/r + 2 NRTIs | Virologically suppressed | 133 vs. 134 | 96 weeks | 1.39 (–8.50 to 11.30) ‡ | 69.9% vs. 71.3% ‡ |
ATLAS-M | ATV/r + 3TC | ATV/r + 2 NRTIs | Virologically suppressed | 133 vs. 133 | 48 weeks | 6.77 (–2.20 to 15.70) * | 89.5% vs. 79.7% * |
DUAL-GESIDA 8014 | DRV/r + 3TC | DRV/r + 2 NRTIs | Virologically suppressed | 126 vs. 123 | 48 weeks | –3.79 (–10.90 to 3.30) * | 88.9% vs. 92.7% * |
SECOND-LINE | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | First-line virological failure | 270 vs. 271 | 48 weeks | 1.8 (–4.7 to 8.3) ¶ | 80.8% vs. 82.6% ¶ |
SELECT | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | First-line virological failure | 260 vs. 255 | 48 weeks | 3.4 (–8.4 to 1.5) ¶ | 89.7% vs. 87.6% ¶ |
EARNEST | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | First-line virological failure | 433 vs. 426 | 96 weeks | –0.1 (–5.0 to 4.8) § | 64.0% vs. 60.0% § |
GEMINI 1 and 2 | DTG + 3TC | DTG + FTC/TDF | Naive to ART | 719 vs. 722 | 48 weeks | –1.7 (–4.4 to 1.1) * | 91.0% vs. 93.0% * |
TANGO | DTG + 3TC | TAF-based 3DR | Virologically suppressed | 369 vs. 372 | 48 weeks | –0.3 (–1.2 to 0.7) * | 93.2% vs. 93.0% * |
SWORD 1 and 2 | DTG + RPV | 3DR | Virologically suppressed | 516 vs. 512 | 48 weeks | –0.2 (–3.0 to 2.5) * | 95.0% vs. 95.0% * |
DUALIS | DTG + bDRV | DRV-based 3DR | Virologically suppressed | 131 vs. 132 | 48 weeks | –1.6 (–9.9 to 6.7) * | 86.3% vs. 87.9% * |
NEAT001/ANRS 143 | RAL + DRV/r | DRV/r + FTC/TDF | Naive to ART | 401 vs. 404 | 123 weeks | 4.0 (–0.8 to 8.8) †† | 87.6 % vs. 89.7% †† |
PROBE-2 | bDRV + RPV | 3DR | Pre-treated | 80 vs. 80 | 24 weeks | –3.75 (–11.63 to 5.63) * | 90.0% vs. 93.8% * |
FLAIR | CAB + RPV | DTG/3TC/ABC | Pre-treated | 283 vs. 283 | 48 weeks | 0.4 (–3.7 to 4.5) * | 93.6% vs. 93.3% * |
Clinical Trial | 2DR Arm | Comparator | Total Number of Patients with One or More AEs | Total Number of Patients with One or More SAEs | Discontinuation Because of Adverse Events or Death | eGFR Difference in mL/min/1.7 m2 |
---|---|---|---|---|---|---|
GARDEL | LPV/r + 3TC | LPV/r + 2 NRTIs | 65 (30%) vs. 88 (44%) † | 1 (<1%) vs. 0 ‡ | 3 (1%) vs. 16 (8%) | Not reported |
OLE | LPV/r + 3TC | LPV/r + 2 NRTIs | 63 (53%) vs. 70 (58%) | 5 (4%) vs. 8 (7%) | 1 (1%) vs. 4 (3%) | Not reported |
SALT | ATV/r + 3TC | ATV/r + 2 NRTIs | 99 (70.7%) vs. 99 (70.2%) | 10 (7.5%) vs. 9 (6.7%) | 7 (5.3%) vs. 11 (8.2%) | −0.8 vs. −1.4 |
ATLAS-M | ATV/r + 3TC | ATV/r + 2 NRTIs | 33 (24.8%) vs. 40 (30.1% | 3 (2.3%) vs. 4 (3.0%) | 4 (3.0%) vs. 8 (6%) | +2 vs. −5 |
DUAL-GESIDA 8014 | DRV/r + 3TC | DRV/r + 2 NRTIs | 88 (70%) vs. 93 (76%) | 6 (5%) vs. 6 (5%) | 1 (1%) vs. 2 (2%) | Not reported |
SECOND LINE | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | 993 vs. 895 * | 23 (8.5%) vs. 24 (8.9%) | 11 (4%) vs. 8 (3%) | −5.2 vs. −4.7 |
SELECT | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | 18 (7%) vs. 27 (11%) | 5 (1.9%) vs. 5 (1.9%) | 3 (1.2%) vs. 3 (1.2%) | Not reported |
EARNEST | LPV/r + RAL | LPV/r + 2 or 3 NRTIs | 104 (24%) vs. 92 (23%) | 93 (22%) vs. 91 (21%) | 30 (6.9%) vs. 30 (7.0%) ¶ | −5.4 vs. −11.2 |
GEMINI 1 and 2 | DTG + 3TC | DTG + FTC/TDF | 543 (76%) vs. 579 (81%) | 50 (7%) vs. 55 (85) | 10 (1%) vs. 13 (2%) | −2.1 vs. −15.5 |
TANGO | DTG + 3TC | TAF-based 3DR | 295 (79.9%) vs. 292 (78.7%) | 21 (5.7%) vs. 16 (4.3%) | 13 (3.5%) vs. 2 (0.5%) | −7.7 vs. −3.0 |
SWORD 1 and 2 | DTG + RPV | 3DR | 395 (77%) vs. 364 (71%) | 27 (5%) vs. 21 (4%) | 17 (3%) vs. 3 (1%) | Not reported |
DUALIS | DTG + bDRV | DRV-based 3DR | 104 (78.2%) vs. 100 (75.2%) | 7 (5.3%) vs. 7 (5.3%) | 14 (4.6%) vs. 5 (1.6%) | Not reported |
NEAT001/ANRS 143 | DRV/r + RAL | DRV/r + FTC/TDF | 34 vs. 38 ** | 73 (18.2%) vs. 61 (15.1%) | 1.5% vs. 2.6% | +0.8 vs. −4.6 |
PROBE-2 | bDRV + RPV | 3DR | 6 (7.5%) vs. 3 (3.4%) | Not reported | 6 vs. 0 | Not reported |
FLAIR | CAB + RPV | DTG/3TC/ABC | 267 (94%) vs. 225 (80%) | 18 (6%) vs. 12 (4%) | 9 (3%) vs. 4 (1%) | Not reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-González, A.; Suárez-García, I.; Ocampo, A.; Poveda, E. Two-Drug Regimens for HIV—Current Evidence, Research Gaps and Future Challenges. Microorganisms 2022, 10, 433. https://doi.org/10.3390/microorganisms10020433
Pérez-González A, Suárez-García I, Ocampo A, Poveda E. Two-Drug Regimens for HIV—Current Evidence, Research Gaps and Future Challenges. Microorganisms. 2022; 10(2):433. https://doi.org/10.3390/microorganisms10020433
Chicago/Turabian StylePérez-González, Alexandre, Inés Suárez-García, Antonio Ocampo, and Eva Poveda. 2022. "Two-Drug Regimens for HIV—Current Evidence, Research Gaps and Future Challenges" Microorganisms 10, no. 2: 433. https://doi.org/10.3390/microorganisms10020433
APA StylePérez-González, A., Suárez-García, I., Ocampo, A., & Poveda, E. (2022). Two-Drug Regimens for HIV—Current Evidence, Research Gaps and Future Challenges. Microorganisms, 10(2), 433. https://doi.org/10.3390/microorganisms10020433