Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment
Abstract
:1. Introduction
2. Hemolytic Phenotype of L. monocytogenes
3. Nonhemolytic Phenotype of L. monocytogenes—Prevalence Rate
4. Reasons Underlying Diminished Hemolysis
5. Impact of Methodology on the Hemolytic Phenotype
5.1. Hemolysis Assays
5.1.1. Blood Agar Technique
5.1.2. CAMP Test
5.1.3. Top-Layer (Overlay) Technique
5.1.4. Bilayer Technique
5.1.5. Microplate Technique
5.2. Blood Type Impact
6. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; McAuliffe, O. Listeria Monocytogenes in Foods. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 86, pp. 181–213. ISBN 978-0-12-813977-6. [Google Scholar]
- Shi, D.; Anwar, T.M.; Pan, H.; Chai, W.; Xu, S.; Yue, M. Genomic Determinants of Pathogenicity and Antimicrobial Resistance for 60 Global Listeria Monocytogenes Isolates Responsible for Invasive Infections. Front. Cell. Infect. Microbiol. 2021, 11, 718840. [Google Scholar] [CrossRef]
- Rogalla, D.; Bomar, P.A. Listeria Monocytogenes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Charlier, C.; Perrodeau, É.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical Features and Prognostic Factors of Listeriosis: The MONALISA National Prospective Cohort Study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef]
- Garcia-Carretero, R.; Roncal-Gomez, J.; Rodriguez-Manzano, P.; Vazquez-Gomez, O. Identification and Predictive Value of Risk Factors for Mortality Due to Listeria Monocytogenes Infection: Use of Machine Learning with a Nationwide Administrative Data Set. Bacteria 2022, 1, 12–32. [Google Scholar] [CrossRef]
- Watanabe, Y.; Nakamura, I.; Miura, Y.; Watanabe, H. The Seasonality, Steroid Use, and Lower Ratio of Neutrophil to Lymphocyte Associated with Bacteremia of Listeria Monocytogenes in Japan from 2010 to 2019: A Case-Control Study. BMC Infect. Dis. 2021, 21, 1212. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols. Am. Soc. Micriobilogy 2005, 1–9. [Google Scholar]
- Allerberger, F.; Dierich, M.; Petranyi, G.; Lalic, M.; Bubert, A. Nonhemolytic Strains of Listeria Monocytogenes Detected in Milk Products Using VIDAS Immunoassay Kit. Zentralblatt fur Hygiene und Umweltmedizin 1997, 200, 189–195. [Google Scholar]
- Farber, J.M.; Peterkin, P.I. Listeria Monocytogenes, a Food-Borne Pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef]
- Fujisawa, T.; Mori, M. Evaluation of Media for Determining Hemolytic Activity and That of API Listeria System for Identifying Strains of Listeria Monocytogenes. J. Clin. Microbiol. 1994, 32, 1127–1129. [Google Scholar] [CrossRef] [Green Version]
- Gasanov, U.; Hughes, D.; Hansbro, P.M. Methods for the Isolation and Identification of Listeria Spp. and Listeria Monocytogenes: A Review. FEMS Microbiol. Rev. 2005, 29, 851–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalka, B.; Smola, J.; Elischerová, K. Different Haemolytic Activities of Listeria Monocytogenes Strains Determined on Erythrocytes of Various Sources and Exploiting the Synergism of Equi-Factor. Zentralblatt für Veterinärmedizin Reihe B 1982, 29, 642–649. [Google Scholar] [CrossRef]
- Listeria Monocytogenes: Methods and Protocols, 2nd ed.; Fox, E.M.; Bierne, H.; Stessl, B. (Eds.) Methods in Molecular Biology; Springer: New York, NY, USA, 2021; ISBN 978-1-07-160981-1. [Google Scholar]
- Hitchins, A.D.; Jinneman, K.; Chen, Y. Chapter 10: Detection of Listeria Monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria Monocytogenes in Foods; US Food Drug Administration: Washington, DC, USA, 2017. [Google Scholar]
- Jallewar, P.K.; Kalorey, D.R.; Kurkure, N.V.; Pande, V.V.; Barbuddhe, S.B. Genotypic Characterization of Listeria spp. Isolated from Fresh Water Fish. Int. J. Food Microbiol. 2007, 114, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Malik, S.V.S.; Vaidya, V.M.; Barbuddhe, S.B. Listeria Monocytogenes in Spontaneous Abortions in Humans and Its Detection by Multiplex PCR. J. Appl. Microbiol. 2007, 103, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Duarte, E.A.A.; Oliveira, T.A.S.D.; Evangelista-Barreto, N.S. Identification of Listeria Monocytogenes in Cattle Meat Using Biochemical Methods and Amplification of the Hemolysin Gene. Anais da Academia Brasileira de Ciências 2020, 92. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Prevalence, Genetic Diversity and Antimicrobial Resistance of Listeria Monocytogenes Isolated from Fresh and Smoked Fish in Poland. Food Microbiol. 2017, 64, 164–171. [Google Scholar] [CrossRef]
- Lindbäck, T.; Secic, I.; Rørvik, L.M. A Contingency Locus in PrfA in a Listeria Monocytogenes Subgroup Allows Reactivation of the PrfA Virulence Regulator during Infection in Mice. Appl. Environ. Microbiol. 2011, 77, 3478–3483. [Google Scholar] [CrossRef] [Green Version]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria Innocua and Listeria Monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef]
- Moura, A.; Disson, O.; Lavina, M.; Thouvenot, P.; Huang, L.; Leclercq, A.; Fredriksson-Ahomaa, M.; Eshwar, A.K.; Stephan, R.; Lecuit, M. Atypical Hemolytic Listeria Innocua Isolates Are Virulent, Albeit Less than Listeria Monocytogenes. Infect. Immun. 2019, 87, e00758-18. [Google Scholar] [CrossRef] [Green Version]
- Capita, R.; Alonso-Calleja, C.; García-Fernández, M.C.; Moreno, B. Comparison of the Efficacy of Different Techniques, Culture Media, and Sources of Blood in Determining the Hemolytic Activity of Listeria spp. Can. J. Microbiol. 2001, 47, 653–661. [Google Scholar] [CrossRef]
- Groves, R.D.; Welshimer, H.J. Separation of Pathogenic from Apathogenic Listeria Monocytogenes by Three in Vitro Reactions. J. Clin. Microbiol. 1977, 5, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Chenal-Francisque, V.; Bracq-Dieye, H.; Han, L.; Leclercq, A.; Vales, G.; Moura, A.; Gouin, E.; Scortti, M.; Disson, O.; et al. Spontaneous Loss of Virulence in Natural Populations of Listeria Monocytogenes. Infect. Immun. 2017, 85, e00541-17. [Google Scholar] [CrossRef] [Green Version]
- Petrišič, N.; Kozorog, M.; Aden, S.; Podobnik, M.; Anderluh, G. The Molecular Mechanisms of Listeriolysin O-Induced Lipid Membrane Damage. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183604. [Google Scholar] [CrossRef]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and Virulence of Listeria Monocytogenes: A Trip from Environmental to Medical Microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef] [PubMed]
- Cossart, P.; Vicente, M.F.; Mengaud, J.; Baquero, F.; Perez-Diaz, J.C.; Berche, P. Listeriolysin O Is Essential for Virulence of Listeria Monocytogenes: Direct Evidence Obtained by Gene Complementation. Infect. Immun. 1989, 57, 3629–3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conner, D.E.; Scott, V.N.; Sumner, S.S.; Bernard, D.T. Pathogenicity of Foodborne, Environmental and Clinical Isolates of Listeria Monocytogenes in Mice. J. Food Sci. 1989, 54, 1553–1556. [Google Scholar] [CrossRef]
- Roche, S.M.; Velge, P.; Bottreau, E.; Durier, C.; Marquet-van der Mee, N.; Pardon, P. Assessment of the Virulence of Listeria Monocytogenes: Agreement between a Plaque-Forming Assay with HT-29 Cells and Infection of Immunocompetent Mice. Int J. Food Microbiol. 2001, 68, 33–44. [Google Scholar] [CrossRef]
- Fernandez-Garayzabal, J.F.; Delgado, C.; Blanco, M.; Vazquez-Boland, J.A.; Briones, V.; Suarez, G.; Dominguez, L. Role of Potassium Tellurite and Brain Heart Infusion in Expression of the Hemolytic Phenotype of Listeria Spp. on Agar Plates. Appl. Environ. Microbiol. 1992, 58, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria Pathogenesis and Molecular Virulence Determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Chan, Y.; Wiedmann, M. Definition of Genetically Distinct Attenuation Mechanisms in Naturally Virulence-Attenuated Listeria Monocytogenes by Comparative Cell Culture and Molecular Characterization. Appl. Environ. Microbiol. 2005, 71, 3900–3910. [Google Scholar] [CrossRef] [Green Version]
- Bou-m’handi, N.; Jacquet, C.; El Marrakchi, A.; Martin, P. Phenotypic and Molecular Characterization of Listeria Monocytogenes Strains Isolated from a Marine Environment in Morocco. Foodborne Pathog. Dis. 2007, 4, 409–417. [Google Scholar] [CrossRef]
- Burall, L.S.; Grim, C.; Gopinath, G.; Laksanalamai, P.; Datta, A.R. Whole-Genome Sequencing Identifies an Atypical Listeria Monocytogenes Strain Isolated from Pet Foods. Genome Announc. 2014, 2, e01243-14. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.L.; Lattuada, C.P. Comparison of Nucleic Acid Hybridization Assays and Biochemical Characterization Tests for the Confirmation of Listeria Monocytogenes. J. Food Prot. 1993, 56, 834–840. [Google Scholar] [CrossRef]
- Palerme, J.-S.; Pan, P.C.; Parsons, C.T.; Kathariou, S.; Ward, T.J.; Jacob, M.E. Isolation and Characterization of Atypical Listeria Monocytogenes Associated with a Canine Urinary Tract Infection. J. Vet. Diagn. Invest. 2016, 28, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.Z.; Paixão, R.; de Gobbi, D.D.S.; Raimundo, D.C.; Porfida Ferreira, T.S.; Micke Moreno, A.; Hofer, E.; dos Reis, C.M.F.; Matté, G.R.; Matté, M.H. Phenotypic and Genotypic Characterization of Atypical Listeria Monocytogenes and Listeria Innocua Isolated from Swine Slaughterhouses and Meat Markets. Biomed. Res. Int. 2014, 2014, 742032. [Google Scholar] [CrossRef] [Green Version]
- McLauchlin, J. The Identification of Listeria Species. Int. J. Food Microbiol. 1997, 38, 77–81. [Google Scholar] [CrossRef]
- Dillon, R.; Patel, T.; Ratnam, S. Occurrence of Listeria in Hot and Cold Smoked Seafood Products. Int. J. Food Microbiol. 1994, 22, 73–77. [Google Scholar] [CrossRef]
- Alía, A.; Andrade, M.J.; Córdoba, J.J.; Martín, I.; Rodríguez, A. Development of a Multiplex Real-Time PCR to Differentiate the Four Major Listeria Monocytogenes Serotypes in Isolates from Meat Processing Plants. Food Microbiol. 2020, 87, 103367. [Google Scholar] [CrossRef]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria Monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Gorski, L. Serotype Assignment by Sero-Agglutination, ELISA, and PCR. Methods Mol. Biol. 2021, 2220, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.M.; Gracieux, P.; Milohanic, E.; Albert, I.; Virlogeux-Payant, I.; Témoin, S.; Grépinet, O.; Kerouanton, A.; Jacquet, C.; Cossart, P.; et al. Investigation of Specific Substitutions in Virulence Genes Characterizing Phenotypic Groups of Low-Virulence Field Strains of Listeria Monocytogenes. Appl. Environ. Microbiol. 2005, 71, 6039–6048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, S.M.; Gracieux, P.; Albert, I.; Gouali, M.; Jacquet, C.; Martin, P.M.V.; Velge, P. Experimental Validation of Low Virulence in Field Strains of Listeria Monocytogenes. Infect. Immun. 2003, 71, 3429–3436. [Google Scholar] [CrossRef] [Green Version]
- Pine, L.; Weaver, R.E.; Carlone, G.M.; Pienta, P.A.; Rocourt, J.; Goebel, W.; Kathariou, S.; Bibb, W.F.; Malcolm, G.B. Listeria Monocytogenes ATCC 35152 and NCTC 7973 Contain a Nonhemolytic, Nonvirulent Variant. J. Clin. Microbiol. 1987, 25, 2247–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuch, D.M.T.; Moore, J.; Madden, R.H.; Espie, W.E. Haemolytic Reaction of Listeria Monocytogenes on Bilayer Columbia Agar Plates with Defibrinated Guinea-Pig Blood. Lett. Appl. Microbiol. 1992, 15, 78–79. [Google Scholar] [CrossRef]
- Schärer, K.; Stephan, R.; Tasara, T. Cold Shock Proteins Contribute to the Regulation of Listeriolysin O Production in Listeria Monocytogenes. Foodborne Pathog. Dis. 2013, 10, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Farber, J.M.; Speirs, J.I.; Pontefract, R.; Conner, D.E. Characteristics of Nonpathogenic Strains of Listeria Monocytogenes. Can. J. Microbiol. 1991, 37, 647–650. [Google Scholar] [CrossRef]
- Ahmed, M.S. The Investigation of Molecular Characterization of Presumptive Listeria Monocytogenes Isolates from a Food-Processing Environment. Iran J. Vet. Res. 2019, 20, 46–50. [Google Scholar]
- Milillo, S.R.; Stout, J.C.; Hanning, I.B.; Clement, A.; Fortes, E.D.; den Bakker, H.C.; Wiedmann, M.; Ricke, S.C. Listeria Monocytogenes and Hemolytic Listeria Innocua in Poultry. Poult. Sci. 2012, 91, 2158–2163. [Google Scholar] [CrossRef]
- Higgins, D.L.; Robison, B.J. Comparison of MICRO-ID Listeria Method with Conventional Biochemical Methods for Identification of Listeria Isolated from Food and Environmental Samples: Collaborative Study. J. AOAC Int. 1993, 76, 831–838. [Google Scholar] [CrossRef]
- Sado, P.N.; Jinneman, K.C.; Husby, G.J.; Sorg, S.M.; Omiecinski, C.J. Identification of Listeria Monocytogenes from Unpasteurized Apple Juice Using Rapid Test Kits. J. Food Prot. 1998, 61, 1199–1202. [Google Scholar] [CrossRef]
- Dominguez Rodriguez, L.; Vazquez Boland, J.A.; Fernandez Garayzabal, J.F.; Echalecu Tranchant, P.; Gomez-Lucia, E.; Rodriguez Ferri, E.F.; Suarez Fernandez, G. Microplate Technique to Determine Hemolytic Activity for Routine Typing of Listeria Strains. J. Clin. Microbiol. 1986, 24, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Lachica, R.V. Hemolytic Activity Reevaluation of Putative Nonpathogenic Listeria Monocytogenes Strains. Appl. Environ. Microbiol. 1996, 62, 4293–4295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzin, B.; Seeliger, H.P.R. A Brief Note on the CAMP Phenomenon in Listeria. In Problems of listeriosis; Leicester University Press: Leicester, England, 1975; pp. 34–37. [Google Scholar]
- Christie, K.; Atkins, N.; Munch-Petersen, E. A Note on a Lytic Phenomenon Shown by Group B Streptococci. Aust. J. Exp. Biol. Med. Sci. 1944, 22, 197–200. [Google Scholar] [CrossRef]
- Darling, C.L. Standardization and Evaluation of the CAMP Reaction for the Prompt, Presumptive Identification of Streptococcus Agalactiae (Lancefield Group B) in Clinical Material. J. Clin. Microbiol. 1975, 1, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Boland, J.A.; Dominguez, L.; Fernandez, J.F.; Rodriguez-Ferri, E.F.; Briones, V.; Blanco, M.; Suarez, G. Revision of the Validity of CAMP Tests for Listeria Identification. Proposal of an Alternative Method for the Determination of Haemolytic Activity by Listeria Strains. Acta Microbiol. Hung. 1990, 37, 201–206. [Google Scholar]
- Domínguez, L.; Fernández-Garayzábal, J.F.; Blanco, M.M.; Briones, V.; Vázquez-Boland, J.A.; Blanco, J.; Suárez, G. Overlay Technique for Direct Detection and Identification of Haemolytic Listeria on Selective Plating Medium. Comparison of Five Media. Zeitschrift für Lebensmittel-Untersuchung und Forschung 1990, 191, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Fernandez-Garayzabal, J.F.; Dominguez, L.; Briones, V.; Vazquez-Boland, J.A.; Blanco, J.L.; Garcia, J.A.; Suarez, G. A Technique for the Direct Identification of Haemolytic-Pathogenic Listeria on Selective Plating Media. Lett. Appl. Microbiol. 1989, 9, 125–128. [Google Scholar] [CrossRef]
- McClain, D.; Lee, W.H. Development of USDA-FSIS Method for Isolation of Listeria Monocytogenes from Raw Meat and Poultry. J. Assoc. Off. Anal Chem. 1988, 71, 660–664. [Google Scholar] [CrossRef]
- Kingdon, G.C.; Sword, C.P. Biochemical and Immunological Effects of Listeria Monocytogenes Hemolysin. Infect. Immun. 1970, 1, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Netterling, S.; Bäreclev, C.; Vaitkevicius, K.; Johansson, J. RNA Helicase Important for Listeria Monocytogenes Hemolytic Activity and Virulence Factor Expression. Infect. Immun. 2016, 84, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, C.; Gaillard, J.L.; Alouf, J.E.; Berche, P. Production of Thiol-Dependent Haemolysins by Listeria Monocytogenes and Related Species. J. Gen. Microbiol. 1989, 135, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leimeister-Wächter, M.; Domann, E.; Chakraborty, T. The Expression of Virulence Genes in Listeria Monocytogenes Is Thermoregulated. J. Bacteriol. 1992, 174, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leimeister-Wächter, M.; Chakraborty, T. Detection of Listeriolysin, the Thiol-Dependent Hemolysin in Listeria Monocytogenes, Listeria Ivanovii, and Listeria Seeligeri. Infect. Immun. 1989, 57, 2350–2357. [Google Scholar] [CrossRef] [Green Version]
- Portnoy, D.A.; Jacks, P.S.; Hinrichs, D.J. Role of Hemolysin for the Intracellular Growth of Listeria Monocytogenes. J. Exp. Med. 1988, 167, 1459–1471. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole Genome-Based Population Biology and Epidemiological Surveillance of Listeria Monocytogenes. Nat. Microbiol. 2017, 2, 16185. [Google Scholar] [CrossRef]
- Kelen, D.V.D.; Lindsay, J.A. Differential Hemolytic Response of Listeria Monocytogenes Strains on Various Blood Agars. J. Food Safety 1990, 11, 9–12. [Google Scholar] [CrossRef]
- Jones, D.; Seeliger, H.P.R. Designation of a New Type Strain for Listeria Monocytogenes Request for an Opinion. Int. J. Syst. Evol. Microbiol. 1983, 33, 429. [Google Scholar] [CrossRef]
Number of L. monocytogenes Isolates in the Study | Origin of the Isolates in the Study | Number of Nonhemolytic Isolates (%) | Number of Isolates with Weak Hemolysis (%) | Reference |
---|---|---|---|---|
57,820 | Food, clinical, veterinary, environmental, and other | 60 (0.1%) | N/A 1 | [26] |
1 | Dog urinary tract infection | N/A | 1 (100%) | [38] |
3 | Pet food | 1 (33.3%) | N/A | [36] |
26 | Pork, slaughterhouses, markets, and human infections | N/A | 6 (23.1%) | [39] |
Not specified 2 | Equipment and products from one plant producing smoked salmon | 42 (–) | N/A | Yndestad and Hauge (2006), as cited in [21] |
38 | Seawater, sediment, and shellfish | 8 (21.1%) | N/A | [35] |
7 | Milk products from one manufacturer | 6 (85.7%) | N/A | [10] |
181 | Human clinical, animal clinical, food, and environment | 4 (2.2%) | N/A | [40] |
12 | Smoked fish | 1 (8.3%) | N/A | [41] |
27 3 | Meat and poultry or obtained from a culture collection | 12 (44.4%) | 1 (3.7%) | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M. Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms 2022, 10, 483. https://doi.org/10.3390/microorganisms10020483
Kawacka I, Olejnik-Schmidt A, Schmidt M. Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms. 2022; 10(2):483. https://doi.org/10.3390/microorganisms10020483
Chicago/Turabian StyleKawacka, Iwona, Agnieszka Olejnik-Schmidt, and Marcin Schmidt. 2022. "Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment" Microorganisms 10, no. 2: 483. https://doi.org/10.3390/microorganisms10020483
APA StyleKawacka, I., Olejnik-Schmidt, A., & Schmidt, M. (2022). Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms, 10(2), 483. https://doi.org/10.3390/microorganisms10020483