Application of Bacteriophages for Human Health: An Old Approach against Contemporary “Bad Bugs”
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations: The Review on Antimicrobial Resistance. May 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 10 February 2022).
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Summers, W.C. Félix d’Herelle and the Origins of Molecular Biology; Yale University: New Haven, CT, USA, 1999. [Google Scholar]
- D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Caselli, E. Bacteriophages as a potential 360-degree pathogen control strategy. Microorganisms 2021, 9, 261. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, M.; Bagińska, N.; Górski, A.; Jończyk-Matysiak, E. Animal models in the evaluation of the effectiveness of phage therapy for infections caused by gram-negative bacteria from the ESKAPE group and the reliability of its use in humans. Microorganisms 2021, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Żaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Górski, A. Phage prevalence in the human urinary tract—Current knowledge and therapeutic implications. Microorganisms 2020, 8, 1802. [Google Scholar] [CrossRef] [PubMed]
- Kawacka, I.; Olejnik-Schmidt, A.; Schmidt, M.; Sip, A. Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms 2020, 8, 1764. [Google Scholar] [CrossRef] [PubMed]
- El-Telbany, M.; El-Didamony, G.; Askora, A.; Ariny, E.; Abdallah, D.; Connerton, I.F.; El-Shibiny, A. Bacteriophages to control multi-drug resistant Enterococcus faecalis infection of dental root canals. Microorganisms 2021, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Ishida, W.; Nasukawa, T.; Ujihara, T.; Nakajima, I.; Suzuki, T.; Uchiyama, J.; Todokoro, D.; Daibata, M.; Fukushima, A.; et al. In vitro and in vivo evaluation of three newly isolated bacteriophage candidates, phiEF7H, phiEF14H1, phiEF19G, for treatment of Enterococcus faecalis endophthalmitis. Microorganisms 2021, 9, 212. [Google Scholar] [CrossRef]
- Pertics, B.Z.; Cox, A.; Nyúl, A.; Szamek, N.; Kovács, T.; Schneider, G. Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent Klebsiella pneumoniae strain 52145, and identification of its functional depolymerase. Microorganisms 2021, 9, 650. [Google Scholar] [CrossRef]
- Hon, K.; Liu, S.; Camens, S.; Bouras, G.S.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms. Microorganisms 2022, 10, 102. [Google Scholar] [CrossRef]
- Camens, S.; Liu, S.; Hon, K.; Bouras, G.S.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Preclinical development of a bacteriophage cocktail for treating multidrug resistant Pseudomonas aeruginosa infections. Microorganisms 2021, 9, 2001. [Google Scholar] [CrossRef]
- Akremi, I.; Holtappels, D.; Brabra, W.; Jlidi, M.; Ibrahim, A.H.; Ben Ali, M.; Fortuna, K.; Ahmed, M.; Van Meerbeek, B.; Rhouma, A.; et al. First report of filamentous phages isolated from tunisian orchards to control Erwinia amylovora. Microorganisms 2020, 8, 1762. [Google Scholar] [CrossRef] [PubMed]
- Žukauskienė, E.; Šimoliūnienė, M.; Truncaitė, L.; Skapas, M.; Kaupinis, A.; Valius, M.; Meškys, R.; Šimoliūnas, E. Pantoea bacteriophage vB_PagS_AAS23: A singleton of the genus Sauletekiovirus. Microorganisms 2021, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Scattolini, S.; D’angelantonio, D.; Boni, A.; Mangone, I.; Marcacci, M.; Battistelli, N.; D’agostino, K.; Pomilio, F.; Camma, C.; Migliorati, G.; et al. Characterization and in vitro efficacy against Listeria monocytogenes of a newly isolated bacteriophage, ΦIZSAM-1. Microorganisms 2021, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, B.V.; Kitchens, S.; Vijayakumar, P.P.; Price, S.; Morgan, M. Efficacy of bacteriophage cocktail to control E. coli O157:H7 contamination on baby spinach leaves in the presence or absence of organic load. Microorganisms 2021, 9, 544. [Google Scholar] [CrossRef]
- Li, C.; Yuan, X.; Li, N.; Wang, J.; Yu, S.; Zeng, H.; Zhang, J.; Wu, Q.; Ding, Y. Isolation and characterization of Bacillus cereus phage vB_BceP-DLc1 reveals the largest member of the Φ29-like phages. Microorganisms 2020, 8, 1750. [Google Scholar] [CrossRef]
- Chen, A.; Wang, D.; Nugen, S.R.; Chen, J. An engineered reporter phage for the fluorometric detection of Escherichia coli in ground beef. Microorganisms 2021, 9, 436. [Google Scholar] [CrossRef]
- Cuomo, P.; Papaianni, M.; Fulgione, A.; Guerra, F.; Capparelli, R.; Medaglia, C. An innovative approach to control H. pylori-induced persistent inflammation and colonization. Microorganisms 2020, 8, 1214. [Google Scholar] [CrossRef]
- Núñez-Sánchez, M.A.; Colom, J.; Walsh, L.; Buttimer, C.; Bolocan, A.S.; Pang, R.; Gahan, C.G.M.; Hill, C. Characterizing phage-host interactions in a simplified human intestinal barrier model. Microorganisms 2020, 8, 1374. [Google Scholar] [CrossRef]
- Penttinen, R.; Given, C.; Jalasvuori, M. Indirect selection against antibiotic resistance via specialized plasmid-dependent bacteriophages. Microorganisms 2021, 9, 280. [Google Scholar] [CrossRef]
- Martin, I.; Kenna, D.T.D.; Morales, S.; Alton, E.W.F.W.; Davies, J.C. Variability in bacteriophage and antibiotic sensitivity in serial Pseudomonas aeruginosa isolates from cystic fibrosis airway cultures over 12 months. Microorganisms 2021, 9, 660. [Google Scholar] [CrossRef]
- Henrici De Angelis, L.; Poerio, N.; Di Pilato, V.; De Santis, F.; Antonelli, A.; Thaller, M.C.; Fraziano, M.; Rossolini, G.M.; D’Andrea, M.M. Phage resistance is associated with decreased virulence in KPC-producing Klebsiella pneumoniae of the clonal group 258 clade II lineage. Microorganisms 2021, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Poerio, N.; Olimpieri, T.; Henrici De Angelis, L.; De Santis, F.; Thaller, M.C.; D’Andrea, M.M.; Fraziano, M. Fighting MDR- Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Front. Immunol. 2022, 13, 1–6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henrici De Angelis, L.; Ponsecchi, G.; Fraziano, M.; D’Andrea, M.M. Application of Bacteriophages for Human Health: An Old Approach against Contemporary “Bad Bugs”. Microorganisms 2022, 10, 485. https://doi.org/10.3390/microorganisms10030485
Henrici De Angelis L, Ponsecchi G, Fraziano M, D’Andrea MM. Application of Bacteriophages for Human Health: An Old Approach against Contemporary “Bad Bugs”. Microorganisms. 2022; 10(3):485. https://doi.org/10.3390/microorganisms10030485
Chicago/Turabian StyleHenrici De Angelis, Lucia, Greta Ponsecchi, Maurizio Fraziano, and Marco Maria D’Andrea. 2022. "Application of Bacteriophages for Human Health: An Old Approach against Contemporary “Bad Bugs”" Microorganisms 10, no. 3: 485. https://doi.org/10.3390/microorganisms10030485