Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures
Author Contributions
Funding
Conflicts of Interest
References
- Wampande, E.M.; Waiswa, P.; Allen, D.J.; Hewson, R.; Frost, S.D.W.; Stubbs, S.C.B. Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus Detected in African Blue Ticks Feeding on Cattle in a Ugandan Abattoir. Microorganisms 2021, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Portillo, A.; Palomar, A.M.; Santibanez, P.; Oteo, J.A. Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future? Microorganisms 2021, 9, 649. [Google Scholar] [CrossRef]
- Welch, S.R.; Scholte, F.E.M.; Spengler, J.R.; Ritter, J.M.; Coleman-McCray, J.D.; Harmon, J.R.; Nichol, S.T.; Zaki, S.R.; Spiropoulou, C.F.; Bergeron, E. The Crimean-Congo Hemorrhagic Fever Virus NSm Protein is Dispensable for Growth In Vitro and Disease in Ifnar−/− Mice. Microorganisms 2020, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Hartlaub, J.; von Arnim, F.; Fast, C.; Somova, M.; Mirazimi, A.; Groschup, M.H.; Keller, M. Sheep and Cattle Are Not Susceptible to Experimental Inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus Closely Related to CCHFV. Microorganisms 2020, 8, 1927. [Google Scholar] [CrossRef]
- Bhatia, B.; Feldmann, H.; Marzi, A. Kyasanur Forest Disease and Alkhurma Hemorrhagic Fever Virus-Two Neglected Zoonotic Pathogens. Microorganisms 2020, 8, 1406. [Google Scholar] [CrossRef]
- Outbreak News Today. Nigeria Reports More than 200 Confirmed Lassa Fever Cases, 40 Deaths in January. 2022. Available online: http://outbreaknewstoday.com/nigeria-reports-more-than-200-confirmed-lassa-fever-cases-40-deaths-in-january-42054/ (accessed on 6 February 2022).
- Shaffer, J.G.; Schieffelin, J.S.; Momoh, M.; Goba, A.; Kanneh, L.; Alhasan, F.; Gbakie, M.; Engel, E.J.; Bond, N.G.; Hartnett, J.N.; et al. Space-Time Trends in Lassa Fever in Sierra Leone by ELISA Serostatus, 2012–2019. Microorganisms 2021, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.; Jarvis, M.A.; Feldmann, H.; Rosenke, K. Lassa Virus Treatment Options. Microorganisms 2021, 9, 772. [Google Scholar] [CrossRef]
- Sahin, M.; Remy, M.M.; Merkler, D.; Pinschewer, D.D. The Janus Kinase Inhibitor Ruxolitinib Prevents Terminal Shock in a Mouse Model of Arenavirus Hemorrhagic Fever. Microorganisms 2021, 9, 564. [Google Scholar] [CrossRef]
- Condrey, J.A.; Flietstra, T.; Nestor, K.M.; Schlosser, E.L.; Coleman-McCray, J.D.; Genzer, S.C.; Welch, S.R.; Spengler, J.R. Prothrombin Time, Activated Partial Thromboplastin Time, and Fibrinogen Reference Intervals for Inbred Strain 13/N Guinea Pigs (Cavia porcellus) and Validation of Low Volume Sample Analysis. Microorganisms 2020, 8, 1127. [Google Scholar] [CrossRef]
- Takadate, Y.; Manzoor, R.; Saito, T.; Kida, Y.; Maruyama, J.; Kondoh, T.; Miyamoto, H.; Ogawa, H.; Kajihara, M.; Igarashi, M.; et al. Receptor-Mediated Host Cell Preference of a Bat-Derived Filovirus, Lloviu Virus. Microorganisms 2020, 8, 1530. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, B.S.; Gressler, J.; Schmidt, M.L.; Holzerland, J.; Brandt, J.; Braun, S.; Groseth, A.; Hoenen, T. Differences in Viral RNA Synthesis but Not Budding or Entry Contribute to the In Vitro Attenuation of Reston Virus Compared to Ebola Virus. Microorganisms 2020, 8, 1215. [Google Scholar] [CrossRef]
- Schiffman, Z.; Yan, F.; He, S.; Tierney, K.; Zhu, W.; Emeterio, K.; Zhang, H.; Banadyga, L.; Qiu, X. Tai Forest Virus Does Not Cause Lethal Disease in Ferrets. Microorganisms 2021, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, Z.; Liu, G.; Cao, W.; Zhu, W.; Emeterio, K.; Qiu, X.; Banadyga, L. The Ferret as a Model for Filovirus Pathogenesis and Countermeasure Evaluation. ILAR J. 2022, 61, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, W.; Marzi, A. Development of an Enzyme-Linked Immunosorbent Assay to Determine the Expression Dynamics of Ebola Virus Soluble Glycoprotein during Infection. Microorganisms 2020, 8, 1535. [Google Scholar] [CrossRef] [PubMed]
- Keiser, P.T.; Anantpadma, M.; Staples, H.; Carrion, R.; Davey, R.A. Automation of Infectious Focus Assay for Determination of Filovirus Titers and Direct Comparison to Plaque and TCID50 Assays. Microorganisms 2021, 9, 156. [Google Scholar] [CrossRef]
- Alfson, K.J.; Goez-Gazi, Y.; Gazi, M.; Staples, H.; Mattix, M.; Ticer, A.; Klaffke, B.; Stanfield, K.; Escareno, P.; Keiser, P.; et al. Development of a Well-Characterized Rhesus Macaque Model of Ebola Virus Disease for Support of Product Development. Microorganisms 2021, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Stefan, C.P.; Arnold, C.E.; Shoemaker, C.J.; Zumbrun, E.E.; Altamura, L.A.; Douglas, C.E.; Taylor-Howell, C.L.; Graham, A.S.; Delp, K.L.; Blancett, C.D.; et al. Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Finch, C.L.; Dyall, J.; Xu, S.; Nelson, E.A.; Postnikova, E.; Liang, J.Y.; Zhou, H.; DeWald, L.E.; Thomas, C.J.; Wang, A.; et al. Formulation, Stability, Pharmacokinetic, and Modeling Studies for Tests of Synergistic Combinations of Orally Available Approved Drugs against Ebola Virus In Vivo. Microorganisms 2021, 9, 566. [Google Scholar] [CrossRef]
- Pinski, A.N.; Messaoudi, I. To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020, 8, 1473. [Google Scholar] [CrossRef] [PubMed]
- Biondi, M.J.; Garnett, L.; Bello, A.; Funk, D.; Poliquin, P.G.; Jones, S.; Tierney, K.; Tran, K.; Kozak, R.A.; Leung, A.; et al. Characterization of Ebola Virus Risk to Bedside Providers in an Intensive Care Environment. Microorganisms 2021, 9, 498. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mire, C.E.; Marzi, A. Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures. Microorganisms 2022, 10, 591. https://doi.org/10.3390/microorganisms10030591
Mire CE, Marzi A. Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures. Microorganisms. 2022; 10(3):591. https://doi.org/10.3390/microorganisms10030591
Chicago/Turabian StyleMire, Chad E., and Andrea Marzi. 2022. "Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures" Microorganisms 10, no. 3: 591. https://doi.org/10.3390/microorganisms10030591
APA StyleMire, C. E., & Marzi, A. (2022). Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures. Microorganisms, 10(3), 591. https://doi.org/10.3390/microorganisms10030591