Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Susceptibility Testing
2.3. Molecular and Immunochromatographic Analyses
2.4. Plasmid Characterization
3. Results
3.1. 16S rRNA Methylase and β-Lactamase Content of the Isolates
3.2. Antimicrobial Resistance Features among Colistin-Resistance Isolates
3.3. Species and Clonal Evaluations
3.4. Origin of the Isolates
3.5. Association between the RMTase ArmA and Carbapenemase
3.6. Association between the RMTase RmtF and Carbapenemases
3.7. Association between the RMTase RmtB and Carbapenemases
3.8. Association between the RMTase RmtC and Carbapenemases
K. pneumoniae (n = 75) | Sequence Type | Inc-Type Methylase | Inc-Type Carbapenemase | Co-localisation | References | |
---|---|---|---|---|---|---|
ArmA (n = 34) | ||||||
KPC-2 (n = 5) | ST 101 (n = 4) | FII | FII | Yes | [29] | |
ST 16 (n = 1) | FII | FII | Yes | [29] | ||
KPC-3 (n = 4) | ST 101 (n = 4) | FII | X3 (n = 1) | No | ||
L/M (n = 1) | No | |||||
A/C (n = 1) | No | |||||
R (n = 1) | No | |||||
NDM-1 (n = 12) | ST 11 (n = 1) | A/C | A/C | Yes | [26] | |
ST 16 (n = 2) | A/C | A/C | Yes | [26] | ||
FII | FII | Yes | [28] | |||
ST 147 (n = 5) | A/C | A/C | Yes | [26] | ||
ST 247 (n = 5) | A/C | A/C | Yes | [26] | ||
ST 395 (n = 1) | A/C | A/C | Yes | [26] | ||
ST 405 (n = 1) | A/C | A/C | Yes | [26] | ||
ST 437 (n = 1) | A/C | A/C | Yes | [26] | ||
Carbapenemase-negative (n = 4) | ST 14 (n = 1) | - | Untypeable | - | ||
ST 15 (n = 1) | - | FIB | - | |||
ST 101 (n = 1) | - | R | - | |||
ST 340 (n = 1) | - | Untypeable | - | |||
OXA-48 (n = 8) | ST 231 (n = 1) | Untypeable | R | No | ||
ST 395 (n = 2) | L/M | A/C | No | |||
ST 437 (n = 3) | FIB | A/C | No | |||
ST 944 (n = 2) | L/M | A/C | No | |||
OXA-181 (n = 1) | ST 35 (n = 1) | A/C | A/C | Yes | [37] | |
RmtF (n = 25) | ||||||
KPC-2 (n = 8) | ST 231 (n = 8) | FII | B/O | No | This study | |
NDM-1 (n = 2) | ST 11 | R (n = 1) | R | Yes | [33] | |
Untypeable (n = 1) | Untypeable | No | ||||
Carbapenemase-negative (n = 7) | ST 231 (n = 5) | FIB | - | - | [12] | |
ST 16 (n = 2) | FIB | - | - | |||
OXA-48 (n = 1) | ST 147 | FIB | L/M | No | ||
OXA-181 + NDM-5 (n = 1) | ST 147 | R | R (NDM-5), untypeable (OXA-181) | Yes (NDM-5 +RmtF) | [33] | |
OXA-232 (n = 6) | ST 231 | FIB (n = 5) | colKp3 | No | [12] | |
Untypeable (n = 1) | A/C | No | ||||
RmtB (n = 7) | ||||||
OXA-48 (n = 1) | ST 101 | A/C | A/C | Yes | [37] | |
OXA-48 + NDM-1 (n = 2) | ST 11 | A/C | Untypeable | No | ||
ST 101 | FII | FII (OXA-48), untypeable (NDM-1) | Yes (OXA-48 + RmtB) | [28] | ||
OXA-181 (n = 2) | ST 16 | FII | FII | Yes | [37] | |
ST 147 | A/C | A/C | Yes | [37] | ||
OXA-181 + NDM-5 (n = 1) | ST 16 | FII | FII (OXA-181 + NDM-5) | Yes | [37] | |
OXA-232 + NDM-5 (n = 1) | ST 231 | A/C | Untypeable (OXA-232, A/C (NDM-5) | Yes | [37] | |
RmtG (n = 1) | KPC-2 | ST 11 | B/O | FIB | No | [12] |
RmtB + RmtF (n = 1) | ||||||
OXA-181 + NDM-5 | ST 16 | FII (RmtB), untypeable (RmtF) | FII (OXA-181), untypeable (NDM-5) | Yes (OXA-181+RmtB) | [37] | |
Non-RMTases (n = 4) | ||||||
KPC-2 (n = 2) | ST 11 | - | FII | - | ||
ST 101 | - | FII | - | |||
KPC-3 (n = 1) | ST 1519 | - | FII | - | ||
OXA-48 (n = 1) | ST 147 | - | L/M | - |
E. coli (n = 12) | Sequence Type | Inc-Type Methylase | Inc-Type Carbapenemase | Co-localization | References | |
---|---|---|---|---|---|---|
ArmA (n = 4) | ||||||
NDM-1 (n = 2) | ST 8714 | A/C | A/C | Yes | [26] | |
NDM-5 (n = 1) | ST 90 | A/C | A/C | Yes | [34] | |
OXA-181 (n = 1) | ST 167 | A/C | A/C | Yes | [37] | |
RmtB (n = 7) | ||||||
NDM-5 (n = 6) | ST 167 | Y | Y | Yes | [34] | |
ST 354 (n = 3) | FIA | A/C | No | [35] | ||
ST 405 | FIA | A/C | No | [35] | ||
ST 2851 | FIA | A/C | No | [35] | ||
Carbapenemase-negative (n = 1) | ST 6823 | Y | - | - | ||
RmtC (n = 1) | ||||||
NDM-1 | ST 2520 | A/C | A/C | Yes | [38] |
3.9. Association between the RMTase RmtG and Carbapenemases
3.10. Association between the RMTase RmtB, RmtF and Carbapenemases
3.11. Association between non-RMTase-Related but Pan-Aminoglycoside-Resistant and Carbapenemases
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doi, Y.; Wachino, J.; Arakawa, Y. Aminoglycoside resistance: The emergence of acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.Y.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Poirel, L.; Dortet, L.; Bernabeu, S.; Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 5403–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arca-Suárez, J.; Rodiño-Janeiro, B.K.; Pérez, A.; Guijarro-Sánchez, P.; Vázquez-Ucha, J.C.; Cruz, F.; Gómez-Garrido, J.; Alioto, T.S.; Álvarez-Tejado, M.; Gut, M.; et al. Emergence of 16S rRNA methyltransferase among carbapenemase-producing Enterobacterles in Spain studied by whole-genome sequencing. Int. J. Antimicrob. Agents 2022, 59, 106456. [Google Scholar] [CrossRef] [PubMed]
- Nafplioti, K.; Souli, M.; Adamou, P.; Moraitou, E.; Giannopoulou, P.; Chra, P.; Damala, M.; Vogiatzakis, E.; Trikka-Graphakos, E.; Baka, V.; et al. Characterization of 16S rRNA methylase genes in Enterobacterales and Pseudomonas aeruginosa in Athens Metropolitan area, 2015–2016. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Liu, L.; Yu, J.; Ai, W.; Cao, X.; Zhan, Q.; Guo, Y.; Wang, L.; Yu, F. High prevalence of 16S rRNA methlytransferase genes in carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in 11 chinese teaching hospitals. Infect. Drug Resis. 2020, 13, 2189–2197. [Google Scholar] [CrossRef]
- Bodendoerfer, E.; Marchesi, M.; Imkamp, F.; Courvalin, P.; Böttger, E.; Mancini, S. Co-occurence of aminoglycoside and β-lactam resistance mechanisms in aminoglycoside-non-susceptible Escherichia coli isolated in the Zurich area, Switzerland. Int. J. Antimicrob. Agents 2020, 56, 106019. [Google Scholar] [CrossRef]
- Mancini, S.; Poirel, L.; Corthesy, M.; Greub, G.; Nordmann, P. Klebsiella pneumoniae co-producing KPC and RmtG, finally targeting Switzerland. Diagn. Microbiol. Infect. Dis. 2018, 90, 151–152. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, S.N.; Marschall, J.; Perreten, V.; Carattoli, A.; Furrer, H.; Endimiani, A. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J. Antimicrob. Agents 2014, 44, 260–262. [Google Scholar] [CrossRef]
- Mancini, S.; Poirel, L.; Tritten, M.L.; Lienhard, R.; Bassi, C.; Nordmann, P. Emergence of an MDR Klebsiella pneumoniae ST 231 producing OXA-232 and RmtF in Switzerland. J. Antimicrob. Chemother. 2018, 73, 821–823. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503–1507. [Google Scholar] [CrossRef] [Green Version]
- European Commitee of Antibiotic Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0, 2020. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 14 February 2022).
- Nordmann, P.; Jayol, A.; Poirel, L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg. Infect. Dis. 2016, 22, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detetion of acquired carbapenemease genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Lartigue, M.F.; Zinsius, C.; Wenger, A.; Bille, J.; Poirel, L.; Nordmann, P. Extended-spectrum β-lactamases of the CTX-M type now in Switzerland. Antimicrob. Agents Chemother. 2007, 51, 2855–2860. [Google Scholar] [CrossRef] [Green Version]
- Mammeri, H.; Eb, F.; Berkani, A.; Nordmann, P. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. J. Antimicrob. Chemother. 2008, 61, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Jayol, A.; Dobias, J.; Poirel, L. Rapid aminoglycoside NP test for a rapid detection of multiple aminoglycoside resistance in Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.; Sriskandan, S.; Woodford, N.; Hopkins, K.L. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int. J. Antimicrob. Agents 2018, 52, 278–282. [Google Scholar] [CrossRef]
- Fournier, C.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. Occurrence of CTX-M-15- and MCR-1-producing Enterobacterales in pigs in Portugal: Direct links with antibiotic selective pressure. Int. J. Antimicrob. Agents 2020, 55, 105802. [Google Scholar] [CrossRef]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html (accessed on 14 February 2022).
- Available online: https://enterobase.warwick.ac.uk (accessed on 14 February 2022).
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Sekizuka, T.; Matsui, M.; Yamane, K.; Takeuchi, F.; Ohnishi, M.; Hishinuma, A.; Arakawa, Y.; Kuroda, M. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens. PLoS ONE 2011, 6, e25334. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Lo, W.U.; Lin, C.H.; Chow, K.H.; Ang, I.; Yan Tong, A.H.; Bao, J.Y.J.; Lok, S.; Lo, J.Y.C. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase form a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS ONE 2011, 6, e17989. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, R.A.; Poirel, L.; Carattoli, A.; Nordmann, P. Characterization of an IncFII plasmid encoding NDM-1 Escherichia coli ST131. PLoS ONE 2012, 7, e34752. [Google Scholar]
- Mezzatesta, M.L.; Gona, F.; Caio, C.; Adembri, C.; Dell’utri, P.; Santagati, M.; Stefani, S. Emergence of an an extensively drug-resistant ArmA- and KPC-2-producing ST101 Klebsiella pneumoniae clone in Italy. J. Antimicrob. Chemother. 2013, 68, 1932–1934. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, A.; Chmelnitsky, I.; Ofek, I.; Carmeli, Y.; Navon-Venezia, S. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely-resistant epidemic Klebsiella pneumoniae. J. Antimicrob. Chemother. 2010, 65, 243–248. [Google Scholar] [CrossRef]
- Aishwarya, K.V.L.; Geetha, P.V.; Shanthi, M.; Uma, S. Co-occurrence of two 16S rRNA methylatransferases along with NDM and OXA-48-like carbapenemases on a single plasmid in Klebsiella pneumoniae. J. Lab. Physicians 2019, 11, 305–311. [Google Scholar]
- Markovska, R.; Schneider, I.; Keuleyan, E.; Ivanova, D.; Lesseva, M.; Stoeva, T.; Sredkova, M.; Bauernfeind, A.; Mitov, I. Dissemination of a multi-drug-resistant VIM-1- and CMY-99-producing Proteus mirabilis clone in Bulgaria. Microb. Drug Resist. 2017, 23, 345–350. [Google Scholar] [CrossRef]
- Gamal, D.; Fernández-Martínez, M.; Salem, D.; El-Defrawy, I.; Álvarez Montes, L.; Ocampo-Sosa, A.A.; Martínez-Martínez, L. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int. J. Infect. Dis. 2016, 43, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Goutines, J.; Aires-de-Sousa, M.; Nordmann, P. High rate of association of 16S rRNA methylases and carbapenemases in Enterobacteriaceae recovered from hospitalized children in Angola. Antimicrob Agents Chemother. 2018, 62, e00021-18. [Google Scholar] [CrossRef] [Green Version]
- Ayad, A.; Drissi, M.; de Curraize, C.; Dupont, C.; Hartmann, A.; Solanas, S.; Siebor, E.; Amoureux, L.; Neuwirth, C. Occurrence of ArmA and RmtB aminoglycoside resistance 16S rRNA methlyases in extended-spectrum β-lactamases producing Escherichia coli in Algerian hospitals. Front. Microbiol. 2016, 7, 1409. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, X.; Xie, M.; Wang, X.; Liao, K.; Xue, W. Widespread dissemination of carbapenem-resistant Escherichia coli sequence type 167 strains harboring blaNDM-5 in clinical settings in China. Antimicrob. Agents Chemother. 2016, 60, 4364–4368. [Google Scholar] [CrossRef] [Green Version]
- Balm, M.N.D.; La, M.V.; Krishnan, P.; Jureen, R.; Lin, R.T.P.; Teo, J.W.P. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin. Microbiol. Infect. 2013, 19, E421–E423. [Google Scholar] [CrossRef] [Green Version]
- Tada, T.; Tsuchiya, M.; Shimada, K.; Nga, T.T.T.; Thu, L.T.A.; Phu, T.T.; Ohmagari, N.; Kirikae, T. Dissemination of carbpenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA methylases (RmtB and RmtC) in Vietnam. BMC Infect. Dis. 2017, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Nafplioti, K.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Souli, M.; Study Collaborators. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates form Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect. Dis. 2019, 19, 167. [Google Scholar]
- Pragasam, A.K.; Jennifer, S.L.; Solaimalai, D.; Muthuirulandi Sethuvel, D.P.; Rachel, T.; Elangovan, D.; Vasudevan, K.; Gunasekaran, K.; Veeraraghavan, B. Expected plazomicin susceptibility in India based on the prevailing aminoglycoside resistance mechanisms in Gram-negative organisms derived from whole-genome sequencing. Indian J. Med. Microbiol. 2020, 38, 313–318. [Google Scholar] [CrossRef]
- Nordmann, P.; Girlich, D.; Poirel, L. Detection of carbapenemase producers in Entoerbacteriaceae using a novel screening medium. J. Clin. Microbiol. 2012, 50, 2761–2766. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Christofidou, M.; Bereksi, N.; Hey, J.; Zambardi, G.; Spiliopoulou, I. Performance of chromID CARBA medium for carbapenemase-producing Enterobacteriaceae detection during rectal screening. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 35–40. [Google Scholar] [CrossRef]
- Nordmann, P.; Mazé, A.; Culebras, E.; Dobias, J.; Jayol, A.; Poirel, L. A culture medium for screening 16S rRNA methylase-producing pan-aminoglycoside resistant Gram-negative bacteria. Diagn. Microbiol. Infect. Dis. 2018, 91, 118–122. [Google Scholar] [CrossRef] [Green Version]
Species | Negative | ArmA | RmtB | RmtC | RmtF | RmtG | RmtB + RmtF | Total |
---|---|---|---|---|---|---|---|---|
Citrobacter freundii | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Enterobacter cloacae | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 3 |
Enterobacter hormaechi | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Enterobacter xianfangensis | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 |
Escherichia coli | 0 | 4 | 7 | 1 | 0 | 0 | 0 | 12 |
Klebsiella pneumoniae | 4 | 34 | 7 | 0 | 25 | 1 | 1 | 72 |
Morganella morganii | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Proteus mirabilis | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 6 |
Providencia rettgeri | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 |
Providencia stuartii | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
Total | 4 | 53 | 14 | 5 | 25 | 1 | 1 | 103 |
16S RMTases | Carbapenemase Negative | NDM-like | OXA-48-like | NDM- + OXA-48-like | KPC-like | VIM-like | Total |
---|---|---|---|---|---|---|---|
Negative | 0 | 0 | 1 | 0 | 3 | 0 | 4 |
ArmA | 5 | 23 | 12 | 0 | 9 | 4 | 53 |
RmtB | 1 | 6 | 3 | 4 | 0 | 0 | 14 |
RmtC | 0 | 4 | 0 | 1 | 0 | 0 | 5 |
RmtF | 7 | 2 | 7 | 1 | 8 | 0 | 25 |
RmtG | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
RmtB + RmtF | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Total | 13 | 35 | 23 | 7 | 21 | 4 | 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournier, C.; Poirel, L.; Despont, S.; Kessler, J.; Nordmann, P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022, 10, 615. https://doi.org/10.3390/microorganisms10030615
Fournier C, Poirel L, Despont S, Kessler J, Nordmann P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms. 2022; 10(3):615. https://doi.org/10.3390/microorganisms10030615
Chicago/Turabian StyleFournier, Claudine, Laurent Poirel, Sarah Despont, Julie Kessler, and Patrice Nordmann. 2022. "Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020" Microorganisms 10, no. 3: 615. https://doi.org/10.3390/microorganisms10030615
APA StyleFournier, C., Poirel, L., Despont, S., Kessler, J., & Nordmann, P. (2022). Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms, 10(3), 615. https://doi.org/10.3390/microorganisms10030615