Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides
Abstract
:1. Introduction
2. Fungal Metabolism and Protein Secretion
3. Production of Native (Non-Recombinant) Proteins
3.1. Production of Enzymes for Plant Biomass Utilization
3.2. Production of Mycoproteins for Food and Feed
4. Recombinant Production
4.1. Production of Recombinant Enzymes for Plant Biomass Utilization
4.2. Production of Animal-Derived Food Proteins
4.3. Production of Other Recombinant Proteins
4.3.1. Production of Hydrophobins
4.3.2. Production of Anti-Microbial Peptides
5. Fermentation
5.1. Submerged Fermentation
5.2. Solid-State Fermentation
6. Use of Biomass Streams as Fermentation Substrates
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef] [PubMed]
- Spatafora, J.W.; Aime, M.C.; Grigoriev, I.V.; Martin, F.; Stajich, J.E.; Blackwell, M. The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. Microbiol. Spectr. 2017, 5, 3–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakekar, A.A.; Gaikwad, S.R.; Punekar, N.S. Protein expression and secretion by filamentous fungi. J. Biosci. 2021, 46, 5. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.; Lübeck, M.; Lubeck, P.S.; Ahring, B.K. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules 2013, 3, 612–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoglowek, M.; Hansen, G.H.; Lübeck, P.S.; Lübeck, M. Fungal Consortia for Conversion of Lignocellulose into Bioproducts. In Fungal Biotechnology for Biofuels. Mycology: Current and Future Developments; Silva, R.N., Ed.; Bentham eBooks; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; Volume 1, pp. 329–365. [Google Scholar] [CrossRef] [Green Version]
- Zoglowek, M.; Lübeck, P.S.; Ahring, B.K.; Lübeck, M. Heterologous expression of cellobiohydrolases in filamentous fungi—An update on the current challenges, achievements and perspectives. Process Biochem. 2015, 50, 211–220. [Google Scholar] [CrossRef]
- Madhavan, A.; Arun, K.; Sindhu, R.; Jose, A.A.; Pugazhendhi, A.; Binod, P.; Sirohi, R.; Reshmy, R.; Awasthi, M.K. Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. Bioresour. Technol. 2022, 344, 126209. [Google Scholar] [CrossRef]
- Meyer, V. Metabolic Engineering of Filamentous Fungi. In Metabolic Engineering: Concepts and Applications, 1st ed.; WILEY-VCH GmbH: Hoboken, NJ, USA, 2021. [Google Scholar]
- Wei, H.; Wu, M.; Fan, A.; Su, H. Recombinant protein production in the filamentous fungus Trichoderma. Chin. J. Chem. Eng. 2021, 30, 74–81. [Google Scholar] [CrossRef]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for future foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Cairns, T.; Barthel, L.; King, R.; Kunz, P.; Schmideder, S.; Müller, H.; Briesen, H.; Dinius, A.; Krull, R. Understanding and controlling filamentous growth of fungal cell factories: Novel tools and opportunities for targeted morphology engineering. Fungal Biol. Biotechnol. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Joshi, S.R. Industrial Perspectives of Fungi. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer: Singapore, 2015; pp. 81–105. [Google Scholar] [CrossRef]
- Tubb, C.; Seba, T. Rethinking Food and Agriculture 2020–2030. A Food and Agriculture Report by the Think Tank RethinkX. 2019. Available online: https://www.rethinkx.com/food-and-agriculture (accessed on 5 August 2021).
- Nevalainen, H. Grand Challenges in Fungal Biotechnology; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Nevalainen, K.H.; Te’O, V.S.J.; Bergquist, P.L. Heterologous protein expression in filamentous fungi. Trends Biotechnol. 2005, 23, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, H.; Peterson, R. Making recombinant proteins in filamentous fungi—Are we expecting too much? Front. Microbiol. 2014, 5, 75. [Google Scholar] [PubMed]
- Bergquist, P.L.; Te’O, V.S.J.; Gibbs, M.D.; Cziferszky, A.C.E.; De Faria, F.P.; Azevedo, M.O.; Nevalainen, K.M.H. Production of Recombinant Bleaching Enzymes from Thermophilic Microorganisms in Fungal Hosts. Appl. Biochem. Biotechnol. 2002, 98–100, 165–176. [Google Scholar] [CrossRef]
- Agarwal, A.; Jaiswal, N.; Tripathi, A.D.; Paul, V. Downstream Processing; Applications and Recent Updates. In Bioprocessing for Biofuel Production. Clean Energy Production Technologies; Srivastava, N., Srivastava, M., Mishra, P., Gupta, V.K., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Kalyanpur, M. Downstream Processing in the Biotechnology Industry. Mol. Biotechnol. 2002, 22, 087–098. [Google Scholar] [CrossRef]
- Labrou, N.E. Protein Purification Technologies. In Protein Downstream Processing. Methods in Molecular Biology; Labrou, N.E., Ed.; Humana: New York, NY, USA, 2021; Volume 2178. [Google Scholar] [CrossRef]
- Carle-Urioste, J.C.; Escobar-Vera, J.; El-Gogary, S.; Henrique-Silva, F.; Torigoi, E.; Crivellaro, O.; Herrera-Estrella, A.; El-Dorry, H. Cellulase Induction in Trichoderma reesei by Cellulose Requires Its Own Basal Expression. J. Biol. Chem. 1997, 272, 10169–10174. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.; Messner, R.; Gruber, F.; Mandels, M.; Kubicek-Pranz, E. Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. J. Biol. Chem. 1993, 268, 19364–19368. [Google Scholar] [CrossRef]
- Wang, B.-T.; Hu, S.; Yu, X.-Y.; Jin, L.; Zhu, Y.-J.; Jin, F.-J. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers 2020, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Su, X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J. Microbiol. Biotechnol. 2019, 35, 54. [Google Scholar] [CrossRef]
- Shoji, J.-Y.; Arioka, M.; Kitamoto, K. Dissecting cellular components of the secretory pathway in filamentous fungi: Insights into their application for protein production. Biotechnol. Lett. 2007, 30, 7–14. [Google Scholar] [CrossRef]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signalling—From basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef] [PubMed]
- Benham, A.M. Endoplasmic Reticulum redox pathways: In sickness and in health. FEBS J. 2019, 286, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Geysens, S.; Whyteside, G.; Archer, D.B. Genomics of protein folding in the endoplasmic reticulum, secretion stress and glycosylation in the aspergilli. Fungal Genet. Biol. 2009, 46, S121–S140. [Google Scholar] [CrossRef]
- Peberdy, J.F. Protein secretion in filamentous fungi—Trying to understand a highly productive black box. Trends Biotechnol. 1994, 12, 50–57. [Google Scholar] [CrossRef]
- Tegelaar, M.; Wösten, H.A.B. Functional distinction of hyphal compartments. Sci. Rep. 2017, 7, 6039. [Google Scholar] [CrossRef]
- Blackwell, M. The Fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1998, 1, 26–27. [Google Scholar] [CrossRef]
- Li, J.-X.; Zhang, F.; Jiang, D.-D.; Li, J.; Wang, F.-L.; Zhang, Z.; Wang, W.; Zhao, X.-Q. Diversity of Cellulase-Producing Filamentous Fungi from Tibet and Transcriptomic Analysis of a Superior Cellulase Producer Trichoderma harzianum LZ117. Front. Microbiol. 2020, 11, 1617. [Google Scholar] [CrossRef]
- Lübeck, M.; Lübeck, P.S. Isolation and Screening of Cellulolytic Filamentous Fungi. In Cellulases; Methods in Molecular Biology; Lübeck, M., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1796. [Google Scholar] [CrossRef]
- Kolasa, M.; Ahring, B.K.; Lübeck, P.S.; Lübeck, M. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 2014, 169, 143–148. [Google Scholar] [CrossRef]
- Filiatrault-Chastel, C.; Heiss-Blanquet, S.; Margeot, A.; Berrin, J.-G. From fungal secretomes to enzymes cocktails: The path forward to bioeconomy. Biotechnol. Adv. 2021, 52, 107833. [Google Scholar] [CrossRef]
- de Vries, R.P.; Visser, J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001, 65, 497–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Brink, J.; De Vries, R.P. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, G.H.; Lübeck, M.; Frisvad, J.; Lübeck, P.S.; Andersen, B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem. 2015, 50, 1327–1341. [Google Scholar] [CrossRef]
- Lopes, A.M.; Ferreira Filho, E.X.; Moreira, L.R.S. An update on enzymatic cocktails for lignocellulose breakdown. J. Appl. Microbiol. 2018, 125, 632–645. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Líter, J.A.; de Eugenio, L.I.; Nieto-Domínguez, M.; Prieto, A.; Martínez, M.J. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. Bioresour. Technol. 2021, 324, 124623. [Google Scholar] [CrossRef]
- Maheshwari, R.; Bharadwaj, G.; Bhat, M.K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiol. Mol. Biol. Rev. 2000, 64, 461–488. [Google Scholar] [CrossRef] [Green Version]
- Selbmann, L.; Egidi, E.; Isola, D.; Onofri, S.; Zucconi, L.; de Hoog, G.S.; Chinaglia, S.; Testa, L.; Tosi, S.; Balestrazzi, A.; et al. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 147, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Pel, H.J.; de Winde, J.H.; Archer, D.B.; Dyer, P.S.; Hofmann, G.; Schaap, P.J.; Turner, G.; de Vries, R.P.; Albang, R.; Albermann, K.; et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007, 25, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhinina, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K.; et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef] [Green Version]
- Benocci, T.; Aguilar-Pontes, M.V.; Zhou, M.; Seiboth, B.; de Vries, R. Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol. Biofuels 2017, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Arntzen, M.Ø.; Bengtsson, O.; Várnai, A.; Delogu, F.; Mathiesen, G.; Eijsink, V.G.H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci. Rep. 2020, 10, 20267. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.D.H.; Gonçalves, T.A.; Uchima, C.A.; Couger, M.B.; Prade, R.; Squina, F.M.; Dillon, A.J.P.; Camassola, M. Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol. Biofuels 2016, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Han, X.; Qian, Y.; Liu, G.; Yao, G.; Zhong, Y.; Qu, Y. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol. Biofuels 2016, 9, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brar, K.; Agrawal, D.; Chadha, B.; Lee, H. Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. Bioresour. Technol. 2019, 273, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Grieco, M.A.B.; Haon, M.; Grisel, S.; de Oliveira-Carvalho, A.L.; Magalhães, A.V.; Zingali, R.B.; Pereira, N.; Berrin, J.-G. Evaluation of the enzymatic arsenal secreted by Myceliophthora thermophila during growth on sugarcane bagasse with a focus on LPMOs. Front. Bioeng. Biotechnol. 2020, 8, 1028. [Google Scholar] [CrossRef]
- Girard, V.; Dieryckx, C.; Job, C.; Job, D. Secretomes: The fungal strike force. Proteomics 2013, 13, 597–608. [Google Scholar] [CrossRef]
- Bischof, R.H.; Ramoni, J.; Seiboth, B. Cellulases and beyond: The first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 2016, 15, 106. [Google Scholar] [CrossRef] [Green Version]
- Daba, G.M.; Mostafa, F.A.; Elkhateeb, W.A. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool. Bioresour. Bioprocess. 2021, 8, 52. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Du, G.; Chen, J.; Takahashi, S.; Liu, S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 2020, 44, 107630. [Google Scholar] [CrossRef]
- Ntana, F.; Mortensen, U.; Sarazin, C.; Figge, R. Aspergillus: A Powerful Protein Production Platform. Catalysts 2020, 10, 1064. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.-D.; Patel, A.K.; Puri, M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour. Technol. 2021, 344, 126415. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.R.; Fidantsef, A.L. Directed evolution of industrial enzymes: An update. Curr. Opin. Biotechnol. 2003, 14, 438–443. [Google Scholar] [CrossRef]
- Champreda, V.; Mhuantong, W.; Lekakarn, H.; Bunterngsook, B.; Kanokratana, P.; Zhao, X.-Q.; Zhang, F.; Inoue, H.; Fujii, T.; Eurwilaichitr, L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J. Biosci. Bioeng. 2019, 128, 637–654. [Google Scholar] [CrossRef] [PubMed]
- Rana, V.; Eckard, A.D.; Teller, P.; Ahring, B.K. On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour. Technol. 2014, 154, 282–289. [Google Scholar] [CrossRef]
- Treebupachatsakul, T.; Nakazawa, H.; Shinbo, H.; Fujikawa, H.; Nagaiwa, A.; Ochiai, N.; Kawaguchi, T.; Nikaido, M.; Totani, K.; Shioya, K.; et al. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. J. Biosci. Bioeng. 2016, 121, 27–35. [Google Scholar] [CrossRef]
- Godse, R.; Bawane, H.; Tripathi, J.; Kulkarni, R. Unconventional β-Glucosidases: A Promising Biocatalyst for Industrial Biotechnology. Appl. Biochem. Biotechnol. 2021, 193, 2993–3016. [Google Scholar] [CrossRef]
- Sperandio, G.B.; Filho, E.X.F. An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes. Appl. Microbiol. Biotechnol. 2021, 105, 3019–3025. [Google Scholar] [CrossRef]
- Shen, L.; Su, Y.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Zhang, S.; Chen, G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. Biocatal. Agric. Biotechnol. 2021, 32, 101849. [Google Scholar] [CrossRef]
- Monclaro, A.V.; Silva, C.D.O.G.; Gomes, H.A.R.; Moreira, L.R.D.S.; Filho, E.X.F. The enzyme interactome concept in filamentous fungi linked to biomass valorization. Bioresour. Technol. 2021, 344, 126200. [Google Scholar] [CrossRef]
- Teixeira, W.F.A.; Batista, R.D.; do Amaral Santos, C.C.A.; Júnior, A.C.F.; Terrasan, C.R.F.; de Santana, M.W.P.R.; de Siqueira, F.G.; de Paula-Elias, F.C.; de Almeida, A.F. Minimal Enzymes Cocktail Development by Filamentous Fungi Consortia in Solid-State Cultivation and Valorization of Pineapple Crown Waste by Enzymatic Saccharification. Waste Biomass Valoriz. 2021, 12, 2521–2539. [Google Scholar] [CrossRef]
- Dai, X.; Sharma, M.; Chen, J. Fungi in Sustainable Food Production; Series in Fungal Biology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Steinkraus, K.H. Classification of fermented foods: Worldwide review of household fermentation techniques. Food Control 1997, 8, 311–317. [Google Scholar] [CrossRef]
- Das, A.; Nanda, P.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.; McClements, D.; Gullón, B.; Lorenzo, J. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.H.; Zulkifli, N.A.; Tan, T.C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development. In An Introduction to Mushroom; Passari, A.K., Sánchez, S., Eds.; IntechOpen: London, UK, 2020; pp. 19–38. [Google Scholar] [CrossRef]
- Abo Nahas, H.H.; Darwish, A.M.G.; Abo Nahas, Y.H.; Elsayed, M.A.; Abdel-Azeem, M.A.; Abdel-Azeem, A.M. Fungi As a Gold Mine of Antioxidants. In Industrially Important Fungi for Sustainable Development; Fungal Biology; Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dikkala, P.K.; Usmani, Z.; Kumar, S.; Gupta, V.K.; Bhargava, A.; Sharma, M. Fungal Production of Vitamins and Their Food Industrial Applications. In Industrially Important Fungi for Sustainable Development; Fungal Biology; Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Jagadish, B.R.; Sridhar, K.R.; Dattaraj, H.R.; Chandramohana, N.; Mahadevakumar, S. Nutraceutical Potential of Wild Edible Mushroom Hygrocybe alwisii. In Industrially Important Fungi for Sustainable Development; Fungal Biology; Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Stoffel, F.; Santana, W.D.O.; Fontana, R.C.; Camassola, M. Use of Pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. Innov. Food Sci. Emerg. Technol. 2021, 68, 102642. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Rombouts, F. Recent developments in tempe research. J. Appl. Bacteriol. 1990, 69, 609–633. [Google Scholar] [CrossRef]
- Nout, M.; Kiers, J. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef]
- Moo-Young, M.; Chisti, Y.; Vlach, D. Fermentation of cellulosic materials to mycoprotein foods. Biotechnol. Adv. 1993, 11, 469–479. [Google Scholar] [CrossRef]
- Hellwig, C.; Gmoser, R.; Lundin, M.; Taherzadeh, M.J.; Rousta, K. Fungi Burger from Stale Bread? A Case Study on Perceptions of a Novel Protein-Rich Food Product Made from an Edible Fungus. Foods 2020, 9, 1112. [Google Scholar] [CrossRef]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Cooray, S.T.; Chen, W.N. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J. Funct. Foods 2018, 42, 85–94. [Google Scholar] [CrossRef]
- Ibarruri, J.; Cebrián, M.; Hernández, I. Solid state fermentation of brewer’s spent grain using Rhizopus sp. to enhance nu-tritional value. Waste Biomass Valoriz. 2019, 10, 3687–3700. [Google Scholar] [CrossRef]
- Ibarruri, J.; Cebrián, M.; Hernández, I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J. Environ. Manag. 2021, 281, 111901. [Google Scholar] [CrossRef] [PubMed]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA J. 2020, 18, e05966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derbyshire, E.J.; Delange, J. Fungal Protein—What Is It and What Is the Health Evidence? A Systematic Review Focusing on Mycoprotein. Front. Sustain. Food Syst. 2021, 5, 5. [Google Scholar] [CrossRef]
- Finnigan, T.J.A.; Wall, B.T.; Wilde, P.J.; Stephens, F.B.; Taylor, S.L.; Freedman, M.R. Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Curr. Dev. Nutr. 2019, 3, nzz021. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, M.G. QuornTM Mycoprotein—Overview of a successful fungal product. Mycologist 2004, 18, 17–20. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Van Den Hombergh, J.P.T.W.; Gelpke, M.D.S.; Van De Vondervoort, P.J.I.; Buxton, F.P.; Visser, J. Disruption of Three Acid Proteases in Aspergillus niger Effects on Protease Spectrum, Intracellular Proteolysis, and Degradation of Target Proteins. Eur. J. Biochem. 1997, 247, 605–613. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Lv, B.; Li, C. Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Front. Bioeng. Biotechnol. 2020, 8, 691. [Google Scholar] [CrossRef]
- Funk, M.; Niedenthal, R.; Mumberg, D.; Brinkmann, K.; Ro¨nicke, V.; Henkel, T. Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods Enzymol. 2002, 350, 248–257. [Google Scholar] [PubMed]
- Juturu, V.; Wu, J.C. Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications. ChemBioChem 2018, 19, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Ki, M.-R.; Pack, S.P. Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.E. Protein hyperproduction in fungi by design. Appl. Microbiol. Biotechnol. 2018, 102, 8621–8628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnau, J.; Yaver, D.; Hjort, C.M. Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell Factories. In Grand Challenges in Fungal Biotechnology; Grand Challenges in Biology and Biotechnology; Nevalainen, H., Ed.; Springer: Cham, Switzerland, 2020; pp. 179–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xiang, B.; Zhao, S.; Yang, L.; Chen, Y.; Hu, Y.; Hu, S. Construction of a novel filamentous fungal protein expression system based on redesigning of regulatory elements. Appl. Microbiol. Biotechnol. 2022, 106, 647–661. [Google Scholar] [CrossRef]
- Wakai, S.; Nakashima, N.; Ogino, C.; Tsutsumi, H.; Hata, Y.; Kondo, A. Modified expression of multi-cellulases in a filamentous fungus Aspergillus oryzae. Bioresour. Technol. 2019, 276, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Cairns, T.C.; Barthel, L.; Meyer, V. Something old, something new: Challenges and developments in Aspergillus niger biotechnology. Essays Biochem. 2021, 65, 213–224. [Google Scholar] [CrossRef]
- de Crecy, E.; Jaronski, S.; Lyons, B.; Lyons, T.J.; Keyhani, N.O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 2009, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.-J.; Hu, S.; Wang, B.-T.; Jin, L. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front. Microbiol. 2021, 12, 644404. [Google Scholar] [CrossRef]
- Yan, S.; Xu, Y.; Yu, X.-W. From induction to secretion: A complicated route for cellulase production in Trichoderma reesei. Bioresour. Bioprocess. 2021, 8, 107. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, L.M.; Parreiras, L.S.; Murakami, M.T. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol. Biofuels 2020, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Punt, P.J.; van Biezen, N.; Conesa, A.; Albers, A.; Mangnus, J.; van den Hondel, C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002, 20, 200–206. [Google Scholar] [CrossRef]
- Adney, W.S.; Jeoh, T.; Beckham, G.T.; Chou, Y.-C.; Baker, J.O.; Michener, W.; Brunecky, R.; Himmel, M.E. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose 2009, 16, 699–709. [Google Scholar] [CrossRef]
- Punt, P.J.; Schuren, F.H.J.; Lehmbeck, J.; Christensen, T.; Hjort, C.; van den Hondel, C.A.M.J.J. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet. Biol. 2008, 45, 1591–1599. [Google Scholar] [CrossRef]
- Kamaruddin, N.; Storms, R.; Mahadi, N.M.; Illias, R.M.; Abu Bakar, F.D.; Murad, A.M.A. Reduction of Extracellular Proteases Increased Activity and Stability of Heterologous Protein in Aspergillus niger. Arab. J. Sci. Eng. 2018, 43, 3327–3338. [Google Scholar] [CrossRef]
- Kluge, J.; Terfehr, D.; Kück, U. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl. Microbiol. Biotechnol. 2018, 102, 6357–6372. [Google Scholar] [CrossRef] [Green Version]
- Reilly, M.C.; Kim, J.; Lynn, J.; Simmons, B.A.; Gladden, J.M.; Magnuson, J.K.; Baker, S.E. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger. Appl. Microbiol. Biotechnol. 2018, 102, 1797–1807. [Google Scholar] [CrossRef] [Green Version]
- Ward, O.P. Production of recombinant proteins by filamentous fungi. Biotechnol. Adv. 2012, 30, 1119–1139. [Google Scholar] [CrossRef]
- Heimel, K. Unfolded protein response in filamentous fungi—Implications in biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 121–132. [Google Scholar] [CrossRef]
- Higuchi, Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J. Fungi 2021, 7, 534. [Google Scholar] [CrossRef] [PubMed]
- Nødvig, C.S.; Nielsen, J.B.; Kogle, M.E.; Mortensen, U.H. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLoS ONE 2015, 10, e0133085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Kahmann, R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet. Biol. 2019, 130, 43–53. [Google Scholar] [CrossRef]
- Yang, L.; Henriksen, M.M.; Hansen, R.S.; Lübeck, M.; Vang, J.; Andersen, J.E.; Bille, S.; Lübeck, P.S. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. Biotechnol. Biofuels 2020, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Jarczynska, Z.J.; Rendsvig, J.K.H.; Pagels, N.; Viana, V.R.; Nødvig, C.S.; Kirchner, F.H.; Strucko, T.; Nielsen, M.L.; Mortensen, U.H. DIVERSIFY: A Fungal Multispecies Gene Expression Platform. ACS Synth. Biol. 2021, 10, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.K.; Sharma, A.; Soni, R. Cellulases: Role in Lignocellulosic Biomass Utilization. In Cellulases; Methods in Molecular Biology; Lübeck, M., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1796. [Google Scholar] [CrossRef]
- Bapat, S.; Koranne, V.; Shakelly, N.; Huang, A.; Sealy, M.P.; Sutherland, J.W.; Rajurkar, K.P.; Malshe, A.P. Cellular Agriculture: An Outlook on Smart and Resilient Food Agriculture Manufacturing. Smart Sustain. Manuf. Syst. 2022, 6, 6. [Google Scholar] [CrossRef]
- Keppler, J.K.; Heyse, A.; Scheidler, E.; Uttinger, M.J.; Fitzner, L.; Jandt, U.; Heyn, T.R.; Lautenbach, V.; Loch, J.I.; Lohr, J.; et al. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll. 2021, 110, 106132. [Google Scholar] [CrossRef]
- Wang, Y.; Kubiczek, D.; Horlamus, F.; Raber, H.F.; Hennecke, T.; Einfalt, D.; Henkel, M.; Hausmann, R.; Wittgens, A.; Rosenau, F. Bioconversion of lignocellulosic ‘waste’ to high-value food proteins: Recombinant production of bovine and human αS1-casein based on wheat straw lignocellulose. GCB Bioenergy 2021, 13, 640–655. [Google Scholar] [CrossRef]
- Keppler, J.K.; Heyn, T.R.; Meissner, P.M.; Schrader, K.; Schwarz, K. Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin. Food Chem. 2019, 289, 223–231. [Google Scholar] [CrossRef]
- Tai, C.S.; Chen, Y.Y.; Chen, W.L. β-lactoglobulin influences human immunity and promotes cell proliferation. BioMed Res. Int. 2016, 2016, 7123587. [Google Scholar] [CrossRef] [Green Version]
- Truswell, A.S. The A2 milk case: A critical review. Eur. J. Clin. Nutr. 2005, 59, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Review of the potential health impact of β-casomorphins and related peptides: Review of the potential health impact of β-casomorphins and related peptides. EFSA J. 2009, 7, 231r. [Google Scholar] [CrossRef]
- Kim, T.R.; Goto, Y.; Hirota, N.; Kuwata, K.; Denton, H.; Wu, S.Y.; Sawyer, L.; Batt, C.A. High-level expression of bovine beta-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng. Des. Sel. 1997, 10, 1339–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, B.G.; Andersen, M.R.; Pedersen, M.H.; Frisvad, J.C.; Søndergaard, I. Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res. Notes 2010, 3, 344. [Google Scholar] [CrossRef] [Green Version]
- Bayry, J.; Aimanianda, V.; Guijarro, J.I.; Sunde, M.; Katge, J. Hydrophobins—Unique fungal proteins. PLoS Pathog. 2012, 8, e1002700. [Google Scholar] [CrossRef] [Green Version]
- Dokouhaki, M.; Hung, A.; Kasapis, S.; Gras, S.L. Hydrophobins and chaplins: Novel bio-surfactants for food dispersions a review. Trends Food Sci. Technol. 2021, 111, 378–387. [Google Scholar] [CrossRef]
- Linder, M.B.; Szilvay, G.; Nakari-Setälä, T.; Penttilä, M.E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005, 29, 877–896. [Google Scholar] [CrossRef] [Green Version]
- Landeta-Salgado, C.; Cicatiello, P.; Stanzione, I.; Medina, D.; Mora, I.B.; Gomez, C.; Lienqueo, M.E. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol. Res. 2021, 251, 126835. [Google Scholar] [CrossRef]
- Cai, F.; Zhao, Z.; Gao, R.; Chen, P.; Ding, M.; Jiang, S.; Fu, Z.; Xu, P.; Chenthamara, K.; Shen, Q.; et al. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet. 2021, 17, e1009924. [Google Scholar] [CrossRef]
- Berger, B.W.; Sallada, N.D. Hydrophobins: Multifunctional biosurfactants for interface engineering. J. Biol. Eng. 2019, 13, 10. [Google Scholar] [CrossRef]
- Cox, A.R.; Aldred, D.L.; Russell, A.B. Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocoll. 2009, 23, 366–376. [Google Scholar] [CrossRef]
- Niu, B.; Wang, D.; Yang, Y.; Xu, H.; Qiao, M. Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids 2012, 43, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Wösten, H.A.B.; Scholtmeijer, K. Applications of hydrophobins: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 1587–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A Comprehensive Review of Bioactive Peptides from Marine Fungi and Their Biological Significance. Mar. Drugs 2019, 17, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Li, L.; Du, F.; Sun, L.; Shi, J.; Long, M.; Chen, Z. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review. Molecules 2021, 26, 3438. [Google Scholar] [CrossRef]
- Kombrink, A.; Tayyrov, A.; Essig, A.; Stöckli, M.; Micheller, S.; Hintze, J.; van Heuvel, Y.; Dürig, N.; Lin, C.-W.; Kallio, P.T.; et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME J. 2019, 13, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. Int. J. Pept. Res. Ther. 2019, 26, 1451–1463. [Google Scholar] [CrossRef]
- Hegedüs, N.; Marx, F. Antifungal proteins: More than antimicrobials? Fungal Biol. Rev. 2013, 26, 132–145. [Google Scholar] [CrossRef]
- Umemura, M. Peptides derived from Kex2-processed repeat proteins are widely distributed and highly diverse in the fungal kingdom. Fungal Biol. Biotechnol. 2020, 7, 11. [Google Scholar] [CrossRef]
- Hegedüs, N.; Sigl, C.; Zadra, I.; Pócsi, I.; Marx, F. The paf gene product modulates asexual development in Penicillium chrysogenum. J. Basic Microbiol. 2011, 51, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Lang, Y.; Pi, X.; Di, Z.; Zhang, Q.; Wang, H.; Shen, B.; Li, F.; Liu, G.; Yu, Y.; Wu, Y.; et al. Molecular characterization and expression analysis of CSαβ defensin genes from the scorpion Mesobuthus martensii. Biosci. Rep. 2017, 37, BSR20171282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Gao, B.; Zhu, S. New fungal defensin-like peptides provide evidence for fold change of proteins in evolution. Biosci. Rep. 2017, 37, BSR20160438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Oeemig, J.S.; Lynggaard, C.; Knudsen, D.H.; Hansen, F.T.; Nørgaard, K.D.; Schneider, T.; Vad, B.S.; Sandvang, D.H.; Nielsen, L.A.; Neve, S.; et al. Eurocin, a New Fungal Defensin. J. Biol. Chem. 2012, 287, 42361–42372. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Gao, B.; Harvey, P.J.; Craik, D.J. Dermatophytic defensin with antiinfective potential. Proc. Natl. Acad. Sci. USA 2012, 109, 8495–8500. [Google Scholar] [CrossRef] [Green Version]
- De Ullivarri, M.F.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Gu, J.; Isozumi, N.; Yuan, S.; Jin, L.; Gao, B.; Ohki, S.; Zhu, S. Evolution-Based Protein Engineering for Antifungal Peptide Improvement. Mol. Biol. Evol. 2021, 38, 5175–5189. [Google Scholar] [CrossRef]
- Gao, B.; Zhu, S. A fungal defensin targets the SARS-CoV-2 spike receptor-binding domain. J. Fungi 2021, 7, 553. [Google Scholar] [CrossRef]
- Lübeck, P.S. Method for Producing an Antifungal Peptide in a Filamentous Fungal Host Cell. U.S. Patent 20100015663A1, 21 January 2010. [Google Scholar]
- Lee, B.H. Advanced Fermentation and Cell Technology; Wiley-Blackwell: Hoboken, NJ, USA, 2022. [Google Scholar]
- Yatmaz, E.; Turhan, I. Liquid State Bioreactor. In Essentials in Fermentation Technology; Learning Materials in Biosciences; Berenjian, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Braaksma, M.; Punt, P.J. Aspergillus as a cell factory for protein production: Controlling protease activity in fungal production. In The Aspergilli. Genomics, Medical Aspects, Biotechnology, and Research Methods; Goldman, G.H., Osmani, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 441–455. [Google Scholar] [CrossRef]
- Linde, T.; Hansen, N.B.; Lübeck, M.; Lübeck, P.S. Fermentation in 24-well plates is an efficient screening platform for filamentous fungi. Lett. Appl. Microbiol. 2014, 59, 224–230. [Google Scholar] [CrossRef]
- Flevaris, K.; Chatzidoukas, C. Facilitating the industrial transition to microbial and microalgal factories through mechanistic modelling within the Industry 4.0 paradigm. Curr. Opin. Chem. Eng. 2021, 33, 100713. [Google Scholar] [CrossRef]
- Manan, M.A.; Webb, C. Performance of fungal growth through integrated Gompertz model and respiratory quotient by solid state fermentation in multi-layer squared tray solid state bioreactor with aeration strategies. Res. Sq. 2017. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Krieger, N. Solid-State Cultivation Bioreactors. In Essentials in Fermentation Technology; Learning Materials in Biosciences; Berenjian, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Miranda-Hernández, F.; Angel-Cuapio, A.; Loera-Corral, O. Production of Fungal Spores for Biological Control. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, S.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 757–779. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2021, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Manan, M.A.; Webb, C. Newly designed multi-stacked circular tray solid-state bioreactor: Analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. Bioresour. Bioprocess. 2020, 7, 16. [Google Scholar] [CrossRef]
- Finkler, A.T.J.; Luz, L.F.D.L.; Krieger, N.; Mitchell, D.A.; Jorge, L.M.D.M. A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates. Biochem. Eng. J. 2021, 166, 107854. [Google Scholar] [CrossRef]
- Allikian, K.; Edgar, R.; Syed, R.; Zhang, S. Fundamentals of Fermentation Media. In Essentials in Fermentation Technology; Learning Materials in Biosciences; Berenjian, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Yang, L.; Lübeck, M.; Lübeck, P.S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol. Rev. 2017, 31, 33–49. [Google Scholar] [CrossRef]
- Thomsen, M.H. Complex media from processing of agricultural crops for microbial fermentation. Appl. Microbiol. Biotechnol. 2005, 68, 598–606. [Google Scholar] [CrossRef]
- Santamaria-Fernandez, M.; Ytting, N.K.; Lübeck, M.; Uellendahl, H. Potential Nutrient Recovery in a Green Biorefinery for Production of Feed, Fuel and Fertilizer for Organic Farming. Waste Biomass Valoriz. 2020, 11, 5901–5911. [Google Scholar] [CrossRef]
- Sorensen, A.B.; Lübeck, P.S.; Lübeck, M.; Nielsen, K.F.; Ahring, B.K.; Teller, P.J.; Frisvad, J. Aspergillus saccharolyticus sp. nov., a black Aspergillus species isolated in Denmark. Int. J. Syst. Evol. Microbiol. 2011, 61, 3077–3083. [Google Scholar] [CrossRef]
- Sørensen, A.; Lübeck, P.S.; Lübeck, M.; Teller, P.; Ahring, B.K. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Can. J. Microbiol. 2011, 57, 638–650. [Google Scholar] [CrossRef]
- Yang, L.; Lübeck, M.; Ahring, B.K.; Lübeck, P.S. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Appl. Microbiol. Biotechnol. 2015, 100, 1799–1809. [Google Scholar] [CrossRef]
Company | Description |
---|---|
Beyond Coffee (DK) | Beyond Coffee collects coffee grounds and other types of biomass sidestreams to grow oyster mushrooms (fruit bodies), which are sold to restaurants. They sell mycelium and rent out ‘minifarm’ to canteens for harvest in the canteen. http://www.beyondcoffee.eu/ (accessed on 8 February 2022) |
Contempehrary (DK) | Contempehrary produces and sales Nordic Tempeh (different types: fermented on oats, barley, rye, hemp, peas, or beans. Tempeh is made through SSF. https://contempehrary.com/ (accessed on 8 February 2022) |
Enough Food (UK) | Enough Food produces fungal mycelium products using SmF and uses the trading name Abunda. They are a B2B company and expect to launch products in 2022. https://www.enough-food.com/ (accessed on 8 February 2022) |
InnomyLabs | InnomyLabs works with the turn of mycelium into meat-analog products. They do not have products on the market. http://innomylabs.com/#!/-inicio/ (accessed on 8 February 2022) |
Kernel MycoFood (USA) | Kernel MycoFood makes fungal food ingredients made by SmF of Fusarium venenatum (like quorn) https://www.kernel.bio/ (accessed on 8 February 2022) |
Leep Foods | Leep Foods produces oyster mushrooms and blended products containing mushroom and meat. https://www.leepfoods.com/ (accessed on 8 February 2022) |
Libre Foods (ES) | LibreFoods works with mycelium-based food products. Products not yet on the market. https://www.librefoods.co/ (accessed on 8 February 2022) |
Meati (USA) | Meati produces whole cut mycelium-based products using SmF. They are in process with scaling their production. https://meati.com/ (accessed on 8 February 2022) |
Mushlabs (DE) | Mushlabs uses fungi to up-cycle nutrients in sidestreams from agro- and food industries. Products not yet on the market. https://www.mushlabs.com/ (accessed on 8 February 2022) |
Myco Foods (UK) | Myco Foods produces meat substitute products for the Food Industry https://www.mycofoods.co.uk/ (accessed on 8 February 2022) |
MycoRena (S) | Mycorena produces Fungi-based alternative protein for the food industry using SmF. Promyc® is a fungi-based natural ingredient to be used as meat replacement or dairy alternative. https://mycorena.com/ (accessed on 8 February 2022) |
MycoTechnology (USA) | MycoTechnology makes mycoprotein-rich food ingredients based on fungal fermentation. https://www.mycoiq.com/ (accessed on 8 February 2022) |
MyForest Foods (USA) | MyForestFoods is evolved from EcoVative, which produces various mycelium products. MyForestFoods have developed meat-free bacon. https://myforestfoods.com/home (accessed on 8 February 2022) |
Mycovation (SGP) | Mycovation claims to be the first Asian start up to produce mycelium based food products. They do not have products on the market. https://www.mycovation.asia/ (accessed on 8 February 2022) |
Tempty Foods (DK) | Tempty Foods is an early startup that produces Tempeh-like food products using SFF. They do not have products on the market yet. https://www.tempty-foods.com/ (accessed on 8 February 2022) |
Quorn Foods (UK) * | Quorn Foods has been on the market for a long time. They produce and sell quorn and quorn products based on mycelium made by fermentation of Fusarium venenatum worldwide. https://www.quorn.co.uk/ (accessed on 8 February 2022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lübeck, M.; Lübeck, P.S. Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms 2022, 10, 753. https://doi.org/10.3390/microorganisms10040753
Lübeck M, Lübeck PS. Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms. 2022; 10(4):753. https://doi.org/10.3390/microorganisms10040753
Chicago/Turabian StyleLübeck, Mette, and Peter Stephensen Lübeck. 2022. "Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides" Microorganisms 10, no. 4: 753. https://doi.org/10.3390/microorganisms10040753
APA StyleLübeck, M., & Lübeck, P. S. (2022). Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms, 10(4), 753. https://doi.org/10.3390/microorganisms10040753