Molecular Epidemiology of Rhinovirus/Enterovirus and Their Role on Cause Severe and Prolonged Infection in Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Molecular Analysis
2.3. Phylogenetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Samples
3.2. The Peak of Viral Load and Prolonged Infection
3.3. Typing and Coinfections
3.4. Hospital Outbreaks
3.5. EV Episodes Associated with Severe Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamson, D.; Renwick, N.; Kapoor, V.; Liu, Z.; Palacios, G.; Ju, J.; Dean, A.; St George, K.; Briese, T.; Lipkin, W.I. MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004–2005. J. Infect. Dis. 2006, 194, 1398–1402. [Google Scholar] [CrossRef] [Green Version]
- Monto, A.S. The seasonality of rhinovirus infections and its implications for clinical recognition. Clin. Ther. 2002, 24, 1987–1997. [Google Scholar] [CrossRef]
- Zacharie, S.; Vabret, A.; Guillois, B.; Dupont, C.; Brouard, J. Rhinovirus: Des pathogènes sous-estimés chez les patients en période néonatale. Arch. Pediatr. 2017, 24, 825–832. (In French) [Google Scholar] [CrossRef]
- Drysdale, S.B.; Mejias, A.; Ramilo, O. Rhinovirus—Not just the common cold. J. Infect. 2017, 74 (Suppl. S1), S41–S46. [Google Scholar] [CrossRef]
- Aydin Köker, S.; Demirağ, B.; Tahta, N.; Bayram, N.; Oymak, Y.; Karapinar, T.H.; Gözmen, S.; Düzgöl, M.; Erçan Bozyer, H.; Vergin, C.; et al. A 3-Year Retrospective Study of the Epidemiology of Acute Respiratory Viral Infections in Pediatric Patients with Cancer Undergoing Chemotherapy. J. Pediatr. Hematol. Oncol. 2019, 41, e242–e246. [Google Scholar] [CrossRef]
- Iwane, M.K.; Prill, M.M.; Lu, X.; Miller, E.K.; Edwards, K.M.; Hall, C.B.; Griffin, M.R.; Staat, M.A.; Anderson, L.J.; Williams, J.V.; et al. Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children. J. Infect. Dis. 2011, 204, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.K.; Roy-Burman, A.; Guardia-Labar, L.; Boston, E.J.; Kiang, D.; Padilla, T.; Yagi, S.; Messenger, S.; Petru, A.M.; Glaser, C.A.; et al. Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr. Infect. Dis. J. 2009, 28, 337–339. [Google Scholar] [CrossRef]
- Sangil, A.; Calbo, E.; Robles, A.; Benet, S.; Viladot, M.E.; Pascual, V.; Cuchí, E.; Pérez, J.; Barreiro, B.; Sánchez, B.; et al. Aetiology of community-acquired pneumonia among adults in an H1N1 pandemic year: The role of respiratory viruses. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2765–2772. [Google Scholar] [CrossRef]
- Gern, J.E. The ABCs of rhinoviruses, wheezing, and asthma. J. Virol. 2010, 84, 7418–7426. [Google Scholar] [CrossRef] [Green Version]
- Khetsuriani, N.; Lu, X.; Teague, W.G.; Kazerouni, N.; Anderson, L.J.; Erdman, D.D. Novel human rhinoviruses and exacerbation of asthma in children. Emerg. Infect. Dis. 2008, 14, 1793–1796. [Google Scholar] [CrossRef]
- Calvo, C.; Garcia, M.L.; Pozo, F.; Reyes, N.; Pérez-Breña, P.; Casas, I. Role of rhinovirus C in apparently life-threatening events in infants, Spain. Emerg. Infect. Dis. 2009, 15, 1506–1508. [Google Scholar] [CrossRef]
- Piralla, A.; Rovida, F.; Campanini, G.; Rognoni, V.; Marchi, A.; Locatelli, F.; Gerna, G. Clinical severity and molecular typing of human rhinovirus C strains during a fall outbreak affecting hospitalized patients. J. Clin. Virol. 2009, 45, 311–317. [Google Scholar] [CrossRef]
- Reese, S.M.; Thompson, M.; Price, C.S.; Young, H.L. Evidence of nosocomial transmission of human rhinovirus in a neonatal intensive care unit. Am. J. Infect. Control 2016, 44, 355–357. [Google Scholar] [CrossRef]
- Marcone, D.N.; Carballal, G.; Irañeta, M.; Rubies, Y.; Vidaurreta, S.M.; Echavarría, M. Nosocomial Transmission and Genetic Diversity of Rhinovirus in a Neonatal Intensive Care Unit. J. Pediatr. 2018, 193, 252–255.e1. [Google Scholar] [CrossRef]
- Oberste, M.S.; Maher, K.; Schnurr, D.; Flemister, M.R.; Lovchik, J.C.; Peters, H.; Sessions, W.; Kirk, C.; Chatterjee, N.; Fuller, S.; et al. Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J. Gen. Virol. 2004, 85 Pt 9, 2577–2584. [Google Scholar] [CrossRef]
- Piralla, A.; Principi, N.; Ruggiero, L.; Girello, A.; Giardina, F.; De Sando, E.; Caimmi, S.; Bianchini, S.; Marseglia, G.L.; Lunghi, G.; et al. Enterovirus-D68 (EV-D68) in pediatric patients with respiratory infection: The circulation of a new B3 clade in Italy. J. Clin. Virol. 2018, 99–100, 91–96. [Google Scholar] [CrossRef]
- Piralla, A.; Lilleri, D.; Sarasini, A.; Marchi, A.; Zecca, M.; Stronati, M.; Baldanti, F.; Gerna, G. Human rhinovirus and human respiratory enterovirus (EV68 and EV104) infections in hospitalized patients in Italy, 2008–2009. Diagn. Microbiol. Infect. Dis. 2012, 73, 162–167. [Google Scholar] [CrossRef]
- Engelmann, I.; Dewilde, A.; Lazrek, M.; Batteux, M.; Hamissi, A.; Yakoub-Agha, I.; Hober, D. In Vivo Persistence of Human Rhinoviruses in Immunosuppressed Patients. PLoS ONE 2017, 12, e0170774, Erratum in PLoS ONE 2017, 12, e0181296. [Google Scholar] [CrossRef]
- Piralla, A.; Pariani, E.; Rovida, F.; Campanini, G.; Muzzi, A.; Emmi, V.; Iotti, G.A.; Pesenti, A.; Conaldi, P.G.; Zanetti, A.; et al. Severe Influenza A Task Force. Segregation of virulent influenza A(H1N1) variants in the lower respiratory tract of critically ill patients during the 2010–2011 seasonal epidemic. PLoS ONE 2011, 6, e28332. [Google Scholar] [CrossRef] [Green Version]
- Wisdom, A.; Leitch, E.C.; Gaunt, E.; Harvala, H.; Simmonds, P. Screening respiratory samples for detection of human rhinoviruses (HRVs) and enteroviruses: Comprehensive VP4-VP2 typing reveals high incidence and genetic diversity of HRV species, C. J. Clin. Microbiol. 2009, 47, 3958–3967. [Google Scholar] [CrossRef] [Green Version]
- Nix, W.A.; Oberste, M.S.; Pallansch, M.A. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J. Clin. Microbiol. 2006, 44, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Kenmoe, S.; Sadeuh-Mba, S.A.; Vernet, M.A.; Penlap Beng, V.; Vabret, A.; Njouom, R. Molecular epidemiology of Enteroviruses and Rhinoviruses in patients with acute respiratory infections in Yaounde, Cameroon. Influenza Other Respir. Viruses 2021, 15, 641–650. [Google Scholar] [CrossRef]
- van der Linden, L.; Bruning, A.H.; Thomas, X.V.; Minnaar, R.P.; Rebers, S.P.; Schinkel, J.; de Jong, M.D.; Pajkrt, D.; Wolthers, K.C. A molecular epidemiological perspective of rhinovirus types circulating in Amsterdam from 2007 to 2012. Clin. Microbiol. Infect. 2016, 22, 1002.e9–1002.e14. [Google Scholar] [CrossRef]
- Kamau, E.; Onyango, C.O.; Otieno, G.P.; Kiyuka, P.K.; Agoti, C.N.; Medley, G.F.; Cane, P.A.; Nokes, D.J.; Munywoki, P.K. An Intensive, Active Surveillance Reveals Continuous Invasion and High Diversity of Rhinovirus in Households. J. Infect. Dis. 2019, 219, 1049–1057. [Google Scholar] [CrossRef]
- Hung, H.M.; Yang, S.L.; Chen, C.J.; Chiu, C.H.; Kuo, C.Y.; Huang, K.A.; Lin, T.Y.; Hsieh, Y.C.; Gong, Y.N.; Tsao, K.C.; et al. Molecular epidemiology and clinical features of rhinovirus infections among hospitalized patients in a medical center in Taiwan. J. Microbiol. Immunol. Infect. 2019, 52, 233–241. [Google Scholar] [CrossRef]
- Esposito, S.; Daleno, C.; Tagliabue, C.; Scala, A.; Tenconi, R.; Borzani, I.; Fossali, E.; Pelucchi, C.; Piralla, A.; Principi, N. Impact of rhinoviruses on pediatric community-acquired pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1637–1645. [Google Scholar] [CrossRef]
- Adam, D.C.; Chen, X.; Scotch, M.; MacIntyre, C.R.; Dwyer, D.; Kok, J. The Molecular Epidemiology and Clinical Phylogenetics of Rhinoviruses Among Paediatric Cases in Sydney, Australia. Int. J. Infect. Dis. 2021, 110, 69–74. [Google Scholar] [CrossRef]
- Bruning, A.H.L.; Thomas, X.V.; van der Linden, L.; Wildenbeest, J.G.; Minnaar, R.P.; Jansen, R.R.; de Jong, M.D.; Sterk, P.J.; van der Schee, M.P.; Wolthers, K.C.; et al. Clinical, virological and epidemiological characteristics of rhinovirus infections in early childhood: A comparison between non-hospitalised and hospitalised children. J. Clin. Virol. 2015, 73, 120–126. [Google Scholar] [CrossRef]
- Zlateva, K.T.; van Rijn, A.L.; Simmonds, P.; Coenjaerts, F.E.J.; van Loon, A.M.; Verheij, T.J.M.; de Vries, J.J.C.; Little, P.; Butler, C.C.; van Zwet, E.W.; et al. GRACE Study Group. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007–2010). Thorax 2020, 75, 882–890. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, J.; Wu, B.; Liu, G.; Lu, R.; Tan, W. Genotypic Diversity and Epidemiology of Human Rhinovirus Among Children with Severe Acute Respiratory Tract Infection in Shanghai, 2013–2015. Front. Microbiol. 2018, 9, 1836. [Google Scholar] [CrossRef] [Green Version]
- El Idrissi, K.R.; Isabel, S.; Carbonneau, J.; Lafond, M.; Quach, C.; Caya, C.; Fontela, P.S.; Beltempo, M.; Boivin, G.; Lefebvre, M.A.; et al. Molecular and epidemiologic investigation of a rhinovirus outbreak in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 2019, 40, 245–247. [Google Scholar] [CrossRef]
- Reid, A.B.; Anderson, T.L.; Cooley, L.; Williamson, J.; Mcgregor, A.R. An outbreak of human rhinovirus species C infections in a neonatal intensive care unit. Pediatr. Infect. Dis. J. 2011, 30, 1095–1096. [Google Scholar] [CrossRef]
- Gerna, G.; Piralla, A.; Rovida, F.; Rognoni, V.; Marchi, A.; Locatelli, F.; Meloni, F. Correlation of rhinovirus load in the respiratory tract and clinical symptoms in hospitalized immunocompetent and immunocompromised patients. J. Med. Virol. 2009, 81, 1498–1507. [Google Scholar] [CrossRef]
- Tapparel, C.; Cordey, S.; Junier, T.; Farinelli, L.; Van Belle, S.; Soccal, P.M.; Aubert, J.D.; Zdobnov, E.; Kaiser, L. Rhinovirus genome variation during chronic upper and lower respiratory tract infections. PLoS ONE 2011, 6, e21163. [Google Scholar] [CrossRef] [Green Version]
- Ammerman, E.; Sweet, S.C.; Storch, G.A.; Buller, R.S.; Mason, S.; Conrad, C.; Hayes, D., Jr.; Faro, A.; Goldfarb, S.B.; Melicoff, E.; et al. Epidemiology and persistence of rhinovirus in pediatric lung transplantation. Transpl. Infect. Dis. 2020, 22, e13422. [Google Scholar] [CrossRef]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among, U.S. Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-acquired pneumonia requiring hospitalization among, U.S. children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Piralla, A.; Mariani, B.; Rovida, F.; Baldanti, F. Frequency of respiratory viruses among patients admitted to 26 Intensive Care Units in seven consecutive winter-spring seasons (2009–2016) in Northern Italy. J. Clin. Virol. 2017, 92, 48–51. [Google Scholar] [CrossRef]
- Visseaux, B.; Burdet, C.; Voiriot, G.; Lescure, F.X.; Chougar, T.; Brugière, O.; Crestani, B.; Casalino, E.; Charpentier, C.; Descamps, D.; et al. Prevalence of respiratory viruses among adults, by season, age, respiratory tract region and type of medical unit in Paris, France, from 2011 to 2016. PLoS ONE 2017, 12, e0180888. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Hong, S.B.; Ko, G.B.; Lee, Y.; Park, H.J.; Park, S.Y.; Moon, S.M.; Cho, O.H.; Park, K.H.; Chong, Y.P.; et al. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am. J. Respir. Crit. Care Med. 2012, 186, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Wiemken, T.; Peyrani, P.; Bryant, K.; Kelley, R.R.; Summersgill, J.; Arnold, F.; Carrico, R.; McKinney, W.P.; Jonsson, C.; Carrico, K.; et al. Incidence of respiratory viruses in patients with community-acquired pneumonia admitted to the intensive care unit: Results from the Severe Influenza Pneumonia Surveillance (SIPS) project. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 705–710. [Google Scholar] [CrossRef]
- Piralla, A.; Baldanti, F.; Gerna, G. Phylogenetic patterns of human respiratory picornavirus species, including the newly identified group C rhinoviruses, during a 1-year surveillance of a hospitalized patient population in Italy. J. Clin. Microbiol. 2011, 49, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Baldanti, F.; Campanini, G.; Piralla, A.; Rovida, F.; Braschi, A.; Mojoli, F.; Iotti, G.; Belliato, M.; Conaldi, P.G.; Arcadipane, A.; et al. Severe outcome of influenza A/H1N1/09v infection associated with 222G/N polymorphisms in the haemagglutinin: A multicentre study. Clin. Microbiol. Infect. 2011, 17, 1166–1169. [Google Scholar] [CrossRef] [Green Version]
Categories | RV Species | p-Value a | ||||
---|---|---|---|---|---|---|
RV-A (127) | RV-B (20) | RV-C (44) | EV (12) | |||
Gender | Male | 77 (60.6%) | 10 (50.0%) | 28 (63.6%) | 5 (41.7%) | 0.57 |
Female | 50 (39.4%) | 10 (50.0%) | 16 (36.4%) | 7 (58.3%) | ||
Age | <1 year | 26 (20.5%) | 4 (20.0%) | 17 (38.6%) | 3 (25.0%) | 0.02 |
1–5 years | 24 (18.9%) | 7 (35.0%) | 13 (29.5%) | 2 (16.7%) | ||
5–15 years | 20 (15.7%) | 4 (20.0%) | 0 | 0 | ||
16–65 years | 43 (33.9%) | 4 (20.0%) | 10 (22.7%) | 5 (41.7%) | ||
>65 years | 14 (11.0%) | 1 (5.0%) | 4 (9.1%) | 2 (16.7%) | ||
Hospitalization | ICU Dept. | 5 (3.9%) | 3 (15.0%) | 2 (4.5%) | 0 | 0.10 |
NICU Dept. | 19 (15.0%) | 2 (10.0%) | 13 (29.5%) | 2 (16.7%) | ||
Infectious Diseases Dept. | 4 (3.1%) | 0 | 2 (2.5%) | 2 (16.7%) | ||
Other Depts. | 96 (75.6%) | 14 (70%) | 27 (61.4%) | 6 (50%) | ||
Unknown | 3 (2.4%) | 1 (5.0%) | 0 | 2 (16.7%) | ||
Immuno status | Immunocompromised | 57 (44.9%) | 6 (30.0%) | 20 (45.5%) | 5 (41.7%) | 0.67 |
Immunocompetent | 50 (39.4%) | 11 (55%) | 16 (36.4%) | 3 (25%) | ||
Unknown | 20 (15.7%) | 3 (15%) | 8 (18.2%) | 4 (33.3%) | ||
Viral Load | <103 copies/ml | 25 (19.7%) | 5 (25%) | 12 (27.3%) | 1 (8.3%) | 0.46 |
103–105 copies/mL | 68 (53.5%) | 13 (65.0%) | 22 (50.0%) | 10 (83.3%) | ||
>105 copies/mL | 34 (26.8%) | 2 (10.0%) | 10 (22.7%) | 1 (8.3%) | ||
Coinfections | No coinfections | 106 (83.5%) | 12 (60%) | 36 (81.8%) | 10 (83.3%) | |
Coinfections | 21 (16.5%) | 8 (40.0%) | 8 (18.2%) | 2 (16.7%) | ||
hADV | 0 | 2 (10%) | 2 (4.5%) | 0 | 0.17 | |
hCMV | 6 (4.7%) | 1 (5%) | 1 (2.3%) | 1 (8.3%) | ||
hCOVs | 1 (0.8%) | 0 | 0 | 0 | ||
hMPV | 1 (0.8%) | 0 | 1 (2.3%) | 0 | ||
hPIVs | 2 (1.6%) | 3 (15.0%) | 0 | 0 | ||
hRSV | 11 (8.7%) | 2 (10.0%) | 4 (9.1%) | 1 (8.3%) | ||
Genotypes | N. of detected genotypes | 40 | 9 | 20 | 5 | NA |
Unknown | 7 | 6 | 4 | 1 | NA | |
Most detected genotype | A49 | B35 | C3 | D68 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giardina, F.A.M.; Piralla, A.; Ferrari, G.; Zavaglio, F.; Cassaniti, I.; Baldanti, F. Molecular Epidemiology of Rhinovirus/Enterovirus and Their Role on Cause Severe and Prolonged Infection in Hospitalized Patients. Microorganisms 2022, 10, 755. https://doi.org/10.3390/microorganisms10040755
Giardina FAM, Piralla A, Ferrari G, Zavaglio F, Cassaniti I, Baldanti F. Molecular Epidemiology of Rhinovirus/Enterovirus and Their Role on Cause Severe and Prolonged Infection in Hospitalized Patients. Microorganisms. 2022; 10(4):755. https://doi.org/10.3390/microorganisms10040755
Chicago/Turabian StyleGiardina, Federica A. M., Antonio Piralla, Guglielmo Ferrari, Federica Zavaglio, Irene Cassaniti, and Fausto Baldanti. 2022. "Molecular Epidemiology of Rhinovirus/Enterovirus and Their Role on Cause Severe and Prolonged Infection in Hospitalized Patients" Microorganisms 10, no. 4: 755. https://doi.org/10.3390/microorganisms10040755
APA StyleGiardina, F. A. M., Piralla, A., Ferrari, G., Zavaglio, F., Cassaniti, I., & Baldanti, F. (2022). Molecular Epidemiology of Rhinovirus/Enterovirus and Their Role on Cause Severe and Prolonged Infection in Hospitalized Patients. Microorganisms, 10(4), 755. https://doi.org/10.3390/microorganisms10040755