Biofertilizer: The Future of Food Security and Food Safety
Abstract
:1. Introduction
2. Biofertilizers
2.1. Types of Biofertilizers
2.2. The Role of Plant Growth-Promoting Microorganisms in Crop Production
3. Mechanisms of Action of Plant Growth-Promoting Rhizobia
3.1. Direct Mechanisms
3.1.1. Facilitating Resource Acquisition
3.1.2. Nitrogen Fixation
3.1.3. Rhizobacteria
3.1.4. Azospirillum
3.1.5. Azotobacter
3.1.6. Blue-Green Algae (Cyanobacteria)
3.1.7. Azolla
3.1.8. Phosphate Solubilization
3.1.9. Sequestering Iron
3.1.10. Modulation of Phytohormone Levels
3.2. Indirect Mechanisms
4. Benefits of Biofertilizers in Food Production
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batista, B.D.; Lacava, P.T.; Ferrari, A.; Teixeira-Silva, N.S.; Bonatelli, M.L.; Tsui, S.; Mondin, M.; Kitajima, E.W.; Pereira, J.O.; Azevedo, J.L. Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol. Res. 2018, 206, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Reddy, C.; Phogat, M.; Korav, S. Role of bio-fertilizers towards sustainable agricultural development: A review. J. Pharm. Phytochem. 2018, 7, 1915–1921. [Google Scholar]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Debnath, K.; Conway, G. One Billion Hungry: Can We Feed the World? Cornell University Press: Ithaca, NY, USA, 2012; p. 456. ISBN 0-8014-7802-2. [Google Scholar]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Shrivastava, S.; Varma, A. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Liu, Y.; Pan, X.; Li, J. Current agricultural practices threaten future global food production. J. Agric. Environ. Ethics 2015, 28, 203–216. [Google Scholar] [CrossRef]
- Bruinsma, J. The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? In Proceedings of the How to Feed the World in 2050, Proceedings of a Technical Meeting of Experts, Rome, Italy, 24–26 June 2009; pp. 1–33. [Google Scholar]
- Sinha, R.K. The concept of sustainable agriculture: An issue of food safety & security for people, economic prosperity for the farmers and ecological security for the nations. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 1–4. [Google Scholar]
- Wang, C.L.; Chien, S.Y.; Young, C.C. Present situation and future perspective of bio-fertilizer for environmentally friendly agriculture. Annu. Rep. 2014, 1–5. [Google Scholar]
- Youssef, M.; Eissa, M. Biofertilizers and their role in management of plant parasitic nematodes. A review. J. Biotechnol. Pharm. Res. 2014, 5, 1–6. [Google Scholar]
- Malusa, E.; Vassilev, N. A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol. 2014, 98, 6599–6607. [Google Scholar] [CrossRef] [Green Version]
- Bardi, L.; Malusà, E. Drought and nutritional stresses in plant: Alleviating role of rhizospheric microorganisms. In Abiotic Stress: New Research; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 1–57. [Google Scholar]
- Mazid, M.; Khan, T.A. Future of bio-fertilizers in Indian agriculture: An overview. Int. J. Agric. Food Res. 2015, 3, 10–23. [Google Scholar] [CrossRef]
- Raja, N. Biopesticides and biofertilizers: Ecofriendly sources for sustainable agriculture. J. Biofertil. Biopestic. 2013, 4, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Stewart, W.; Roberts, T. Food security and the role of fertilizer in supporting it. Procedia Eng. 2012, 46, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Bumandalai, O.; Tserennadmid, R. Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds. Int. J. Aquat. Biol. 2019, 7, 95–99. [Google Scholar]
- Umesha, S.; Singh, P.K.; Singh, R.P. Microbial biotechnology and sustainable agriculture. In Biotechnology for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–205. [Google Scholar]
- Parikh, S.J.; James, B.R. Soil: The foundation of agriculture. Nat. Educ. Knowl. 2012, 3, 2. [Google Scholar]
- Raynaud, X.; Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 2014, 9, e87217. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects: A review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Jha, Y. Potassium mobilizing bacteria: Enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci. 2017, 4, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Itelima, J.; Bang, W.; Onyimba, I.; Sila, M.; Egbere, O. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Direct Res. J. Agric. Food Sci. 2018, 6, 73–83. [Google Scholar]
- Kamran, S.; Shahid, I.; Baig, D.N.; Rizwan, M.; Malik, K.A.; Mehnaz, S. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front. Microbiol. 2017, 8, 2593. [Google Scholar] [CrossRef] [Green Version]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kurepin, L.V.; Zaman, M.; Pharis, R.P. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J. Sci. Food Agric. 2014, 94, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 096–102. [Google Scholar]
- Ahemad, M.; Khan, M.S. Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol. 2012, 62, 1531–1540. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [Green Version]
- Jahanian, A.; Chaichi, M.; Rezaei, K.; Rezayazdi, K.; Khavazi, K. The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int. J. Agric. Crop Sci. 2012, 4, 923–929. [Google Scholar]
- Liu, W.; Wang, Q.; Hou, J.; Tu, C.; Luo, Y.; Christie, P. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci. Rep. 2016, 6, 26710. [Google Scholar] [CrossRef]
- Xie, J.; Shi, H.; Du, Z.; Wang, T.; Liu, X.; Chen, S. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci. Rep. 2016, 6, 21329. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Lugtenberg, B. Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In Use of Microbes for the Alleviation of Soil Stresses; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 73–96. [Google Scholar]
- Kundan, R.; Pant, G.; Jadon, N.; Agrawal, P. Plant growth promoting rhizobacteria: Mechanism and current prospective. J. Fertil. Pestic. 2015, 6, 9. [Google Scholar] [CrossRef]
- Tairo, E.V.; Ndakidemi, P.A. Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am. J. Res. Commun. 2013, 1, 532–556. [Google Scholar]
- Kumaar, S.; Babu, R.P.; Vivek, P.; Saravanan, D. Role of Nitrogen Fixers as Biofertilizers in Future Perspective: A Review. Res. J. Pharm. Technol. 2020, 13, 2459–2467. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.E.; Richards, R.L.; Newton, W.E. Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 1. [Google Scholar]
- Seefeldt, L.C.; Hoffman, B.M.; Dean, D.R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. Biochem. 2009, 78, 701–722. [Google Scholar] [CrossRef] [PubMed]
- Allito, B.B.; Nana, E.-M.; Alemneh, A.A. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: A review. Mol. Soil Biol. 2015, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.; Yadav, J.; Tiwari, K.; Lavakush, S.; Singh, V. Impact of plant growth promoting rhizobacteria on crop production. Int. J. Agric. Res. 2010, 5, 954–983. [Google Scholar] [CrossRef] [Green Version]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.C.; Hardy, R.W. Nitrogen Fixation in Bacteria and Higher Plants; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shamseldin, A. The role of different genes involved in symbiotic nitrogen fixation—Review. Glob. J. Biotechnol. Biochem. 2013, 8, 84–94. [Google Scholar]
- Coppola, D.; Giordano, D.; Tinajero-Trejo, M.; Di Prisco, G.; Ascenzi, P.; Poole, R.K.; Verde, C. Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 1923–1931. [Google Scholar] [CrossRef]
- Glick, B.R. Beneficial Plant-Bacterial Interactions; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Suzaki, T.; Yoro, E.; Kawaguchi, M. Leguminous plants: Inventors of root nodules to accommodate symbiotic bacteria. Int. Rev. Cell Mol. Biol. 2015, 316, 111–158. [Google Scholar]
- Suzaki, T.; Kawaguchi, M. Root nodulation: A developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Curr. Opin. Plant Biol. 2014, 21, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Maillet, F.; Poinsot, V.; André, O.; Puech-Pagès, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011, 469, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, R.; Palaniappan, P.; Tongmin, S.; Elavarasi, P.; Manoharan, N. Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: Validation by homology modelingand molecular docking study. World J. Pharm. Pharm. Sci. 2013, 2, 4079–4094. [Google Scholar]
- Nascimento, F.X.; Brígido, C.; Glick, B.R.; Oliveira, S. ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol. Lett. 2012, 336, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Zahir, Z.A.; Zafar-ul-Hye, M.; Sajjad, S.; Naveed, M. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol. Fertil. Soils 2011, 47, 457–465. [Google Scholar] [CrossRef]
- Gourion, B.; Berrabah, F.; Ratet, P.; Stacey, G. Rhizobium–legume symbioses: The crucial role of plant immunity. Trends Plant Sci. 2015, 20, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Mehnaz, S. Azospirillum: A biofertilizer for every crop. In Plant Microbes Symbiosis: Applied Facets; Springer: Berlin/Heidelberg, Germany, 2015; pp. 297–314. [Google Scholar]
- Mishra, D.; Rajvir, S.; Mishra, U.; Kumar, S.S. Role of bio-fertilizer in organic agriculture: A review. Res. J. Recent Sci. 2013, 2277, 2502. [Google Scholar]
- Mishra, P.; Dash, D. Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 2014, 11, 41–61. [Google Scholar]
- Trabelsi, D.; Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: A review. BioMed Res. Int. 2013, 2013, 863240. [Google Scholar] [CrossRef]
- Naiman, A.D.; Latrónico, A.; de Salamone, I.E.G. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizosphere microflora. Eur. J. Soil Biol. 2009, 45, 44–51. [Google Scholar] [CrossRef]
- Moraditochaee, M.; Azarpour, E.; Bozorgi, H.R. Study effects of bio-fertilizers, nitrogen fertilizer and farmyard manure on yield and physiochemical properties of soil in lentil farming. Int. J. Biosci 2014, 4, 41–48. [Google Scholar]
- Mathivanan, R.; Umavathi, S.; Ramasamy, P.; Thangam, Y. Influence of vermicompost on the activity of the plant growth regulators in the leaves of the Indian butter bean plant, Dolichos lab lab L. Int. J. Adv. Res. Biol. Sci. 2015, 2, 84–89. [Google Scholar]
- Martin, X.M.; Sumathi, C.S.; Kannan, V.R. Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Eurasian J. Biosci. 2011, 5, 19–28. [Google Scholar] [CrossRef]
- Wani, S.A.; Chand, S.; Ali, T. Potential use of Azotobacter chroococcum in crop production: An overview. Curr. Agric. Res. J. 2013, 1, 35–38. [Google Scholar] [CrossRef]
- Wagner, S.C. Biological nitrogen fixation. Nat. Educ. Knowl. 2011, 3, 15. [Google Scholar]
- Al Abboud, M.; Ghany, T.A.; Alawlaqi, M. Role of biofertilizers in agriculture: A brief review. Mycopath 2014, 11, 95–101. [Google Scholar]
- Hamid, A.; Ahmad, L. Soil phosphorus fixation chemistry and role of phosphate solubilizing bacteria in enhancing its efficiency for sustainable cropping—A review. J. Pure Appl. Microbiol. 2012, 66, 1905–1911. [Google Scholar]
- McComb, R.B.; Bowers, G.N., Jr.; Posen, S. Alkaline Phosphatase; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pereira, S.I.; Castro, P.M. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol. Eng. 2014, 73, 526–535. [Google Scholar] [CrossRef]
- Mohammadi, K.; Sohrabi, Y. Bacterial biofertilizers for sustainable crop production: A review. ARPN J Agric Biol Sci 2012, 7, 307–316. [Google Scholar]
- Parray, J.A.; Jan, S.; Kamili, A.N.; Qadri, R.A.; Egamberdieva, D.; Ahmad, P. Current perspectives on plant growth-promoting rhizobacteria. J. Plant Growth Regul. 2016, 35, 877–902. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol. J. 2011, 1, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, M.; Sandhya, S.; Prasad, M.; Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Thomine, S.; Lanquar, V. Iron transport and signaling in plants. In Transporters and Pumps in Plant Signaling; Springer: Berlin/Heidelberg, Germany, 2011; pp. 99–131. [Google Scholar]
- Ljung, K. Auxin metabolism and homeostasis during plant development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Mazurier, S.; Corberand, T.; Lemanceau, P.; Raaijmakers, J.M. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 2009, 3, 977–991. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, I.; Abizgil’Dina, R.; Pusenkova, L. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl. Biochem. Microbiol. 2011, 47, 333–345. [Google Scholar] [CrossRef]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.J.; Broekgaarden, C.; Zheng, S.J.; Snoeren, T.A.; van Loon, J.J.; Gols, R.; Dicke, M. Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol. 2013, 197, 1291–1299. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.; Bharucha, Z.P. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Factories 2014, 13, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaur, V. Biofertilizer–necessity for sustainability. J. Adv. Dev. 2010, 1, 8. [Google Scholar]
Biofertilizers | Mechanism | Groups | Examples | References |
---|---|---|---|---|
Nitrogen-fixing | Increase the amount of N2 in the soil by fixing atmospheric nitrogen and making it available to plants. | Free-living, symbiotic, and associative symbiotic | Aulosira bejerinkia, Nostoc, Klebsiella, Stigonema, Desulfovibrio, Azotobacter, Anabaena, Clostridium, Rhodospirillum, and Rhodopseudomonas Rhizobium, Frankia, Anabaena azollae, and Trichodesmium Azospirillum spp., Herbaspirillum spp., Alcaligenes, Enterobacter, Azoarcus spp., and Acetobacter diazotrophicus | [17] |
Phosphorus-mobilizing | Phosphorus is transferred from the soil to the root cortex. These are bio-fertilizers with a wide range of applications. | Mycorrhiza | Arbuscular mycorrhiza, Acaulospora spp., Scutellospora spp., Glomus spp., Gigaspora spp., and Sclerocystis spp. | [17] |
Potassium solubilizing | Produce organic acids that degrade silicates and aid in the removal of metals to solubilize potassium (silicates) ions and make it available to plants. | Bacteria | B. edaphicus, Arthrobacter spp., Bacillus, Mucilaginosus, and B. circulanscan | [22] |
Fungi | Aspergillus niger | |||
Potassium mobilizing | They transfer potassium from the soil’s inaccessible forms. | Bacteria | Bacillus spp. | [23] |
Fungi | Aspergillus niger | |||
Phosphorus solubilizing | To dissolve bound phosphates, they secrete organic acids and lower soil pH by converting insoluble forms of P in the soil into soluble forms. | Bacteria, fungi | Pseudomonas striata, Bacillus circulans, Bacillus subtilis, Penicilium spp., B. polymyxa, Agrobacterium, Microccocus, Flavobacterium, Aereobacterium. Aspergillus awamori, Penicillum spp., and Trichoderma spp. | [17] |
Sulfur is oxidized to sulfate, which is the usable form for plants. | Sulfur-oxidizing | Thiobacillus spp. | [24] | |
Micronutrient | Protons, chelated ligands, acidification, and oxidoreductive systems can all be used to dissolve zinc. | Zinc-solubilizing | Pseudomonas spp., Mycorhiza, and Bacillus spp. | [25] |
Plant growth-promoting | Produce hormones that encourage root growth, increase nutrient availability, and boost crop yields. | Plant growth-promoting rhizobacteria | Agrobacterium, Pseudomonas fluorescens, Arthrobacter, Erwinia, Bacillus, Rhizobium, Pseudomonas spp. Enterobacter, Streptomyces, and Xanthomonas | [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. https://doi.org/10.3390/microorganisms10061220
Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms. 2022; 10(6):1220. https://doi.org/10.3390/microorganisms10061220
Chicago/Turabian StyleDaniel, Augustine Innalegwu, Adewale Oluwaseun Fadaka, Arun Gokul, Olalekan Olanrewaju Bakare, Omolola Aina, Stacey Fisher, Adam Frank Burt, Vuyo Mavumengwana, Marshall Keyster, and Ashwil Klein. 2022. "Biofertilizer: The Future of Food Security and Food Safety" Microorganisms 10, no. 6: 1220. https://doi.org/10.3390/microorganisms10061220
APA StyleDaniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The Future of Food Security and Food Safety. Microorganisms, 10(6), 1220. https://doi.org/10.3390/microorganisms10061220