Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Thiothrix sp. CT3
2.2. Sampling Site Used for Obtaining MAG of Thiothrix sp. KT and Its Physicochemical Characteristics
2.3. Thiothrix sp. CT3 Genome Sequencing
2.4. 16S rRNA Gene Fragment Sequencing and Analysis
2.5. Metagenome Sequencing and Assembly of Thiothrix sp. KT MAG
2.6. Annotation and Analysis of the Genomes
2.7. Phylogenetic Analysis
2.8. Experimental Verification of Thiosulfate Reductase Functioning
3. Results
3.1. Biotope Harboring Thiothrix sp. KT: Physicochemical Characteristics and Microbial Community Composition
3.2. Phenotypic Characteristics of Thiothrix sp. CT3
3.3. General Genome Properties
3.4. Phylogenetic Analysis
3.5. Description of Thiothrix winogradskyi sp. nov.
3.6. Description of ‘Ca. Thiothrix sulfatifontis’ sp. nov.
3.7. Genome Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unz, R.F.; Head, I.M. Thiothrix. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Volume 2, pp. 1–16. [Google Scholar]
- Williams, T.M.; Unz, R.F. Filamentous sulfur bacteria of activated sludge: Characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl. Environ. Microbiol. 1985, 49, 887–898. [Google Scholar] [CrossRef] [PubMed]
- de Graaff, D.R.; van Loosdrecht, M.C.M.; Pronk, M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. Water Res. 2020, 175, 115683. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on The Causes and Control of Activated Sludge Bulking and Foaming; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Meng, Q.; Zeng, W.; Wang, B.; Fan, Z.; Peng, Y. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry. Chem. Eng. J. 2020, 385, 123915. [Google Scholar] [CrossRef]
- Rubio-Rincón, F.J.; Welles, L.; Lopez-Vazquez, C.M.; Nierychlo, M.; Abbas, B.; Geleijnse, M.; Nielsen, P.H.; van Loosdrecht, M.C.M.; Brdjanovic, D. Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. Water Res. 2017, 116, 53–64. [Google Scholar]
- Alcaide, M.; Tchigvintsev, A.; Martínez-Martínez, M.; Popovic, A.; Reva, O.N.; Lafraya, Á.; Bargiela, R.; Nechitaylo, T.Y.; Matesanz, R.; Cambon-Bonavita, M.A.; et al. Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata by using functional metagenomics. Appl. Environ. Microbiol. 2015, 81, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kumar, A.; Singh, N.; Sharma, K. 16S rRNA gene profiling of rhizospheric microbial community of Eichhornia crassipes. Mol. Biol. Rep. 2021, 48, 4055–4064. [Google Scholar] [CrossRef]
- Sela, R.; Laviad-Shitrit, S.; Thorat, L.; Nath, B.B.; Halpern, M. Chironomus ramosus larval microbiome composition provides evidence for the presence of detoxifying enzymes. Microorganisms 2021, 9, 1571. [Google Scholar] [CrossRef]
- Konkol, N.R.; Bruckner, J.C.; Aguilar, C.; Lovalvo, D.; Maki, J.S. Dominance of epiphytic filamentous Thiothrix spp. on an aquatic macrophyte in a hydrothermal vent flume in Sedge Bay, Yellowstone Lake, Wyoming. Microb. Ecol. 2010, 60, 528–538. [Google Scholar] [CrossRef]
- Reyes, C.; Schneider, D.; Lipka, M.; Thürmer, A.; Böttcher, M.E.; Friedrich, M.W. Nitrogen metabolism genes from temperate marine sediments. Mar. Biotechnol. 2017, 19, 175–190. [Google Scholar] [CrossRef]
- Drewniak, L.; Krawczyk, P.S.; Mielnicki, S.; Adamska, D.; Sobczak, A.; Lipinski, L.; Burec-Drewniak, W.; Sklodowska, A. Physiological and metagenomic analyses of microbial mats involved in self purification of mine waters contaminated with heavy metals. Front. Microbiol. 2016, 7, 1252. [Google Scholar] [CrossRef]
- Rossmassler, K.; Hanson, T.E.; Campbell, B.J. Diverse sulfur metabolisms from two subterranean sulfidic spring systems. FEMS Microbiol. Lett. 2016, 363, fnw162. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, K.; Zhang, L.; Zhao, Z.; Xie, X.; Chen, C.-T.A.; Wang, D.; Jiao, N.; Zhang, Y. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem. Front. Microbiol. 2018, 9, 2718. [Google Scholar] [CrossRef] [PubMed]
- Ibarbalz, F.M.; Pérez, M.V.; Figuerola, E.L.; Erijman, L. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics. PLoS ONE 2014, 12, e99722. [Google Scholar] [CrossRef] [PubMed]
- Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl. Environ. Microbiol. 2007, 73, 971–980. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, F.; He, X.; Zhou, Z.; Huang, L.N.; Liang, S. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors. Water Res. 2014, 53, 1–11. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Sun, H.; Zhang, X.-X.; Ren, H.; Ye, L. Metagenomic analysis revealed the sulfur- and iron- oxidation capabilities of heterotrophic denitrifying sludge. Ecotoxicology 2021, 30, 1399–1407. [Google Scholar] [CrossRef]
- Gao, S.; He, Q.; Wang, H. Research on the aerobic granular sludge under alkalinity in sequencing batch reactors: Removal efficiency, metagenomic and key microbes. Bioresour. Technol. 2020, 296, 122280. [Google Scholar] [CrossRef]
- Salcedo Moyano, A.J.; Delforno, T.P.; Subtil, E.L. Simultaneous nitrification-denitrification (SND) using a thermoplastic gel as support: Pollutants removal and microbial community in a pilot-scale biofilm membrane bioreactor. Environ. Technol. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Jo, S.; Jeong, S.-Y.; Kwon, H.; Lee, S.; Oh, H.-S.; Yi, T.; Park, P.-K.; Lee, C.-H.; Kim, T. Effects of quorum quenching on temporal succession of activated sludge microbial community in a membrane bioreactor. J. Appl. Microbiol. 2020, 128, 907–918. [Google Scholar] [CrossRef]
- Yao, J.; Liu, J.; Zhang, Y.; Xu, S.; Hong, Y.; Chen, Y. Adding an anaerobic step can rapidly inhibit sludge bulking in SBR reactor. Sci. Rep. 2019, 9, 10843. [Google Scholar] [CrossRef]
- Boden, R.; Scott, K.M. Evaluation of the genus Thiothrix Winogradsky 1888 (Approved Lists 1980) emend. Aruga et al. 2002: Reclassification of Thiothrix disciformis to Thiolinea disciformis gen. nov., comb. nov., and of Thiothrix flexilis to Thiofilum flexile gen. nov., comb nov., with emended description of Thiothrix. Int. J. Syst. Evol. Microbiol. 2018, 68, 2226–2239. [Google Scholar] [PubMed]
- Arumugam, K.; Bessarab, I.; Haryono, M.A.S.; Liu, X.; Zuniga-Montanez, R.E.; Roy, S.; Qiu, G.; Drautz-Moses, D.I.; Law, Y.Y.; Wuertz, S.; et al. Recovery of complete genomes and non-chromosomal replicons from activated sludge enrichment microbial communities with long read metagenome sequencing. NPJ Biofilms Microbiomes 2021, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Mardanov, A.V.; Gruzdev, E.V.; Smolyakov, D.D.; Rudenko, T.S.; Beletsky, A.V.; Gureeva, M.V.; Markov, N.D.; Berestovskaya, Y.Y.; Pimenov, N.V.; Ravin, N.V.; et al. Genomic and metabolic insights into two novel Thiothrix species from enhanced biological phosphorus removal systems. Microorganisms 2020, 8, 2030. [Google Scholar] [CrossRef] [PubMed]
- Ravin, N.V.; Rudenko, T.S.; Smolyakov, D.D.; Beletsky, A.V.; Rakitin, A.L.; Markov, N.D.; Fomenkov, A.; Sun, L.; Roberts, R.J.; Novikov, A.A.; et al. Comparative genome analysis of the genus Thiothrix involving three novel species, Thiothrix subterranea sp. nov. Ku-5, Thiothrix litoralis sp. nov. AS and “Candidatus Thiothrix anitrata” sp. nov. A52, revealed the conservation of the pathways of dissimilatory sulfur metabolism and variations in the genetic inventory for nitrogen metabolism and autotrophic carbon fixation. Front. Microbiol. 2021, 12, 760289. [Google Scholar]
- Chernousova, E.; Gridneva, E.; Grabovich, M.; Dubinina, G.; Akimov, V.; Rossetti, S.; Kuever, J. Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs. Int. J. Syst. Evol. Microbiol. 2009, 59, 3128–3135. [Google Scholar] [CrossRef]
- Chernousova, E.Y.; Belousova, E.V.; Gavrish, E.Y.; Dubinina, G.A.; Tourova, T.P.; Grabovich, M.Y. Molecular phylogeny and taxonomy of colorless, filamentous sulfur bacteria of the genus Thiothrix. Mikrobiol. 2012, 81, 361–370. [Google Scholar] [CrossRef]
- Rossetti, S.; Blackall, L.L.; Levantesi, C.; Uccelletti, D.; Tandoi, V. Phylogenetic and physiological characterization of a heterotrophic, chemolithoautotrophic Thiothrix strain isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2003, 53, 1271–1276. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 2005, 87, 6258–6264. [Google Scholar] [CrossRef]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016, 4, e2584. [Google Scholar] [CrossRef]
- Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson, A.F.; Quince, C. Binning metagenomic contigs by coverage and composition. Nat. Methods 2014, 11, 1144–1146. [Google Scholar] [CrossRef]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Myers, N.M.; Kernisan, E.N.; Lieberman, M. Lab on paper: Iodometric titration on a printed card. Anal. Chem. 2015, 87, 3764–3770. [Google Scholar] [CrossRef] [PubMed]
- Haja, D.K.; Wu, C.H.; Poole, F.L.; Sugar, J.; Williams, S.G.; Jones, A.K.; Adams, M.W.W. Characterization of thiosulfate reductase from Pyrobaculum aerophilum heterologously produced in Pyrococcus furiosus. Extremophiles 2020, 24, 53–62. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Thiothrix sp. CT3 | T. litoralis AST | T. lacustris BLT | T. fructosivorans I | T. caldifontis G1T | T. subterranea Ku-5T |
---|---|---|---|---|---|---|
Natural habitat | activated sludge | seashore of the White Sea | sulfide spring | activated sludge | sulfide spring | sulfide-containing waters from a coal mine |
Cell size (µm) | 0.8–2.0 × 4.3–6.7 | 0.8–2.2 × 4.3–6.4 | 0.9–2.3 × 4.4–6.3 | 1.0–1.7 × 4.9–10.0 | 0.9–2.2 × 3.2–6.5 | 1.19–1.8 × 4.0–6.3 |
Optimum (range) pH for growth | 7.6 (7.0–8.0) | 7.4–7.5(6.7–8.0) | 7.0 (6.2–8.2) | 7.6–8.0 (6.7–8.0) | 8.0 (7.0–8.6) | 7.4–7.5(6.8–8.0) |
Optimum (range) temperature for growth (°C) | 20–24 (10–30) | 20–22 (4–28) | 24 (5–32) | 25–27 (5–32) | 25 (7–37) | 20–22 (4–28) |
Organic substrates utilized for growth | ||||||
Organic acids: | ||||||
Malate | − | − | − | + | − | − |
Oxalate | − | − | + | + | − | + |
Oxaloacetate | − | − | + | + | + | + |
Citrate | − | − | + | − | − | − |
Isocitrate | − | − | + | + | − | − |
2-oxoglutarate | − | − | + | − | − | − |
Formate | − | − | − | + | − | − |
Aconitate | − | − | + | − | − | + |
Malonate | − | + | + | − | − | + |
Succinate | + | + | + | + | + | − |
Alcohols: | ||||||
Inositol | − | − | − | − | − | + |
Ethanol | − | − | − | − | − | + |
Butanol | − | − | − | − | − | + |
Isobutanol | − | − | − | − | − | + |
Mannitol | − | − | − | − | − | + |
Sorbitol | − | − | − | − | − | + |
Carbohydrates: | ||||||
L-Arabinose | − | − | − | + | − | + |
D-Xylose | − | − | − | + | − | − |
D-Fructose | − | + | − | + | − | + |
L-Rhamnose | − | − | − | − | − | + |
L-Sorbose | − | − | − | − | − | + |
Sucrose | − | − | − | + | − | − |
Maltose | − | + | − | + | − | + |
Trehalose | − | + | − | − | − | − |
Raffinose | − | − | − | + | − | + |
Amino acids: | ||||||
Isoleucine | − | + | − | − | + | + |
Leucine | − | + | − | − | + | + |
Proline | − | − | − | − | − | + |
Cystein | − | − | + | − | − | − |
Asparagine | − | + | + | − | − | − |
Phenylalanine | − | − | − | − | − | + |
Aspartate | − | + | + | − | + | − |
Glutamate | − | + | + | − | − | − |
Histidine | − | − | − | − | − | + |
Complex media: | ||||||
Peptone | − | + | − | − | − | + |
Yeast extract | − | + | − | − | − | − |
Diazotrophy | − | + | − | − | + | + |
Major fatty acids: | ||||||
C16:1ω7, C16:0, C18:1ω7 | + | + | + | + | + | + |
Species | Genome Assembly | Size (MB) | Contigs | G+C Content (mol %) | Proteins | 16S rRNA Gene Copies | tRNAs | Plasmids * |
---|---|---|---|---|---|---|---|---|
Thiothrix sp. CT3 (DSM 12730) | GCA_021650935.1 | 4.38 | 3 | 51.4 | 4292 | 5 | 66 | 2 |
MAG of Thiothrix sp. KT | GCA_022828425.1 | 3.69 | 1 | 51.5 | 3729 | 2 | 47 | NA * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravin, N.V.; Rossetti, S.; Beletsky, A.V.; Kadnikov, V.V.; Rudenko, T.S.; Smolyakov, D.D.; Moskvitina, M.I.; Gureeva, M.V.; Mardanov, A.V.; Grabovich, M.Y. Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov. Microorganisms 2022, 10, 1300. https://doi.org/10.3390/microorganisms10071300
Ravin NV, Rossetti S, Beletsky AV, Kadnikov VV, Rudenko TS, Smolyakov DD, Moskvitina MI, Gureeva MV, Mardanov AV, Grabovich MY. Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov. Microorganisms. 2022; 10(7):1300. https://doi.org/10.3390/microorganisms10071300
Chicago/Turabian StyleRavin, Nikolai V., Simona Rossetti, Alexey V. Beletsky, Vitaly V. Kadnikov, Tatyana S. Rudenko, Dmitry D. Smolyakov, Marina I. Moskvitina, Maria V. Gureeva, Andrey V. Mardanov, and Margarita Yu. Grabovich. 2022. "Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov." Microorganisms 10, no. 7: 1300. https://doi.org/10.3390/microorganisms10071300
APA StyleRavin, N. V., Rossetti, S., Beletsky, A. V., Kadnikov, V. V., Rudenko, T. S., Smolyakov, D. D., Moskvitina, M. I., Gureeva, M. V., Mardanov, A. V., & Grabovich, M. Y. (2022). Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov. Microorganisms, 10(7), 1300. https://doi.org/10.3390/microorganisms10071300