Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia
Abstract
:1. Introduction
1.1. Prebiotics
1.2. Probiotics
1.3. Postbiotics
2. Prebiotics in Anemia
Prebiotic/ Author | Dose | Type of Administration | Study Group (n)/Control Group (n) | Assessment Method | Main Result |
---|---|---|---|---|---|
GOS; Paganini, D. et al., (2017) [30] | 7.5 g GOS for 3 weeks | fortified maize porridge | healthy infants fed GOS diet (n = 28)/no GOS diet (n = 22) | erythrocyte incorporation of stable isotopes | the relative iron bioavailability was significantly increased in study group (p = 0.006) GOS increased iron absorption from FeFum (p = 0.047) but not from FeSO4 (p = 0.653) |
GOS; Mikulic, N. et al., (2021) [31] | 7.5 g GOS added to a single test meal | fortified maize porridge | iron deficient and anemic infants fed GOS diet (n = 12)/no GOS diet (n = 11) | fractional iron absorption (FIA) assessed by erythrocyte incorporation of isotopic labels | GOS added to a single iron-fortified test meal did not significantly increase iron absorption |
GOS; Jeroense, F.M.D. et al., (2019) [34] | 15 g GOS for 4 weeks | with water or with meal | iron-depleted women (n = 34) | FIA assessed as erythrocyte incorporation of stable isotopes | GOS given with FeFum significantly increased iron absorption when was consumed with water (+61%) and with a meal (+28%); 4 weeks of GOS consumption was associated with an increase in hemoglobin (Hb) level (p = 0.001) |
GOS; Jeroense, F.M.D. et al., (2020) [35] | 3.5 g, 7 g, 15 g GOS | with water | iron-depleted women assigned to groups with different conditions (n = 46) | FIA assessed as erythrocyte incorporation of stable isotopes | 7 g GOS significantly increased FIA from FeFum (+26%; p = 0.039) 3.5 g GOS did not significantly increased FIA from FeFum (p = 0.130) 15 g GOS did not significantly increased FIA from FeSO4 (p = 0.998) or FePP (p = 0.059) AA given with FeFum and 7 g GOS significantly increased FIA compared with FIA from FeFum given with 7 g GOS alone (+30%; p < 0.001) |
Inulin; Petry N. et al., (2012) [47] | 20 g/d for 4 weeks | fibruline instant dissolved in water | women with low iron status (n = 32) | FIA was assessed by using stable-iron-isotope techniques | no significant differences (p = 0.10) between mean FIA in the inulin and placebo |
Prebiotic/ Author | Dose | Type of Administration | Subject Study Group (n)/Control Group (n) | Assessment Method | Main Result |
---|---|---|---|---|---|
FOS; Lobo AR. et al., (2014) [39] | 7.5% FOS for 1 or 2 weeks | yacon flour or Raftilose P95 | iron deficient anemic rats supplemented with FP assigned to RAF group (n = 16) or YF (n = 16)/control group (n = 16) | HRE, hepatic Fe stores | FOS supplementation increased Fe bioavailability measured by HRE and hepatic Fe stores, which were more pronounced in the RAF group at week 1 changes in Hb level in FOS-fed rats were greater than those in the FP group (p = 0.01) and similar to those in the FS group |
FOS, Ohta A. et al., (1998) [41] | 75 g/kg for 6 weeks | added to diet | rats after surgically stomach removing (n = 7) or sham operated rats (n = 7) fed the FOS diet/no FOS diet (n = 7) | Ht, Hb concentration, HRE | Ht, Hb concentration, and HRE were significantly lower in gastrectomized rats fed a diet without FOS compared to the other three groups FOS prevented anemia in totally gastrectomized rats |
FOS; Zhang F. et al., (2017) [40] | 5% (w/v) FOS = 1–2/g per day for 28 days | dissolved in water | non anemic rats fed regular diet + FOS (n = 6)/regular no FOS diet (n = 6) anemic rats fed regular diet + FOS (n = 6)/regular no FOS diet (n = 6) anemic rats fed low iron diet + FOS (n = 6)/low-iron no FOS diet (6) | Hb concentration | anemic rats fed low-iron diet + FOS had higher Hb level (p < 0.05) after 21 days, compared to control group in anemic rats fed regular diet, Hb returned to normal level after 14 days and FOS supplementation showed no additional effects |
Sc-FOS, inulin; Sakai K. et al., (2000) [42] | Sc-FOS (75 g/kg diet) or inulin (75/kg diet) for 6 weeks | with diet | gastrectomized rats fed sc-FOS diet (n = 5) or inulin diet (n = 5)/gastrectomized (n = 5) or sham operated (n = 5) rats fed control diet | Hb concentration, Ht, HRE | in gastrectomized rats Hb and Ht levels were significantly higher in the group fed the Sc-FOS-containing diet compared with levels in rats fed the control diet or the inulin-containing diet HRE after 3 weeks in the FOS diet group was significantly higher than HRE in the other groups |
Sc-FOS; Sakai K. et al., (2000) [43] | Sc-FOS 75 g/kg diet for 28 days | with diet | sham-operated (n = 7)/GX (n = 7)/CX (n = 7)/GCX (n = 7) rats fed Sc-FOS diet (n = 7)/control diet (n = 7) | Ht, Hb and SI concentration, UIBC, Hb-Fe, HRE | Hb and Ht in the GX rats without cecectomy and fed the Sc-FOS diet were higher than those in the control group (p < 0.05) GX rats without cecectomy and fed the Sc-FOS diet had significantly higher UIBC and HRE compared with gastrectomized rats without cecectomy and fed the control diet the effectiveness of Sc-FOS in preventing postgastrectomy anemia was significantly decreased by cecectomy |
Inulin; Mohammad O. et al., (2021) [48] | 4% long or short-chain inulin by 4 weeks | in yogurt | anemic rats fed inulin free yogurt (n = 8) or yogurt containing long-chain inulin (n = 8) or short chain inulin (n = 8)/anemic (n = 8) or non-anemic (n = 8) rats fed inulin-free yogurt (n = 8) | Hb concentration, RBC, Ht, SI content | long-chain inulin exhibited the best effects in terms of iron supplementation and bioavailability |
Inulin; Freitas K.C. et al., (2012) [49] | 100 g/kg of ration by 21 days | with diet | anemic rats fed HP inulin (n = 12) or HP inulin + oligofructose (n = 12) or oligofructose (n = 11)/control diet (n = 12) | intestinal absorption of Fe, Hb concentration | HP inulin and oligofructose increased the intestinal absorption of Fe in rats values of Hb in the HP inulin were significant higher (p ≤ 0.001) than in the control group |
inulin, FOS, GOS; Zhang F. et al., (2021) [50] | 5% (m/V) (1–1.5 g/d) prebiotic by 35 dys | dissolved in water | 45 u Fe/g diet (n = 8) or 12 u Fe/g diet (n = 8) + short-chain FOS + long-chain inulin (n = 8)/45 u Fe/g diet (n = 8) or 12 u Fe/g diet (n = 8) 12 u Fe/g diet + FOS (n = 8) or inulin (n = 8) or GOS (n = 8) or lactulose (n = 8)/12 u Fe/g diet (n = 8) | Hb concentration, tissue non-heme iron levels | Hb concentration in rats supplemented with GOS after 3 weeks was significantly higher than in rats without supplementation Hb concentration in rats supplemented with FOS after 4 weeks was significantly higher than in rats without supplementation inulin, lactulose, short chain FOS + long chain inulin showed no effect; prebiotics had no effects on rats with normal iron status |
Pectin; Kim M. et al., (1992) [56] | 80 g/kg diet | added to diet | group 1—pectin high DE and high MW (n = 6)/rats fed control diet (n = 6) group 2—pectin with high DE and low MW (n = 6)/rats fed control diet(n = 6) group 3—pectin with low DE and high MW (n = 6)/rats fed control diet (n = 6) group 4—pectin with low DE and low MW (n = 6)/rats fed control diet (n = 6) + pair fed rats: each rat was fed an amount of the control diet equal to the average consumed by its respective pectin-fed group on the previous day | HRE, MCHC, UIBC, TIBC, Ht, SI concentration | pectin did not reduce iron bioavailability rats from group 2 had higher (p < 0.05) HRE, Ht, SI concentration, transferrin saturation, and lower UIBC and TIBC compared with the control group rats from groups 1 and 4 had improved hematological indices compared with group 3 and the control group |
3. Probiotics in Anemia
4. Metabolic Postbiotics in Anemia
4.1. Vitamins
4.2. SCFA
4.3. Tryptophan
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anemia-StatPearls-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499994/ (accessed on 26 May 2022).
- Lanzkowsky, P. Chapter 3—Classification and Diagnosis of Anemia in Children. In Lanzkowsky’s Manual of Pediatric Hematology and Oncology, 6th ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 32–41. [Google Scholar] [CrossRef]
- Vonderheid, S.C.; Tussing-Humphreys, L.; Park, C.; Pauls, H.; Hemphill, N.O.; Labomascus, B.; McLeod, A.; Koenig, M.D. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients 2019, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Murray, C.J.L. Comparative Quantification of Health Risks; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- WHO. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region 2000–2016; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Camaschella, C. Iron-Deficiency Anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, A.S.; Önning, G.; Engström, N.; Scheers, N. Iron Supplements Containing Lactobacillus Plantarum 299v Increase Ferric Iron and Up-Regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures. Nutrients 2018, 10, 1949. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Goddard, A.F.; James, M.W.; McIntyre, A.S.; Scott, B.B. Guidelines for the Management of Iron Deficiency Anaemia. Gut 2011, 60, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.; Önning, G.; Berggren, A.; Hulthén, L. Probiotic Strain Lactobacillus Plantarum 299v Increases Iron Absorption from an Iron-Supplemented Fruit Drink: A Double-Isotope Cross-over Single-Blind Study in Women of Reproductive Age. Br. J. Nutr. 2015, 114, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Martyniak, A.; Medyńska-Przęczek, A.; Wędrychowicz, A.; Skoczeń, S.; Tomasik, P.J. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int. J. Mol. Sci. 2020, 21, 2285. [Google Scholar] [CrossRef] [Green Version]
- Hollister, E.B.; Riehle, K.; Luna, R.A.; Weidler, E.M.; Rubio-Gonzales, M.; Mistretta, T.A.; Raza, S.; Doddapaneni, H.V.; Metcalf, G.A.; Muzny, D.M.; et al. Structure and Function of the Healthy Pre-Adolescent Pediatric Gut Microbiome. Microbiome 2015, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- De Vrese, M.; Schrezenmeir, J. Probiotics, Prebiotics, and Synbiotics. Adv. Biochem. Eng. Biotechnol. 2008, 111, 1–66. [Google Scholar] [CrossRef]
- Perceval, C.; Szajewska, H.; Indrio, F.; Weizman, Z.; Vandenplas, Y. Prophylactic Use of Probiotics for Gastrointestinal Disorders in Children. Lancet Child. Adolesc. Health 2019, 3, 655–662. [Google Scholar] [CrossRef]
- Wolvers, D.; Antoine, J.M.; Myllyluoma, E.; Schrezenmeir, J.; Szajewska, H.; Rijkers, G.T. Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Prevention and Management of Infections by Probiotics. J. Nutr. 2010, 140, 698S–712S. [Google Scholar] [CrossRef]
- Tamaki, H.; Nakase, H.; Inoue, S.; Kawanami, C.; Itani, T.; Ohana, M.; Kusaka, T.; Uose, S.; Hisatsune, H.; Tojo, M.; et al. Efficacy of Probiotic Treatment with Bifidobacterium Longum 536 for Induction of Remission in Active Ulcerative Colitis: A Randomized, Double-Blinded, Placebo-Controlled Multicenter Trial. Dig. Endosc. 2016, 28, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of Probiotics. Adv Nutr. 2019, 10, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step beyond Pre-and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Korcok, D.J.; Tršic-Milanovic, N.A.; Ivanovic, N.D.; Dordevic, B.I. Development of Probiotic Formulation for the Treatment of Iron Deficiency Anemia. Chem. Pharm. Bull. 2018, 66, 347–352. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Gálvez, N.; Martín, J.; Reyes, F.; Pérez-Victoria, I.; Dominguez-Vera, J.M. Identification of the Key Excreted Molecule by Lactobacillus Fermentum Related to Host Iron Absorption. Food Chem. 2017, 228, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Mancilha, I.M. Non-Digestible Oligosaccharides: A Review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Vera, C.; Córdova, A.; Aburto, C.; Guerrero, C.; Suárez, S.; Illanes, A. Synthesis and Purification of Galacto-Oligosaccharides: State of the Art. World J. Microbiol. Biotechnol. 2016, 32, 197. [Google Scholar] [CrossRef]
- Ahmad, A.M.R.; Ahmed, W.; Iqbal, S.; Javed, M.; Rashid, S.; Iahtisham-ul-Haq. Prebiotics and Iron Bioavailability? Unveiling the Hidden Association—A Review. Trends Food Sci. Technol. 2021, 110, 584–590. [Google Scholar] [CrossRef]
- Paganini, D.; Uyoga, M.A.; Cercamondi, C.I.; Moretti, D.; Mwasi, E.; Schwab, C.; Bechtler, S.; Mutuku, F.M.; Galetti, V.; Lacroix, C.; et al. Consumption of Galacto-Oligosaccharides Increases Iron Absorption from a Micronutrient Powder Containing Ferrous Fumarate and Sodium Iron EDTA: A Stable-Isotope Study in Kenyan Infants. Am. J. Clin. Nutr. 2017, 106, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Mikulic, N.; Uyoga, M.A.; Paganini, D.; Mwasi, E.; Stoffel, N.U.; Zeder, C.; Karanja, S.; Zimmermann, M.B. Consumption of a Single Dose of Prebiotic Galacto-Oligosaccharides Does Not Enhance Iron Absorption from Micronutrient Powders in Kenyan Infants: A Stable Iron Isotope Study. J. Nutr. 2021, 151, 1205–1212. [Google Scholar] [CrossRef]
- Christides, T.; Ganis, J.C.; Sharp, P.A. In Vitro Assessment of Iron Availability from Commercial Young Child Formulae Supplemented with Prebiotics. Eur. J. Nutr. 2018, 57, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Paganini, D.; Uyoga, M.A.; Kortman, G.A.M.; Cercamondi, C.I.; Moretti, D.; Barth-Jaeggi, T.; Schwab, C.; Boekhorst, J.; Timmerman, H.M.; Lacroix, C.; et al. Prebiotic Galacto-Oligosaccharides Mitigate the Adverse Effects of Iron Fortification on the Gut Microbiome: A Randomised Controlled Study in Kenyan Infants. Gut 2017, 66, 1956–1967. [Google Scholar] [CrossRef] [Green Version]
- Jeroense, F.M.D.; Michel, L.; Zeder, C.; Herter-Aeberli, I.; Zimmermann, M.B. Consumption of Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate: A Stable Iron Isotope Study in Iron-Depleted Young Women. J. Nutr. 2019, 149, 738–746. [Google Scholar] [CrossRef]
- Jeroense, F.M.D.; Zeder, C.; Zimmermann, M.B.; Herter-Aeberli, I. Acute Consumption of Prebiotic Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate, but Not from Ferrous Sulfate and Ferric Pyrophosphate: Stable Iron Isotope Studies in Iron-Depleted Young Women. J. Nutr. 2020, 150, 2391–2397. [Google Scholar] [CrossRef]
- Costa, G.; Vasconcelos, Q.; Abreu, G.; Albuquerque, A.; Vilarejo, J.; Aragão, G. Changes in Nutrient Absorption in Children and Adolescents Caused by Fructans, Especially Fructooligosaccharides and Inulin. Arch. Pediatr. 2020, 27, 166–169. [Google Scholar] [CrossRef]
- Sabater-Molina, M.; Larqué, E.; Torrella, F.; Zamora, S. Dietary Fructooligosaccharides and Potential Benefits on Health. J. Physiol. Biochem. 2009, 65, 315–328. [Google Scholar] [CrossRef]
- Martins, G.N.; Ureta, M.M.; Tymczyszyn, E.E.; Castilho, P.C.; Gomez-Zavaglia, A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front. Nutr. 2019, 6, 78. [Google Scholar] [CrossRef]
- Lobo, A.R.; Gaievski, E.H.S.; de Carli, E.; Alvares, E.P.; Colli, C. Fructo-Oligosaccharides and Iron Bioavailability in Anaemic Rats: The Effects on Iron Species Distribution, Ferroportin-1 Expression, Crypt Bifurcation and Crypt Cell Proliferation in the Caecum. Br. J. Nutr. 2014, 112, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yung, K.K.L.; Chung, S.S.M.; Yeung, C.K.; Zhang, F.; Yung, K.K.L.; Chung, S.S.M.; Yeung, C.K. Supplementation of Fructooligosaccharide Mildly Improves the Iron Status of Anemic Rats Fed a Low-Iron Diet. Food Sci. Nutr. 2017, 8, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Ohta, A.; Ohtsuki, M.; Uehara, M.; Hosono, A.; Hirayama, M.; Adachi, T.; Hara, H. Dietary Fructooligosaccharides Prevent Postgastrectomy Anemia and Osteopenia in Rats. J. Nutr. 1998, 128, 485–490. [Google Scholar] [CrossRef]
- Sakai, K.; Ohta, A.; Takasaki, M.; Tokunaga, T. The Effect of Short Chain Fructooligosaccharides in Promoting Recovery from Post-Gastrectomy Anemia Is Stronger than That of Inulin. Nutr. Res. 2000, 20, 403–412. [Google Scholar] [CrossRef]
- Sakai, K.; Ohta, A.; Shiga, K.; Takasaki, M.; Tokunaga, T.; Hara, H. The Cecum and Dietary Short-Chain Fructooligosaccharides Are Involved in Preventing Postgastrectomy Anemia in Rats. J. Nutr. 2000, 130, 1608–1612. [Google Scholar] [CrossRef]
- Thammarutwasik, P.; Hongpattarakere, T.; Chantachum, S.; Kijroongrojana, K.; Itharat, A.; Reanmongkol, W.; Tewtrakul, S.; Ooraikul, B. Prebiotics - A Review. Warasan Songkhla Nakharin 2009, 31, 401–408. [Google Scholar]
- Mazraeh, R.; Azizi-Soleiman, F.; Jazayeri, S.M.H.M.; Noori, S.M.A. Effect of Inulin-Type Fructans in Patients Undergoing Cancer Treatments: A Systematic Review. Pak. J. Med. Sci. 2019, 35, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.C.V.; Costa, N.M.B.; Sant’Anna, H.M.P.; Ferreira, C.L.L.F.; Franceschini, S.C.C. Improvement the Nutritional Status of Pre-School Children Following Intervention with a Supplement Containing Iron, Zinc, Copper, Vitamin A, Vitamin C and Prebiotic. Cienc. Saude Coletiva 2017, 22, 359–368. [Google Scholar] [CrossRef]
- Petry, N.; Egli, I.; Chassard, C.; Lacroix, C.; Hurrell, R. Inulin Modifies the Bifidobacteria Population, Fecal Lactate Concentration, and Fecal PH but Does Not Influence Iron Absorption in Women with Low Iron Status. Am. J. Clin. Nutr. 2012, 96, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, O.; Dyab, N.; Kheadr, E.; Dabour, N. Effectiveness of Inulin-Type on the Iron Bioavailability in Anemic Female Rats Fed Bio-Yogurt. RSC Adv. 2021, 11, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Freitas, K.D.C.; Amancio, O.M.S.; de Morais, M.B. High-Performance Inulin and Oligofructose Prebiotics Increase the Intestinal Absorption of Iron in Rats with Iron Deficiency Anaemia during the Growth Phase. Br. J. Nutr. 2012, 108, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yung, K.K.L.; KongYeung, C. Effects of Common Prebiotics on Iron Status and Production of Colonic Short-Chain Fatty Acids in Anemic Rats. Food Sci. Hum. Wellness 2021, 10, 327–334. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Miron, A.; Aprotosoaie, A.C.; Farag, M.A. Pectin in Diet: Interactions with the Human Microbiome, Role in Gut Homeostasis, and Nutrient-Drug Interactions. Carbohydr. Polym. 2021, 255, 117388. [Google Scholar] [CrossRef]
- Carrion, C.C.; Nasrollahzadeh, M.; Sajjadi, M.; Jaleh, B.; Soufi, G.J.; Iravani, S. Lignin, Lipid, Protein, Hyaluronic Acid, Starch, Cellulose, Gum, Pectin, Alginate and Chitosan-Based Nanomaterials for Cancer Nanotherapy: Challenges and Opportunities. Int. J. Biol. Macromol. 2021, 178, 193–228. [Google Scholar] [CrossRef]
- Jaramillo, A.; Molina, P.; Briones, L.; Flores, S.; Olivares, M.; Pizarro, F. Pectin Esterification Degree in the Bioavailability of Non-Heme Iron in Women. Biol. Trace. Elem. Res. 2018, 181, 38–43. [Google Scholar] [CrossRef]
- Jaramillo, Á.; Briones, L.; Andrews, M.; Arredondo, M.; Olivares, M.; Brito, A.; Pizarro, F. Effect of Phytic Acid, Tannic Acid and Pectin on Fasting Iron Bioavailability Both in the Presence and Absence of Calcium. J. Trace. Elem. Med. Biol. 2015, 30, 112–117. [Google Scholar] [CrossRef]
- Bosscher, D.; van Caillie-Bertrand, M.; van Cauwenbergh, R.; Deelstra, H. Availabilities of Calcium, Iron, and Zinc from Dairy Infant Formulas Is Affected by Soluble Dietary Fibers and Modified Starch Fractions. Nutrition 2003, 19, 641–645. [Google Scholar] [CrossRef]
- Kim, M.; Atallah, M.T. Structure of Dietary Pectin, Iron Bioavailability and Hemoglobin Repletion in Anemic Rats. J. Nutr. 1992, 122, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, N.; Berweiler, V.; Wang, H.; Trajkovski, M. Intestinal microbiota as a route for micronutrient bioavailability. Curr Opin Endocr Metab Res. 2021, 20, 100285. [Google Scholar] [CrossRef] [PubMed]
- Bering, S.; Suchdev, S.; Sjøltov, L.; Berggren, A.; Tetens, I.; Bukhave, K. A Lactic Acid-Fermented Oat Gruel Increases Non-Haem Iron Absorption from a Phytate-Rich Meal in Healthy Women of Childbearing Age. Br. J. Nutr. 2006, 96, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adiki, S.K.; Perla, C.K.; Saha, G.; Katakam, P.; Theendra, V. Enhancement in Iron Absorption on Intake of Chemometrically Optimized Ratio of Probiotic Strain Lactobacillus Plantarum 299v with Iron Supplement Pearl Millet. Biol. Trace. Elem. Res. 2019, 190, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.; Önning, G.; Hulthén, L. Freeze-Dried Lactobacillus Plantarum 299v Increases Iron Absorption in Young Females-Double Isotope Sequential Single-Blind Studies in Menstruating Women. PLoS ONE 2017, 12, e0189141. [Google Scholar] [CrossRef]
- Garcés, V.; Rodríguez-Nogales, A.; González, A.; Gálvez, N.; Rodríguez-Cabezas, M.E.; García-Martin, M.L.; Gutiérrez, L.; Rondón, D.; Olivares, M.; Gálvez, J.; et al. Bacteria-Carried Iron Oxide Nanoparticles for Treatment of Anemia. Bioconjug. Chem. 2018, 29, 1785–1791. [Google Scholar] [CrossRef] [Green Version]
- Khodaii, Z.; Zadeh, M.N.; Kamali, J.; Mehrabani Natanzi, M. Enhanced Iron Absorption from Lactic Acid Fermented Bread (an in Vivo/Ex Vivo Study). Gene Rep. 2019, 15, 100389. [Google Scholar] [CrossRef]
- Green, J.M.; Matthews, R.G. Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus 2007, 2. [Google Scholar] [CrossRef]
- Rosen, G.M.; Morrissette, S.; Larson, A.; Stading, P.; Griffin, K.H.; Barnes, T.L. Use of a Probiotic to Enhance Iron Absorption in a Randomized Trial of Pediatric Patients Presenting with Iron Deficiency. J. Pediatr. 2019, 207, 192–197.e1. [Google Scholar] [CrossRef]
- Pompei, A.; Cordisco, L.; Amaretti, A.; Zanoni, S.; Matteuzzi, D.; Rossi, M. Folate Production by Bifidobacteria as a Potential Probiotic Property. AEM 2007, 73, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, G.P.; Mogna, L. Quantification of Folic Acid in Human Feces after Administration of Bifidobacterium Probiotic Strains. J. Clin. Gastroenterol. 2008, 42, S179–S184. [Google Scholar] [CrossRef] [PubMed]
- Kleerebezem, M.; Vaughan, E.E. Probiotic and Gut Lactobacilli and Bifidobacteria: Molecular Approaches to Study Diversity and Activity. Annu. Rev. Microbiol. 2009, 63, 269–290. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Thukral, S.K.; Kaur, P.; Samota, M.K. Perturbations Associated with Hungry Gut Microbiome and Postbiotic Perspectives to Strengthen the Microbiome Health. Future Foods 2021, 4, 100043. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Konstantakis, C.; Assimakopoulos, S.F.; Triantos, C. The Role of the Gut Microbiota in the Treatment of Inflammatory Bowel Diseases. Microb. Pathog. 2019, 137, 103774. [Google Scholar] [CrossRef]
- Lührs, H.; Gerke, T.; Müller, J.G.; Melcher, R.; Schauber, J.; Boxberger, F.; Scheppach, W.; Menzel, T. Butyrate Inhibits NF-ΚB Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis. Scand. J. Gastroenterol. 2009, 37, 458–466. [Google Scholar] [CrossRef]
- McClorry, S.; Zavaleta, N.; Llanos, A.; Casapía, M.; Lönnerdal, B.; Slupsky, C.M. Anemia in Infancy Is Associated with Alterations in Systemic Metabolism and Microbial Structure and Function in a Sex-Specific Manner: An Observational Study. Am. J. Clin. Nutr. 2018, 108, 1238–1248. [Google Scholar] [CrossRef]
- Dostal, A.; Chassard, C.; Hilty, F.M.; Zimmermann, M.B.; Jaeggi, T.; Rossi, S.; Lacroix, C. Iron Depletion and Repletion with Ferrous Sulfate or Electrolytic Iron Modifies the Composition and Metabolic Activity of the Gut Microbiota in Rats. J. Nutr 2012, 142, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Soriano-Lerma, A.; García-Burgos, M.; Alférez, M.J.M.; Pérez-Carrasco, V.; Sanchez-Martin, V.; Linde-Rodríguez, Á.; Ortiz-González, M.; Soriano, M.; García-Salcedo, J.A.; López-Aliaga, I. Gut Microbiome—Short-Chain Fatty Acids Interplay in the Context of Iron Deficiency Anaemia. Eur. J. Nutr. 2022, 61, 399–412. [Google Scholar] [CrossRef]
- Das, N.K.; Schwartz, A.J.; Barthel, G.; Inohara, N.; Liu, Q.; Sankar, A.; Hill, D.R.; Ma, X.; Lamberg, O.; Schnizlein, M.K.; et al. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. Cell Metab. 2020, 31, 115–130.e6. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadis, T.; Pissas, G.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Kynurenine, by Activating Aryl Hydrocarbon Receptor, Decreases Erythropoietin and Increases Hepcidin Production in HepG2 Cells: A New Mechanism for Anemia of Inflammation. Exp. Hematol. 2016, 44, 60–67.e1. [Google Scholar] [CrossRef] [PubMed]
- Enko, D.; Wagner, H.; Kriegshäuser, G.; Brandmayr, W.; Halwachs-Baumann, G.; Schnedl, W.J.; Zelzer, S.; Mangge, H.; Meinitzer, A. Assessment of Tryptophan Metabolism and Signs of Depression in Individuals with Carbohydrate Malabsorption. Psychiatry Res. 2018, 262, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.; Liu, A. What Is the Tryptophan Kynurenine Pathway and Why Is It Important to Neurotherapeutics? Expert Rev. Neurother. 2015, 15, 719–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenninger, J.; Meinitzer, A.; Holasek, S.; Schnedl, W.J.; Zelzer, S.; Mangge, H.; Herrmann, M.; Enko, D. Associations between Tryptophan and Iron Metabolism Observed in Individuals with and without Iron Deficiency. Sci. Rep. 2019, 9, 14548. [Google Scholar] [CrossRef] [Green Version]
- Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring Tryptophan Metabolism in Chronic Immune Activation. Clin. Chim. Acta 2006, 364, 82–90. [Google Scholar] [CrossRef]
- Salter, M.; Knowles, R.G.; Pogson, C.I. How Does Displacement of Albumin-Bound Tryptophan Cause Sustained Increases in the Free Tryptophan Concentration in Plasma and 5-Hydroxytryptamine Synthesis in Brain? Biochem. J. 1989, 262, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Schroecksnadel, K.; Mattle, V.; Winkler, C.; Konwalinka, G.; Fuchs, D. Possible Role of Cytokine-Induced Tryptophan Degradation in Anaemia of Inflammation. Eur. J. Haematol. 2004, 72, 130–134. [Google Scholar] [CrossRef]
- El-Azeem, A.S.; Hegazy, A.M.; Badawy, I.H.; Ibrahim, G.A.; El-Shafei, K.; El-Sayed, H.S.; Sharaf, O.M. Effectiveness of Functional Wheat-Fermented Milk Beverage against Tannic Acid Induced Anemia. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2622. [Google Scholar]
- Scheers, N.; Rossander-Hulthen, L.; Torsdottir, I.; Sandberg, A.S. Increased Iron Bioavailability from Lactic-Fermented Vegetables Is Likely an Effect of Promoting the Formation of Ferric Iron (Fe(3+)). Eur. J. Nutr. 2016, 55, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Adeyanju, A.A.; Kruger, J.; Taylor, J.R.N.; Duodu, K.G. Effects of Different Souring Methods on the Protein Quality and Iron and Zinc Bioaccessibilities of Non-Alcoholic Beverages from Sorghum and Amaranth. Int. J. Food. Sci. Nutr. 2019, 54, 798–809. [Google Scholar] [CrossRef]
- Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W.; Buck, G.A.; Snyder, M.P.; Strauss, J.F.; Weinstock, G.M.; et al. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef] [Green Version]
Study | Subjects | Intervention | Number of Patients | Duration of the Study | Outcome |
---|---|---|---|---|---|
Korcok D.J. et al., (2018) [25] | healthy humans, women | L. plantarum 299v 1.1 × 109 CFU vs. placebo | 20 | 1 week | significant increase in serum iron level in the probiotic group |
Adiki S.K. et al., (2019) [59] | animal model, rats | L. plantarum 299v in 0.5 g dose and 1.0 g dose vs. different diet and iron supplementation | 42, 7 groups per 6 rats | 4 weeks | significant increase in iron absorption in lower probiotic group vs. diet groups, no differences in iron absorption between the group with higher and lower doses of probiotics |
Hoppe M. et al., (2017) [60] | healthy humans, women | L. plantarum 299v 10 × 1010 CFU vs. placebo | 14, study 1 28, study 2 | 4 weeks | significant increase in serum iron levels in probiotic groups compared to placebo groups in both studies |
Garces V. et al., (2018) [61] | animal model, rats | L. fermentum alone, with or without iron oxide nanoparticles vs. iron supplementation | 30, 5 groups per 6 rats | 23 days | significant increase in the absorption of iron in probiotic with iron oxide nanoparticles group compared to probiotic alone and iron oxide nanoparticles alone |
Khodaii Z. et al., (2019) [62] | animal model, rats | Fermented bread with or without L. acidofilus | 24, 4 groups per six rats | 30 days | significantly increased serum ferritin level and intestinal tissue cells compared to controls |
Rosen G. et al., (2019) [64] | children with iron deficiency anemia | Iron supplementation with or without L. plantarum 299v 10 × 109 CFU | 52, 27 in the probiotic group, 25 in the placebo group | 3 years | no significant differences in serum ferritin levels between the probiotic and control group |
Compound/Authors | Study/Control Group | Method | Effect |
---|---|---|---|
FA; Strozzi G.P. et al., (2008) [66] | 23 healthy volunteers were randomly assigned to 1 of 3 study group | determination of the folate concentration in feces evacuated within 48 h before and after administration strains | significant increase in FA concentration in all treated groups (p = 0.004, p < 0.001, p = 0.049) |
FA; Mohammad O. et al., (2009) [48] | 12 children in the study and control group | analysis of folate plasma concentration after 42 days Lactobacillus acidophilus supplementations | increased folate plasma concentration (p < 0.01), reduction in the percentage prevalence of anaemia (p < 0.01) |
SCFA; Soriano-Lerma A. et al., (2022) [75] | 20 male Wistar rats, 11 in the control group, 9 in the anemic group | diet induction IDA for 40 days. Measured SCFA concentration in GI tract. | Significant increase in AA, PA and BA in the colon (p < 0.05) in rats with anemia |
SCFA; Dostal A. et al., (2012) [76] | 40 male Sprague-Dawley rats. Thirty-seven rats in the study group, 3 rats in the control group | 3 rats on a normal diet and 37 rats on a non-iron diet for 24 d. After 37 d. cecal SCFA measurement | the cecal concentration of butyrate was 87% lower and that of propionate was 72% lower compared to the control group (p < 0.05). |
Trp; Wenninger J. et al., (2019) [80] | 115 patients with iron deficiency and 315 individuals without iron deficiency. | correlated between tryptophan and iron metabolism and hemoglobin levels in a large cohort of patients grouped by the presence or absence of iron deficiency or anemia. | indicators of tryptophan metabolism were positively correlated with haemoglobin and ferritin (p < 0.001; p = 0.038) |
El-Azeem A. et al., (2016) [84] | 45, 3 groups per 15 rats | Streptococcus thermophilus fermented milk beverage enriched diet vs a normal and tannic acid enriched diet | increase in serum hemoglobin, iron, and ferritin in probiotic fermented milk beverage enriched diet group compared to normal and tannic acid enriched diet groups |
Scheer N. et al., (2016) [85] | 17 rats | L. plantarum 299v 2.4 × 109 CFU fermented vegetables vs fresh vegetables | significantly increase in iron absorption in the probiotic fermented vegetable group compared to the fresh vegetable group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakrzewska, Z.; Zawartka, A.; Schab, M.; Martyniak, A.; Skoczeń, S.; Tomasik, P.J.; Wędrychowicz, A. Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022, 10, 1330. https://doi.org/10.3390/microorganisms10071330
Zakrzewska Z, Zawartka A, Schab M, Martyniak A, Skoczeń S, Tomasik PJ, Wędrychowicz A. Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms. 2022; 10(7):1330. https://doi.org/10.3390/microorganisms10071330
Chicago/Turabian StyleZakrzewska, Zuzanna, Aleksandra Zawartka, Magdalena Schab, Adrian Martyniak, Szymon Skoczeń, Przemysław J. Tomasik, and Andrzej Wędrychowicz. 2022. "Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia" Microorganisms 10, no. 7: 1330. https://doi.org/10.3390/microorganisms10071330
APA StyleZakrzewska, Z., Zawartka, A., Schab, M., Martyniak, A., Skoczeń, S., Tomasik, P. J., & Wędrychowicz, A. (2022). Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms, 10(7), 1330. https://doi.org/10.3390/microorganisms10071330