Antibacterial Potential of Allium ursinum Extract Prepared by the Green Extraction Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extract Preparation
2.3. Extract Characterization
2.3.1. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.3.2. Determination of Phenolic Compounds by HPLC
2.3.3. Determination of Sulfur Compounds by HPLC
2.4. Antimicrobial Activity
2.4.1. Bacterial Strains and Growth Conditions
2.4.2. Antimicrobial Assay
2.4.3. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) Determination
2.5. Statistical Analysis
3. Results
3.1. Chemical Characterization of A. ursinum Extract
3.2. Antimicrobial Activity of A. ursinum Extract
3.3. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) of A. ursinum Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Lourenço-Lopes, C.; Otero, P.; Carpena, M.; Pereira, A.G.; Echave, J.; Soria-Lopez, A.; Chamorro, F.; Prieto, M.A.; Simal-Gandara, J. Application of Green Extraction Techniques for Natural Additives Production. In Food Additives; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Vrgović, P.; Pojić, M.; Teslić, N.; Mandić, A.; Kljakić, A.C.; Pavlić, B.; Stupar, A.; Pestorić, M.; Škrobot, D.; Mišan, A. Communicating Function and Co-Creating Healthy Food: Designing a Functional Food Product Together with Consumers. Foods 2022, 11, 961. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Watanabe, K.; Suma, K.; Origuchi, K.; Matsufuji, H.; Seki, T.; Ariga, T. Antibacterial Potential of Garlic-Derived Allicin and Its Cancellation by Sulfhydryl Compounds. Biosci. Biotechnol. Biochem. 2009, 73, 1948–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical Composition, Antibacterial and Antioxidant Activities of Six Essentials Oils from the Alliaceae Family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [Green Version]
- Vidović, S.; Tomšik, A.; Vladić, J.; Jokić, S.; Aladić, K.; Pastor, K.; Jerković, I. Supercritical Carbon Dioxide Extraction of Allium Ursinum: Impact of Temperature and Pressure on the Extracts Chemical Profile. Chem. Biodivers. 2021, 18, e2100058. [Google Scholar] [CrossRef]
- Rankovic, M.; Krivokapic, M.; Bradic, J.; Petkovic, A.; Zivkovic, V.; Sretenovic, J.; Jeremic, N.; Bolevich, S.; Kartashova, M.; Jeremic, J.; et al. New Insight into the Cardioprotective Effects of Allium Ursinum L. Extract Against Myocardial Ischemia-Reperfusion Injury. Front. Physiol. 2021, 12, 690696. [Google Scholar] [CrossRef]
- Tomšik, A.; Šarić, L.; Bertoni, S.; Protti, M.; Albertini, B.; Mercolini, L.; Passerini, N. Encapsulations of Wild Garlic (Allium ursinum L.) Extract Using Spray Congealing Technology. Food Res. Int. 2018, 119, 941–950. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Wild Garlic (Allium ursinum L.). Ultrason. Sonochem. 2016, 29, 502–511. [Google Scholar] [CrossRef]
- Sobolewska, D.; Podolak, I.; Makowska-Was, J. Allium Ursinum: Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2013, 4, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañ Ez, E. Compressed Fluids for the Extraction of Bioactive Compounds. Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandić, A.; Vidović, S. Subcritical Water Extraction of Wild Garlic (Allium ursinum L.) and Process Optimization by Response Surface Methodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
- Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Phytochemical Analysis of Allium fistulosum L. and A. ursinum L. Dig. J. Nanomater. Biostructures 2012, 8, 457–467. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Amer. J. Enol. Viticult. 1965, 16, 144–158. Available online: http://garfield.library.upenn.edu/classics1985/A1985AUG6900001.pdf (accessed on 18 May 2015).
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Nkala, B.A.; Mbongwa, H.P.; Qwebani-Ogunleye, T. The In Vitro Evaluation of Some South African Plant Extracts for Minimum Inhibition Concentration and Minimum Bactericidal Concentration against Selected Bacterial Strains. Artic. Int. J. Sci. Res. Publ. 2019, 9, 996–1004. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Wojdyło, A. Characterization and Content of Flavonol Derivatives of Allium ursinum L. Plant. J. Agric. Food Chem. 2013, 61, 176–184. [Google Scholar] [CrossRef]
- Wu, H.; Dushenkov, S.; Ho, C.-T.; Sang, S. Novel Acetylated Flavonoid Glycosides from the Leaves of Allium ursinum. Food Chem. 2009, 115, 592–595. [Google Scholar] [CrossRef]
- Schmitt, B.; Schulz, H.; Storsberg, J.; Keusgen, M. Chemical Characterization of Allium ursinum L. Depending on Harvesting Time. J. Agric. Food Chem. 2005, 53, 7288–7294. [Google Scholar] [CrossRef]
- Radulović, N.S.; Miltojević, A.B.; Stojković, M.B.; Blagojević, P.D. New Volatile Sulfur-Containing Compounds from Wild Garlic (Allium ursinum L., Liliaceae). Food Res. Int. 2015, 78, 1–10. [Google Scholar] [CrossRef]
- Kim, J.W.; Huh, J.E.; Kyung, S.H.; Kyung, K.H. Antimicrobial Activity of Alk(En)Yl Sulfides Found in Essential Oils of Garlic and Onion. Food Sci. Biotechnol. 2004, 13, 235–239. [Google Scholar]
- Lawson, L.D.; Wang, Z.J. Allicin and Allicin-Derived Garlic Compounds Increase Breath Acetone through Allyl Methyl Sulfide: Use in Measuring Allicin Bioavailability. J. Agric. Food Chem. 2005, 53, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Kyung, K.H. Antimicrobial Properties of Allium Species. Curr. Opin. Biotechnol. 2012, 23, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Krivokapic, M.; Jakovljević, V.; Sovilić, M.; Bradić, J.; Petković, A.; Radojević, I.; Branković, S.; Čomić, L.; Anđić, M.; Kcović, A.; et al. Biological Activities of Different Extracts from Allium Ursinum Leaves. Acta Pol. Pharm. Drug Res. 2020, 77, 121–129. [Google Scholar] [CrossRef]
- Li, K.; Guan, G.; Zhu, J.; Wu, H.; Sun, Q. Antibacterial Activity and Mechanism of a Laccase-Catalyzed Chitosan–gallic Acid Derivative against Escherichia Coli and Staphylococcus Aureus. Food Control 2019, 96, 234–243. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Tatsimo, S.J.N.; Tamokou, J.D.D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.R.; Tane, P. Antimicrobial and Antioxidant Activity of Kaempferol Rhamnoside Derivatives from Bryophyllum Pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Teffo, L.S.; Aderogba, M.A.; Eloff, J.N. Antibacterial and Antioxidant Activities of Four Kaempferol Methyl Ethers Isolated from Dodonaea Viscosa Jacq. Var. Angustifolia Leaf Extracts. S. Afr. J. Bot. 2010, 76, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Lupoae, M.; Coprean, D.; Dinicǎ, R.; Lupoae, P.; Gurau, G.; Bahrim, G. Antimicrobial Activity of Extracts of Wild Garlic (Allium ursinum) from Romanian Spontaneous Flora. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2013, 14, 221–227. [Google Scholar]
- Putnoky, S.; Caunii, A.; Butnariu, M. Study on the Stability and Antioxidant Effect of the Allium ursinum Watery Extract. Chem. Cent. J. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, A.; Mikhova, B.; Najdenski, H.; Tsvetkova, I.; Kostova, I. Chemical Composition and Antimicrobial Activity of Wild Garlic Allium ursinum of Bulgarian Origin. Nat. Prod. Commun. 2009, 4, 1059–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankri, S.; Mirelman, D. Antimicrobial Properties of Allicin from Garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Sapunjieva, T.; Alexieva, I.; Mihaylova, D. Antimicrobial and Antioxidant Activity of Extracts of Allium ursinum L. J. Biosci. Biotechnol. 2012, 143–145. [Google Scholar]
- Synowiec-Piłat, M. Wybrane społeczne wyznaczniki jakości życia 50-letnich Polek w kontekście ich sytuacji zdrowotnej. Przegląd Menopauzalny 2010, 6, 385–389. [Google Scholar]
- Mihaylova, D.; Lante, A.; Tinello, F.; Krastanov, A.I. Study on the Antioxidant and Antimicrobial Activities of Allium ursinum L. Pressurised-Liquid Extract. Nat. Prod. Res. 2014, 28, 2000–2200. [Google Scholar] [CrossRef]
Detected Compounds | Concentration (μg/mL Extract) |
---|---|
Polyphenolic compounds | |
Gallic acid | 32.97 ± 5.21 |
Gallic acid derivate | 9.10 ± 0.57 |
Gallic acid derivate | 7.24 ± 1.09 |
Kaempferol derivate | 8.96 ± 0.23 |
Kaempferol derivate | 16.76 ± 1.04 |
Kaempferol derivate | 9.48 ± 0.12 |
Kaempferol derivate | 20.45 ± 2.56 |
Kaempferol derivate | 29.95 ± 4.23 |
Catechin derivate | 7.24 ± 0.89 |
Catechin derivate | 6.89 ± 1.09 |
Catechin derivate | 3.44 ± 0.89 |
Sulfur compounds | |
S-methyl methanethiosulfonate | 302.6 ± 10.12 |
Alilsulfid | 44.1 ± 2.34 |
Diallyl disulfide | 27.3 ± 2.12 |
Bacteria | LC (log10 cfu/mL) | A. ursinum Extract (mg/mL) | |||
---|---|---|---|---|---|
5 | 10 | 30 | Positive Control | ||
Bacterial Count (log10 cfu/mL) | |||||
L. monocytogenes | 2 | 8.63 c ± 0.01 | 2.19 b ± 0.05 | n.d. a | 8.64 c ± 0.02 |
3 | 8.73 c ± 0.02 | 3.20 b ± 0.03 | n.d. a | 8.74 c ± 0.01 | |
4 | 8.71 c ± 0.01 | 4.18 b ± 0.02 | n.d. a | 8.71 c ± 0.01 | |
5 | 8.71 c ± 0.03 | 5.12 b ± 0.03 | n.d. a | 8.71 c ± 0.02 | |
6 | 8.77 c ± 0.02 | 7.73 b ± 0.01 | n.d. a | 8.75 c ± 0.02 | |
S. Enteritidis | 2 | 8.74 c ± 0.01 | 8.35 b ± 0.02 | n.d. a | 8.78 c ± 0.03 |
3 | 8.76 c ± 0.01 | 8.20 b ± 0.02 | n.d. a | 8.76 c ± 0.01 | |
4 | 8.77 c ± 0.01 | 8.07 b ± 0.03 | n.d. a | 8.78 c ± 0.02 | |
5 | 8.64 c ± 0.03 | 8.01 b ± 0.02 | n.d. a | 8.64 c ± 0.04 | |
6 | 8.74 c ± 0.01 | 8.40 b ± 0.02 | n.d. a | 8.74 c ± 0.02 | |
E. coli 10536 | 2 | 8.91 c ± 0.03 | 8.39 b ± 0.02 | n.d. a | 8.91 c ± 0.02 |
3 | 8.90 c ± 0.02 | 8.36 b ± 0.01 | n.d. a | 8.90 c ± 0.01 | |
4 | 8.91 c ± 0.03 | 8.40 b ± 0.04 | n.d. a | 8.91 c ± 0.02 | |
5 | 8.74 c ± 0.03 | 8.01 b ± 0.02 | n.d. a | 8.90 d ± 0.01 | |
6 | 8.64 c ± 0.04 | 8.40 b ± 0.02 | n.d. a | 8.88 d ± 0.03 | |
E. coli 8739 | 2 | 8.80 c ± 0.02 | 8.15 b ± 0.01 | n.d. a | 8.80 c ± 0.01 |
3 | 8.80 c ± 0.02 | 8.17 b ± 0.04 | n.d. a | 8.80 c ± 0.03 | |
4 | 8.78 c ± 0.03 | 8.10 b ± 0.02 | n.d. a | 8.79 c ± 0.04 | |
5 | 8.78 c ± 0.02 | 8.15 b ± 0.01 | n.d. a | 8.79 c ± 0.03 | |
6 | 8.79 c ± 0.03 | 8.15 b ± 0.02 | n.d. a | 8.88 d ± 0.02 | |
P. hauseri | 2 | 8.87 c ± 0.01 | 8.38 b ± 0.03 | n.d. a | 8.87 c ± 0.02 |
3 | 8.87 c ± 0.02 | 8.34 b ± 0.01 | n.d. a | 8.87 c ± 0.01 | |
4 | 8.86 c ± 0.02 | 8.39 b ± 0.03 | n.d. a | 8.87 c ± 0.03 | |
5 | 8.88 c ± 0.03 | 8.39 b ± 0.04 | n.d. a | 8.88 c ± 0.01 | |
6 | 8.86 c ± 0.02 | 8.39 b ± 0.02 | n.d. a | 8.87 c ± 0.01 | |
E. faecalis | 2 | 7.57 c ± 0.01 | 7.25 b ± 0.04 | n.d. a | 7.58 c ± 0.03 |
3 | 7.57 c ± 0.03 | 7.30 b ± 0.02 | n.d. a | 7.57 c ± 0.04 | |
4 | 7.56 c ± 0.03 | 7.36 b ± 0.02 | n.d. a | 7.57 c ± 0.02 | |
5 | 7.56 c ± 0.02 | 7.28 b ± 0.01 | n.d. a | 7.56 c ± 0.03 | |
6 | 7.54 b ± 0.03 | 7.34 b ± 0.05 | n.d. a | 7.54 c ± 0.01 |
Bacteria | LC (log10 cfu/mL) | A. ursinum Extract Concentration (mg/mL) | ||||
---|---|---|---|---|---|---|
26 | 27 | 28 | 29 | Positive Control | ||
Bacterial Count (log10 cfu/mL) | ||||||
L. monocytogenes | 2 | 1.27 b 0.02 | n.d. a | n.d. a | n.d. a | 8.69 c ± 0.01 |
3 | 2.70 b ± 0.04 | n.d. a | n.d. a | n.d. a | 8.73 c ± 0.01 | |
4 | 3.90 b ± 0.02 | n.d. a | n.d. a | n.d. a | 8.72 c ± 0.02 | |
5 | 5.00 a ± 0.01 | 4.93 a ± 0.01 | 1.20 c ± 0.05 | n.d. b | 8.70 d ± 0.01 | |
6 | 7.52 d ± 0.02 | 6.92 c ± 0.02 | 2.78 b ± 0.03 | n.d. a | 8.73 e ± 0.02 | |
S. Enteritidis | 2 | 7.95 d ± 0.03 | 3.70 c ± 0.04 | 1.52 b ± 0.06 | n.d. a | 8.74 e ± 0.01 |
3 | 8.00 d ± 0.01 | 4.55 c ± 0.02 | 3.31 b ± 0.04 | n.d. a | 8.77 e ± 0.03 | |
4 | 8.15 d ± 0.02 | 5.87 c ± 0.01 | 4.10 b ± 0.03 | n.d. a | 8.76 e ± 0.01 | |
5 | 8.24 d ± 0.01 | 7.00 c ± 0.02 | 5.40 b ± 0.04 | n.d. a | 8.75 e (0.02) | |
6 | 8.37 d ± 0.02 | 7.60 c ± 0.01 | 6.40 b ± 0.04 | 4.95 a ± 0.05 | 8.73 e ± 0.03 | |
E. coli 10536 | 2 | 8.30 d ± 0.03 | 4.10 c ± 0.05 | 1.71 b ± 0.07 | n.d. a | 8.92 e ± 0.01 |
3 | 8.32 d ± 0.01 | 4.65 c ± 0.06 | 3.14 b ± 0.04 | n.d. a | 8.90 e ± 0.03 | |
4 | 8.35 d ± 0.04 | 5.92 c ± 0.03 | 4.25 b ± 0.06 | n.d. a | 8.92 e ± 0.02 | |
5 | 8.33 d ± 0.01 | 7.30 c ± 0.02 | 5.10 b ± 0.02 | n.d. a | 8.91 e ± 0.01 | |
6 | 8.38 d ± 0.03 | 7.82 c ± 0.02 | 6.26 b ± 0.04 | 4.80 a ± 0.03 | 8.93 e ± 0.02 | |
E. coli 8739 | 2 | 7.90 d ± 0.02 | 4.17 c ± 0.04 | 1.00 b ± 0.08 | n.d. a | 8.81 e ± 0.01 |
3 | 8.11 d ± 0.02 | 4.80 c ± 0.03 | 3.20 b ± 0.05 | n.d. a | 8.80 e ± 0.03 | |
4 | 8.15 d ± 0.01 | 5.76 c ± 0.04 | 4.18 b ± 0.04 | n.d. a | 8.82 e ± 0.02 | |
5 | 8.14 d ± 0.02 | 7.20 c ± 0.02 | 5.20 b ± 0.03 | n.d. a | 8.79 e ± 0.01 | |
6 | 8.17 d ± 0.01 | 7.83 c ± 0.02 | 6.21 b ± 0.02 | 4.65 a ± 0.04 | 8.86 e ± 0.03 | |
P. hauseri | 2 | 8.29 d ± 0.02 | 4.22 c ± 0.03 | 1.79 b ± 0.05 | n.d. a | 8.86 e ± 0.03 |
3 | 8.32 d ± 0.01 | 4.74 c ± 0.03 | 3.56 b ± 0.02 | n.d. a | 8.87 e ± 0.01 | |
4 | 8.31 d ± 0.01 | 5.81 c ± 0.01 | 4.87 b ± 0.03 | n.d. a | 8.87 e ± 0.02 | |
5 | 8.35 d ± 0.01 | 7.15 c ± 0.02 | 5.33 b ± 0.04 | n.d. a | 8.88 e ± 0.02 | |
6 | 8.38 d ± 0.03 | 7.80 c ± 0.01 | 6.44 b ± 0.02 | 4.72 a ± 0.03 | 8.88 e ± 0.02 | |
E. faecalis | 2 | 6.52 d ± 0.03 | 4.00 c ± 0.04 | 1.59 b ± 0.07 | n.d. a | 7.56 e ± 0.03 |
3 | 6.80 d ± 0.02 | 4.70 c ± 0.02 | 3.44 b ± 0.04 | n.d. a | 7.58 e ± 0.01 | |
4 | 7.31 d ± 0.01 | 5.65 c ± 0.03 | 4.35 b ± 0.03 | n.d. a | 7.57 e ± 0.02 | |
5 | 7.33 d ± 0.02 | 5.72 c ± 0.01 | 5.10 b ± 0.02 | n.d. a | 7.58 e ± 0.01 | |
6 | 7.32 d ± 0.01 | 6.81 c ± 0.03 | 6.35 b ± 0.02 | 4.50 a ± 0.03 | 7.59 e ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupar, A.; Šarić, L.; Vidović, S.; Bajić, A.; Kolarov, V.; Šarić, B. Antibacterial Potential of Allium ursinum Extract Prepared by the Green Extraction Method. Microorganisms 2022, 10, 1358. https://doi.org/10.3390/microorganisms10071358
Stupar A, Šarić L, Vidović S, Bajić A, Kolarov V, Šarić B. Antibacterial Potential of Allium ursinum Extract Prepared by the Green Extraction Method. Microorganisms. 2022; 10(7):1358. https://doi.org/10.3390/microorganisms10071358
Chicago/Turabian StyleStupar, Alena, Ljubiša Šarić, Senka Vidović, Aleksandra Bajić, Violeta Kolarov, and Bojana Šarić. 2022. "Antibacterial Potential of Allium ursinum Extract Prepared by the Green Extraction Method" Microorganisms 10, no. 7: 1358. https://doi.org/10.3390/microorganisms10071358