Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Culture of Biocontol Bacteria
2.2. Preliminary Screening for Antagonism and Disease Suppression
2.2.1. Chitin Hydrolysis Assay
2.2.2. Dual-Culture Assay
2.2.3. In Vivo Antifungal Assay
2.3. Evaluation of Isolates for Disease Suppression on Fruit
2.4. Identificaion of Biocontrol Isolates
2.5. Colonization of Fruit Wounds by Biocontrol Isolates
2.6. Cytological Investigation of Disease Suppression
3. Results
3.1. Isolation and Preliminary Screening of Bacterial Isolates from Apple
3.2. Suppression of C. acutatum and P. expansum in Fruit Wounds
3.3. Isolate Identification
3.4. Colonization of Fruit Wounds
3.5. Cytological Investigation of Disease Suppression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Li, H.X.; Xiao, C.L. Characterization of Fludioxonil-Resistant and Pyrimethanil-Resistant Phenotypes of Penicillium expansum from Apple. Phytopathology 2008, 98, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Kim, Y.; Huang, L.; Xiao, C. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharvest Biol. Technol. 2010, 56, 12–18. [Google Scholar] [CrossRef]
- Kim, K.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Ragsdale, N.N.; Sisler, H.D. Social and Political Implications of Managing Plant Diseases with Decreased Availability Of Fungicides In The United States. Annu. Rev. Phytopathol. 1994, 32, 545–557. [Google Scholar] [CrossRef]
- Gullino, M.L.; Kuijpers, L.A.M. Social and Political Implications of Managing Plant Diseases with Restricted Fungicides In Europe. Annu. Rev. Phytopathol. 1994, 32, 559–581. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Korsten, L. Biological Control of Postharvest Diseases of Fruits. Annu. Rev. Phytopathol. 2002, 40, 411–441. [Google Scholar] [CrossRef]
- Spadaro, D.; Gullino, M.L. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 2004, 91, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.L. Potential for Biological Control of Postharvest Plant Diseases. Plant Dis. 1985, 69, 375. [Google Scholar] [CrossRef]
- Wisniewski, M.E.; Wilson, C.L. Biological Control of Postharvest Diseases of Fruits and Vegetables: Recent Advances. HortScience 1992, 27, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Pusey, P.L.; Wilson, C.L. Postharvest Biological Control of Stone Fruit Brown Rot by Bacillus subtilis. Plant Dis. 1984, 68, 753–756. [Google Scholar] [CrossRef]
- National Pesticide Information Center. NPIC Product Research Online Database. Available online: http://npic.orst.edu/ (accessed on 10 November 2022).
- Droby, S.; Wisniewski, M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Jacobsen, B.J.; Zidack, N.K.; Larson, B.J. The Role of Bacillus-Based Biological Control Agents in Integrated Pest Management Systems: Plant Diseases. Phytopathology 2004, 94, 1272–1275. [Google Scholar] [CrossRef] [Green Version]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Raymaekers, K.; Ponet, L.; Holtappels, D.; Berckmans, B.; Cammue, B.P. Screening for novel biocontrol agents applicable in plant disease management—A review. Biol. Control 2020, 144, 104240. [Google Scholar] [CrossRef]
- Aranda, S.; Montes-Borrego, M.; Jiménez-Díaz, R.M.; Landa, B.B. Microbial Communities Associated with the Root System of Wild Olives (Olea Europaea L. Subsp. Europaea Var. Sylvestris) Are Good Reservoirs of Bacteria with Antagonistic Potential against Verticillium dahliae. Plant Soil 2011, 343, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Kokalis-Burelle, N.; Backman, P.A.; Rodríguez-Kábana, R.; Ploper, L.D. Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol. Control 1992, 2, 321–328. [Google Scholar] [CrossRef]
- O’Brien, M.; Colwell, R.R. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide. Appl. Environ. Microbiol. 1987, 53, 1718–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitther, V.; Haro, P.A.G.; Molineros, J.E.; Garzon, C.D.; Jiménez-Gasco, M.M. Genetic diversity of apple- and crabapple-infecting isolates of Venturia inaequalis in Pennsylvania, the United States, determined by microsatellite markers. For. Pathol. 2018, 48, e12405. [Google Scholar] [CrossRef]
- Poleatewich, A.M.; Ngugi, H.K.; Backman, P.A. Assessment of Application Timing of Bacillus spp. to Suppress Pre- and Postharvest Diseases of Apple. Plant Dis. 2012, 96, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Poleatewich, A.M.; Travis, J.W.; Backman, P.A. Evaluation of Endospore-Forming Bacteria for Control of Bitter Rot. Plant Dis. Manag. Rep. 2008, 2, PF056. [Google Scholar] [CrossRef]
- Poleatewich, A.M.; Travis, J.W.; Backman, P.A. Evaluation of Preharvest and Postharvest Applications of Endospore-Forming Bacteria for Control of Bitter Rot, 2009. Plant Dis. Manag. Rep. 2010, 4, PF015. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kong, Q.; Shan, S.; Liu, Q.; Wang, X.; Yu, F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. Int. J. Food Microbiol. 2010, 139, 31–35. [Google Scholar] [CrossRef]
- Kildea, S.; Ransbotyn, V.; Khan, M.R.; Fagan, B.; Leonard, G.; Mullins, E.; Doohan, F.M. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control 2008, 47, 37–45. [Google Scholar] [CrossRef]
- Sharma, R.; Gal, L.; Garmyn, D.; Bisaria, V.S.; Sharma, S.; Piveteau, P. Evidence of Biocontrol Activity of Bioinoculants Against a Human Pathogen, Listeria monocytogenes. Front. Microbiol. 2020, 11, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertagnolli, B.; Soglio, F.D.; Sinclair, J. Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol. Mol. Plant Pathol. 1996, 48, 145–160. [Google Scholar] [CrossRef]
- Lechner, S.; Mayr, R.; Francis, K.P.; Pruss, B.M.; Kaplan, T.; Wiessner-Gunkel, E.; Stewart, G.S.A.B.; Scherer, S. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 1998, 48, 1373–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, G.B.; Hansen, B.M.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003, 5, 631–640. [Google Scholar] [CrossRef]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Melnick, R.; Testen, A.; Poleatewich, A.; Backman, P.; Bailey, B. Detection and expression of enterotoxin genes in endophytic strains of Bacillus cereus. Lett. Appl. Microbiol. 2012, 54, 468–474. [Google Scholar] [CrossRef]
- Pleban, S.; Chernin, L.; Chet, I. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. Appl. Microbiol. 1997, 25, 284–288. [Google Scholar] [CrossRef]
- Silva, H.S.A.; Romeiro, R.S.; Filho, R.C.; Pereira, J.L.A.; Mizubuti, E.S.G.; Mounteer, A. Induction of Systemic Resistance by Bacillus cereus Against Tomato Foliar Diseases Under Field Conditions. J. Phytopathol. 2004, 152, 371–375. [Google Scholar] [CrossRef]
- Huang, C.-J.; Wang, T.-K.; Chung, S.-C.; Chen, C.-Y. Identification of an Antifungal Chitinase from a Potential Biocontrol Agent, Bacillus cereus 28-9. BMB Rep. 2005, 38, 82–88. [Google Scholar] [CrossRef]
- de Oliveira, E.J.; Rabinovitch, L.; Monnerat, R.G.; Passos, L.K.J.; Zahner, V. Molecular Characterization of Brevibacillus laterosporus and Its Potential Use in Biological Control. Appl. Environ. Microbiol. 2004, 70, 6657–6664. [Google Scholar] [CrossRef]
- Andrews, J.H. Biological Control in the Phyllosphere. Annu. Rev. Phytopathol. 1992, 30, 603–635. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.J.; Berka, R.; Young, H.A.; Sturino, J.M.; Kang, Y.; Barnhart, D.M.; Dileo, M.V. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Front. Plant Sci. 2016, 7, 1110. [Google Scholar] [CrossRef] [PubMed]
- Burr, T.; Matteson, M.; Smith, C.; Corral-Garcia, M.; Huang, T.-C. Effectiveness of Bacteria and Yeasts from Apple Orchards as Biological Control Agents of Apple Scab. Biol. Control 1996, 6, 151–157. [Google Scholar] [CrossRef]
- Bargabus, R.; Zidack, N.; Sherwood, J.; Jacobsen, B. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 2002, 61, 289–298. [Google Scholar] [CrossRef]
- Kavino, M.; Harish, S.; Kumar, N.; Saravanakumar, D.; Samiyappan, R. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl. Soil Ecol. 2010, 45, 71–77. [Google Scholar] [CrossRef]
- Watanabe, T.; Oyanagi, W.; Suzuki, K.; Tanaka, H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 1990, 172, 4017–4022. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, T.; Ajisaka, K.; Takiguchi, Y.; Shimahara, K. Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochim. et Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1991, 1078, 404–410. [Google Scholar] [CrossRef]
- Cody, R.M. Distribution of chitinase and chitobiase in bacillus. Curr. Microbiol. 1989, 19, 201–205. [Google Scholar] [CrossRef]
- Senol, M.; Nadaroglu, H.; Dikbas, N.; Kotan, R. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.Y.; Reedy, R.M.; Bick, J.; Oudemans, P.V. Characterization of a Chitinase Gene from Stenotrophomonas maltophilia Strain 34S1 and Its Involvement in Biological Control. Appl. Environ. Microbiol. 2002, 68, 1047–1054. [Google Scholar] [CrossRef]
- Kobayashi, D.Y.; Palumbo, J.D. Bacterial Endophytes and Their Effects on Plants and Uses in Agriculture. In Microbial Endophytes; CRC Press: Boca Raton, FL, USA, 2000; pp. 213–250. [Google Scholar] [CrossRef]
- Glenn, D.; Bassett, C.; Dowd, S. Effect of pest management system on ‘Empire’ apple leaf phyllosphere populations. Sci. Hortic. 2015, 183, 58–65. [Google Scholar] [CrossRef]
- Walter, M.; Frampton, C.M.; Boyd-Wilson, K.S.H.; Harris-Virgin, P.; Waipara, N.W. Agrichemical impact on growth and survival of non-target apple phyllosphere microorganisms. Can. J. Microbiol. 2007, 53, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M. The dynamics of colonizing arthropod communities at the interface of abandoned, organic and commercial apple orchards and adjacent woodland habitats. Agric. Ecosyst. Environ. 1986, 16, 29–43. [Google Scholar] [CrossRef]
In Vitro Plate Assay | In Vivo Assay z | ||||
---|---|---|---|---|---|
Isolate v | Location w | Chitinase x | C. acutatumy | V. inaequalis | C. acutatum |
A1-1 | abandoned | + | + | + | * |
A1-11 | abandoned | − | − | + | - |
A2-4 | abandoned | + | − | − | * |
A3-2 | abandoned | + | + | − | ** |
A3-3 | abandoned | + | + | − | ** |
A3-4 | abandoned | + | − | − | * |
A3-6 | abandoned | − | + | − | ** |
A3-F1 | abandoned | + | − | + | ** |
Ae-1 | abandoned | − | + | − | ** |
FC-2 | FREC no spray | + | − | − | - |
FLS-1 | FREC Reduced risk | + | + | − | * |
FLS-5 | FREC Reduced risk | + | + | − | - |
FO-1 | FREC Organic | + | + | + | - |
FO-20 | FREC Organic | + | − | − | * |
WGD-5 | natural | + | + | − | - |
WS-1 | natural | − | + | − | - |
WS-3 | natural | + | + | − | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poleatewich, A.; Backman, P.; Nolen, H. Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. Microorganisms 2023, 11, 81. https://doi.org/10.3390/microorganisms11010081
Poleatewich A, Backman P, Nolen H. Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. Microorganisms. 2023; 11(1):81. https://doi.org/10.3390/microorganisms11010081
Chicago/Turabian StylePoleatewich, Anissa, Paul Backman, and Haley Nolen. 2023. "Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit" Microorganisms 11, no. 1: 81. https://doi.org/10.3390/microorganisms11010081
APA StylePoleatewich, A., Backman, P., & Nolen, H. (2023). Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. Microorganisms, 11(1), 81. https://doi.org/10.3390/microorganisms11010081