Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Extraction of Genomic DNA from Bacterial Cultures
2.3. Design of LAMP Primers
2.4. LAMP Reaction
2.5. Optimization of the LAMP Assay
2.6. Analytical Specificity Testing
2.7. Determination of the Bacterial Cell-Based Detection Limit Using Different DNA Extraction Methods
2.8. Real-Time PCR Assay
2.9. Detection Limits of LAMP in Artificially Contaminated Brain and Joint Samples
2.10. Detection of S. suis in Field Samples
2.11. Data Management and Statistical Analyses
3. Results
3.1. Optimized LAMP Reaction Conditions and Analytical Sensitivity
3.2. Analytical Specificity of thrA-Based LAMP
3.3. Bacterial Cell-Based Detection Limit of thrA-LAMP
3.4. Evaluation of Brain and Joint Matrix Effects on the Detection Limit of thrA-LAMP
3.5. Diagnostic Quality Criteria for Detection of S. suis in Brain and Joint Swabs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottschalk, M.; Segura, M. Streptococcosis. In Diseases of Swine, 11th ed.; Zimmermann, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; WILEY Blackwell: Hoboken, NJ, USA, 2019; pp. 934–950. [Google Scholar]
- Staats, J.J.; Feder, I.; Okwumabua, O.; Chengappa, M.M. Streptococcus suis: Past and present. Vet. Res. Commun. 1997, 21, 381–407. [Google Scholar] [CrossRef] [PubMed]
- Okura, M.; Osaki, M.; Nomoto, R.; Arai, S.; Osawa, R.; Sekizaki, T.; Takamatsu, D. Current Taxonomical Situation of Streptococcus suis. Pathogens 2016, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Tien, L.H.T.; Nishibori, T.; Nishitani, Y.; Nomoto, R.; Osawa, R. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and sodA and recN phylogenies. Vet. Microbiol. 2013, 162, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, R.; Maruyama, F.; Ishida, S.; Tohya, M.; Sekizaki, T.; Osawa, R. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wang, Z.; Li, Q.; Yu, Y.; Li, Y.; Tan, Z.; Zhang, W. Genomic characterization of Streptococcus parasuis, a close relative of Streptococcus suis and also a potential opportunistic zoonotic pathogen. BMC Genom. 2022, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Tohya, M.; Arai, S.; Tomida, J.; Watanabe, T.; Kawamura, Y.; Katsumi, M.; Ushimizu, M.; Ishida-Kuroki, K.; Yoshizumi, M.; Uzawa, Y.; et al. Defining the taxonomic status of Streptococcus suis serotype 33: The proposal for Streptococcus ruminantium sp. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 3660–3665. [Google Scholar] [CrossRef]
- Hill, J.E.; Gottschalk, M.; Brousseau, R.; Harel, J.; Hemmingsen, S.M.; Goh, S.H. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti. Vet. Microbiol. 2005, 107, 63–69. [Google Scholar] [CrossRef]
- Prüfer, T.L.; Rohde, J.; Verspohl, J.; Rohde, M.; de Greeff, A.; Willenborg, J.; Valentin-Weigand, P. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996–2016. PLoS ONE 2019, 14, e0210801. [Google Scholar] [CrossRef]
- Goyette-Desjardins, G.; Auger, J.P.; Xu, J.; Segura, M.; Gottschalk, M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 2014, 3, e45. [Google Scholar] [CrossRef]
- Haas, B.; Grenier, D. Understanding the virulence of Streptococcus suis: A veterinary, medical, and economic challenge. Med. Mal. Infect. 2018, 48, 159–166. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Sroka, J.; Zając, V.; Wasiński, B.; Cisak, E.; Sawczyn, A.; Kloc, A.; Wójcik-Fatla, A. Streptococcus suis: A re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I—Epidemiology. Ann. Agric. Environ. Med. 2017, 24, 683–695. [Google Scholar] [CrossRef]
- Hopkins, D.; Poljak, Z.; Farzan, A.; Friendship, R. Factors contributing to mortality during a Streptoccocus suis outbreak in nursery pigs. Can. Vet. J. 2018, 59, 623–630. [Google Scholar]
- Neila-Ibáñez, C.; Casal, J.; Hennig-Pauka, I.; Stockhofe-Zurwieden, N.; Gottschalk, M.; Migura-García, L.; Pailler-García, L.; Napp, S. Stochastic Assessment of the Economic Impact of Streptococcus suis-Associated Disease in German, Dutch and Spanish Swine Farms. Front. Vet. Sci. 2021, 8, 676002. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, H.; Wu, Z.; Wang, S.; Cao, M.; Hu, D.; Wang, C. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014, 5, 477–497. [Google Scholar] [CrossRef] [PubMed]
- Wangsomboonsiri, W.; Luksananun, T.; Saksornchai, S.; Ketwong, K.; Sungkanuparph, S. Streptococcus suis infection and risk factors for mortality. J. Infect. 2008, 57, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Lun, Z.R.; Wang, Q.P.; Chen, X.G.; Li, A.X.; Zhu, X.Q. Streptococcus suis: An emerging zoonotic pathogen. Lancet Infect. Dis. 2007, 7, 201–209. [Google Scholar] [CrossRef]
- Okwumabua, O.; O’Connor, M.; Shull, E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol. Lett. 2003, 218, 79–84. [Google Scholar] [CrossRef]
- Xia, X.; Wang, X.; Wei, X.; Jiang, J.; Hu, J. Methods for the detection and characterization of Streptococcus suis: From conventional bacterial culture methods to immunosensors. Antonie Van Leeuwenhoek 2018, 111, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Ishida, S.; le Tien, H.T.; Osawa, R.; Tohya, M.; Nomoto, R.; Kawamura, Y.; Takahashi, T.; Kikuchi, N.; Kikuchi, K.; Sekizaki, T. Development of an appropriate PCR system for the reclassification of Streptococcus suis. J. Microbiol. Methods 2014, 107, 66–70. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.; Ren, H.; Zhu, S.; Zhao, P.; Zhang, F.; Lv, H.; Hu, D.; Hao, L.; Geng, M.; et al. Rapid Visual Detection of Highly Pathogenic Streptococcus suis Serotype 2 Isolates by Use of Loop-Mediated Isothermal Amplification. J. Clin. Microbiol. 2013, 51, 3250–3256. [Google Scholar] [CrossRef]
- Huy, N.T.; Hang, T.T.; Boamah, D.; Lan, N.T.; Van Thanh, P.; Watanabe, K.; Huong, V.T.; Kikuchi, M.; Ariyoshi, K.; Morita, K.; et al. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis. FEMS Microbiol. Lett. 2012, 337, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Tohya, M.; Yamada, R.; Osawa, R.; Nomoto, R.; Kawamura, Y.; Sekizaki, T. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan. Int. J. Food Microbiol. 2015, 208, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Kawana, T.; Fukushima, E.; Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 2007, 70, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, F.; Prinyawiwatkul, W.; Ge, B. Robustness of Salmonella loop-mediated isothermal amplification assays for food applications. J. Appl. Microbiol. 2014, 116, 81–88. [Google Scholar] [CrossRef]
- Meng, J.; Li, C.; Wang, Y.; Bian, Z.; Chu, P.; Zhai, S.; Yang, D.; Song, S.; Li, Y.; Jiang, Z.; et al. Accelerated loop-mediated isothermal amplification method for the rapid detection of Streptococcus suis serotypes 2 and 14 based on single nucleotide polymorphisms. Front. Cell Infect. Microbiol. 2022, 12, 1034762. [Google Scholar] [CrossRef]
- Boonyong, N.; Kaewmongkol, S.; Khunbutsri, D.; Satchasataporn, K.; Meekhanon, N. Contamination of Streptococcus suis in pork and edible pig organs in central Thailand. Vet. World 2019, 12, 165–169. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Kreitlow, A.; Becker, A.; Ahmed, M.F.E.; Kittler, S.; Schotte, U.; Plötz, M.; Abdulmawjood, A. Combined Loop-Mediated Isothermal Amplification Assays for Rapid Detection and One-Step Differentiation of Campylobacter jejuni and Campylobacter coli in Meat Products. Front. Microbiol. 2021, 12, 668824. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.; Baums, C.G.; Rehm, T.; Wisselink, H.J.; Goethe, R.; Valentin-Weigand, P. Virulence-associated gene profiling of Streptococcus suis isolates by PCR. Vet. Microbiol. 2006, 115, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Kerdsin, A.; Akeda, Y.; Hatrongjit, R.; Detchawna, U.; Sekizaki, T.; Hamada, S.; Gottschalk, M.; Oishi, K. Streptococcus suis serotyping by a new multiplex PCR. J. Med. Microbiol. 2014, 63, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Meier, K. Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests—Guidance for Industry and FDA Staff; FDA: White Oak, MD, USA, 2007; p. 39. [Google Scholar]
- King, S.J.; Leigh, J.A.; Heath, P.J.; Luque, I.; Tarradas, C.; Dowson, C.G.; Whatmore, A.M. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: Identification of virulent clones and potential capsular serotype exchange. J. Clin. Microbiol. 2002, 40, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Xu, J.; Calzas, C.; Segura, M. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010, 5, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Higgins, R.; Jacques, M.; Beaudoin, M.; Henrichsen, J. Isolation and characterization of Streptococcus suis capsular types 9–22. J. Vet. Diagn. Investig. 1991, 3, 60–65. [Google Scholar] [CrossRef]
- Werinder, A.; Aspán, A.; Söderlund, R.; Backhans, A.; Sjölund, M.; Guss, B.; Jacobson, M. Whole-Genome Sequencing Evaluation of MALDI-TOF MS as a Species Identification Tool for Streptococcus suis. J. Clin. Microbiol. 2021, 59, e0129721. [Google Scholar] [CrossRef]
- Fittipaldi, N.; Segura, M.; Grenier, D.; Gottschalk, M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 2012, 7, 259–279. [Google Scholar] [CrossRef]
- Kerdsin, A. Human Streptococcus suis Infections in Thailand: Epidemiology, Clinical Features, Genotypes, and Susceptibility. Trop. Med. Infect. Dis. 2022, 7, 359. [Google Scholar] [CrossRef]
- Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP): Recent progress in research and development. J. Infect. Chemother. 2013, 19, 404–411. [Google Scholar] [CrossRef]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, S.A.; Halvatsiotis, P.; Houhoula, D. A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiol. 2021, 7, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, G.; Giammarini, C.; Omiccioli, E.; Brandi, G.; Magnani, M. Detection of Listeria monocytogenes using a commercial PCR kit and different DNA extraction methods. Food Control 2007, 18, 1137–1142. [Google Scholar] [CrossRef]
- Kemp, B.M.; Winters, M.; Monroe, C.; Barta, J.L. How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute purification kit. Hum. Biol. 2014, 86, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Dennett, C.; Klapper, P.E.; Cleator, G.M.; Lewis, A.G. CSF pretreatment and the diagnosis of herpes encephalitis using the polymerase chain reaction. J. Virol. Methods 1991, 34, 101–104. [Google Scholar] [CrossRef]
- Alfonso, Y.; Fraga, J.; Cox, R.; Bandera, F.; Pomier, O.; Fonseca, C.; Ginorio, D.; Torres, G.; Capo, V. Comparison of four DNA extraction methods from cerebrospinal fluid for the detection of Toxoplasma gondii by polymerase chain reaction in AIDS patients. Med. Sci. Monit. 2008, 14, Mt1–Mt6. [Google Scholar] [PubMed]
- QIAGEN. DNeasy® Blood & Tissue Handbook; Qiagen GmbH: Hilden, Germany, 2020; p. 8. Available online: https://www.qiagen.com/gb/resources/resourcedetail?id=68f29296-5a9f-40fa-8b3d-1c148d0b3030&lang=en (accessed on 13 May 2021).
- Funabashi, K.S.; Barcelos, D.; Visoná, I.; Silva, M.S.; Sousa, M.L.; de Franco, M.F.; Iwamura, E.S. DNA extraction and molecular analysis of non-tumoral liver, spleen, and brain from autopsy samples: The effect of formalin fixation and paraffin embedding. Pathol. Res. Pract. 2012, 208, 584–591. [Google Scholar] [CrossRef]
- Kuipers, J.G.; Nietfeld, L.; Dreses-Werringloer, U.; Koehler, L.; Wollenhaupt, J.; Zeidler, H.; Hammer, M. Optimised sample preparation of synovial fluid for detection of Chlamydia trachomatis DNA by polymerase chain reaction. Ann. Rheum. Dis. 1999, 58, 103–108. [Google Scholar] [CrossRef]
- Schneeweiss, W.; Stanek, C.; Wagner, M.; Hein, I. Inhibitor-free DNA for real-time PCR analysis of synovial fluid from horses, cattle and pigs. Vet. Microbiol. 2007, 121, 189–193. [Google Scholar] [CrossRef]
- Giuliano, C.; Patel, C.R.; Kale-Pradhan, P.B. A Guide to Bacterial Culture Identification And Results Interpretation. Pharm. Ther. 2019, 44, 192–200. [Google Scholar]
- Nga, T.V.; Nghia, H.D.; Tu, T.P.; Diep, T.S.; Mai, N.T.; Chau, T.T.; Sinh, D.X.; Phu, N.H.; Nga, T.T.; Chau, N.V.; et al. Real-time PCR for detection of Streptococcus suis serotype 2 in cerebrospinal fluid of human patients with meningitis. Diagn. Microbiol. Infect. Dis. 2011, 70, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.T.; Hoa, N.T.; Nga, T.V.; Linh, D.; Chau, T.T.; Sinh, D.X.; Phu, N.H.; Chuong, L.V.; Diep, T.S.; Campbell, J.; et al. Streptococcus suis meningitis in adults in Vietnam. Clin. Infect. Dis. 2008, 46, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yi, L.; Yu, N.; Wang, G.; Ma, Z.; Lin, H.; Fan, H. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps. Front. Cell Infect. Microbiol. 2017, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Zając, V.; Sroka, J.; Wasiński, B.; Cisak, E.; Sawczyn, A.; Kloc, A.; Wójcik-Fatla, A. Streptococcus suis: A re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II—Pathogenesis. Ann. Agric. Environ. Med. 2018, 25, 186–203. [Google Scholar] [CrossRef]
- Abdullahi, U.F.; Igwenagu, E.; Mu’azu, A.; Aliyu, S.; Umar, M.I. Intrigues of biofilm: A perspective in veterinary medicine. Vet. World 2016, 9, 12–18. [Google Scholar] [CrossRef]
- Fux, C.A.; Stoodley, P.; Hall-Stoodley, L.; Costerton, J.W. Bacterial biofilms: A diagnostic and therapeutic challenge. Expert Rev. Anti-Infect. Ther. 2003, 1, 667–683. [Google Scholar] [CrossRef]
- Morata, P.; Queipo-Ortuño, M.I.; de Dios Colmenero, J. Strategy for optimizing DNA amplification in a peripheral blood PCR assay used for diagnosis of human brucellosis. J. Clin. Microbiol. 1998, 36, 2443–2446. [Google Scholar] [CrossRef]
- Cogswell, F.B.; Bantar, C.E.; Hughes, T.G.; Gu, Y.; Philipp, M.T. Host DNA can interfere with detection of Borrelia burgdorferi in skin biopsy specimens by PCR. J. Clin. Microbiol. 1996, 34, 980–982. [Google Scholar] [CrossRef]
- Radomski, N.; Kreitmann, L.; McIntosh, F.; Behr, M.A. The critical role of DNA extraction for detection of mycobacteria in tissues. PLoS ONE 2013, 8, e78749. [Google Scholar] [CrossRef]
- Hammerschmitt, M.E.; Schwertz, C.I.; Lopes, B.C.; Pereira, P.R.; Frandoloso, R.; Driemeier, D. Clinical and pathological aspects of an outbreak of Streptococcus suis serotype 9 infection in pigs. Pesqui. Veterinária Bras. 2022, 42. [Google Scholar] [CrossRef]
- Vasconcelos, D.; Middleton, D.M.; Chirino-Trejo, J.M. Lesions caused by natural infection with Streptococcus suis type 9 in weaned pigs. J. Vet. Diagn. Investig. 1994, 6, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Munthe, E.; Natvig, J.B. Immunglobulin classes, subclasses and complexes of IgG rheumatoid factor in rheumatoid plasma cells. Clin. Exp. Immunol. 1972, 12, 55–70. [Google Scholar]
- Timoney, J.F.; Yarkoni, U. Immunoglobulins IgG and IgM in synovial fluids of swine with Erysipelothrix polyarthritis. Vet. Microbiol. 1976, 1, 467–474. [Google Scholar] [CrossRef]
- Al-Soud, W.A.; Jönsson, L.J.; Râdström, P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J. Clin. Microbiol. 2000, 38, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Queipo-Ortuño, M.I.; De Dios Colmenero, J.; Macias, M.; Bravo, M.J.; Morata, P. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin. Vaccine Immunol. 2008, 15, 293–296. [Google Scholar] [CrossRef]
Primer | Nucleotide Sequence (5′-3′) | Position |
---|---|---|
thrA-F3 | TTCACAGCTAACAGCATGAA | 1–20 |
thrA-B3 | AATGCGAGCATTTCCTGG | 208–225 |
thrA-FIP (F1c + F2) | AGCTGCTAAGAATGCGTCGTAA- ATCGCAGACAGCATCATC | 81–102 25–42 |
thrA-BIP (B1c + B2) | TTTTACCCACAGAGGATTGCCT- GGAGCTGACAATAATACCAGC | 138–159 184–204 |
thrA-LF | TCATCAATTGGTAGGCTGGC | 49–68 |
thrA-LB | GCACGCTATGTCCATCCTAA | 160–179 |
Virulence-Associated Factor Genes | No. of Isolates/ No. of Isolates Detected by thrA-LAMP | |||
---|---|---|---|---|
mrp | sly | epf | ||
Non- typable | − | − | − | 11/11 |
+ | − | 11/11 | ||
+ | − | − | 4/4 | |
+ | − | 10/10 | ||
Serotype 1 | − | + | − | 2/2 |
+ | + | − | 5/5 | |
+ | 5/5 | |||
Serotype 2 | − | + | − | 2/2 |
+ | 2/2 | |||
+ | − | − | 4/4 | |
+ | − | 2/2 | ||
+ | 3/3 | |||
Serotype 3 a | + | − | − | 1/1 |
Serotype 4 | − | + | − | 2/2 |
+ | − | − | 1/1 | |
+ | − | 10/10 | ||
Serotype 5 a | + | + | − | 1/1 |
Serotype 7 | − | − | − | 1/0 |
+ | − | 1/1 | ||
+ | − | − | 10/10 | |
+ | − | 2/2 | ||
Serotype 8 a | − | − | − | 1/1 |
Serotype 9 | − | − | − | 1/1 |
+ | − | 4/4 | ||
+ | − | − | 1/1 | |
+ | − | 6/6 | ||
Serotype 15 a | − | − | − | 1/1 |
Non-Target Strain (Incl. Reference No.) | Detection Time | Annealing Temp. | No. of Isolates |
---|---|---|---|
Actinobacillus equuli ssp. equuli | − | − | 1 |
Actinobacillus pleuropneumoniae Serotype 2 | − | − | 1 |
Actinobacillus pleuropneumoniae Serotype 4 (ATCC 33378) | − | − | 1 |
Actinobacillus pleuropneumoniae Serotype 6 (ATCC 33590) | − | − | 1 |
Actinobacillus pleuropneumoniae Serotype 9 | − | − | 1 |
Actinobacillus porcinus | − | − | 1 |
Actinobacillus suis | − | − | 1 |
Actinomyces hyovaginalis | − | − | 1 |
Aeromonas hydrophila (DSM 30187) | − | − | 1 |
Bordetella bronchiseptica | − | − | 1 |
Brachyspira hyodysenteriae | − | − | 1 |
Brachyspira pilosicoli | − | − | 1 |
Campylobacter coli | − | − | 1 |
Campylobacter jejuni | − | − | 3 |
Clostridium perfringens Type B | − | − | 1 |
Clostridium perfringens Type C | − | − | 1 |
Clostridium perfringens Type D | − | − | 1 |
Clostridium perfringens Type E | − | − | 1 |
Coagulase-negative Staphylococcus sp. | − | − | 7 |
Enterococcus durans | − | − | 1 |
Enterococcus faecalis (ATCC 29212, NCTC 8727, DSM 13591, DSM 2570) | − | − | 4 |
Enterococcus faecium (DSM 25389, DSM 25390, DSM 2918) | − | − | 3 |
Enterococcus hirae (incl. DSM 3320) | − | − | 2 |
Enterococcus sp. | − | − | 2 |
Erysipelothrix rhusiopathiae | − | − | 1 |
Escherichia coli (incl. DSM 1103, DSM 22665, DSM 22311, DSM 22316) | − | − | 9 |
Escherichia coli O138:K81 | − | − | 1 |
Glaesserella (Haemophilus) parasuis | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 1/2 | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 4 | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 5/12 | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 7 | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 8 | − | − | 1 |
Glaesserella (Haemophilus) parasuis Serotype 13 | − | − | 1 |
Histophilus somni (Haemophilus somnus) | − | − | 1 |
Klebsiella pneumoniae (incl. NCTC 13465) | − | − | 2 |
Listeria monocytogenes (incl. DSM 19094) | − | − | 2 |
Mannheimia haemolytica | − | − | 1 |
Micrococcus luteus | − | − | 1 |
Pasteurella multocida | − | − | 2 |
Pseudomonas aeruginosa (incl. DSM 939) | − | − | 3 |
Salmonella Derby | − | − | 1 |
Salmonella Enteritidis | − | − | 2 |
Salmonella Infantis | − | − | 1 |
Salmonella Newport | − | − | 1 |
Salmonella Typhimurium (incl. DSM 19587) | − | − | 2 |
Serratia marcescens | − | − | 1 |
Staphylococcus aureus (incl. DSM 18597, DSM 799) | − | − | 6 |
Staphylococcus aureus (MRSA) | − | − | 1 |
Staphylococcus aureus (MSSA) | − | − | 1 |
Staphylococcus chromogenes (incl. ATCC 43764) | − | − | 2 |
Staphylococcus epidermidis (DSM 1798) | − | − | 1 |
Staphylococcus hyicus | − | − | 2 |
Staphylococcus succinus ssp. succinus | − | − | 1 |
Staphylococcus xylosus F | − | − | 1 |
Streptococcus agalactiae (incl. ATCC 13813) | − | − | 3 |
Streptococcus dysgalactiae | − | − | 2 |
Streptococcus equi ssp. equi | − | − | 1 |
Streptococcus equi ssp. zooepidemicus | − | − | 1 |
Streptococcus sp. (β-hemolytic) | − | − | 10 |
Streptococcus thermophilus (CCUG 21957) | − | − | 1 |
Streptococcus uberis | − | − | 2 |
Trueperella abortisuis | − | − | 1 |
Trueperella pyogenes | − | − | 1 |
Yersinia enterocolitica (DSM 11502) | − | − | 1 |
Yersinia pseudotuberculosis (DSM 8992) | − | − | 1 |
CFU/Swab | 1–10 | 10–102 | 102–103 | 103–104 | 104–105 | 105–106 | 106–107 | 107–108 | ||
Tissue | Extraction | Detection | No. of Positive Signals | |||||||
Brain | LPTV boiling method | LAMP | 0/3 | 0/3 | 0/3 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 |
real-time PCR | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 | 1/3 | ||
DNeasy® Blood & Tissue Kit | LAMP | 0/3 | 0/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | |
real-time PCR | 0/3 | 3/3 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | ||
Joint | LPTV boiling method | LAMP | 0/3 | 0/3 | 1/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
real-time PCR | 1/3 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | ||
DNeasy® Blood & Tissue Kit | LAMP | 0/3 | 0/3 | 0/3 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 | |
real-time PCR | 1/3 | 1/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
thrA-LAMP | ||
LPTV boiling method | DNeasy® Blood & Tissue Kit | |
SEN (%) | 88.00 (75.26–100) | 100 (100–100) |
SPE (%) | 95.83 (87.84–100) | 87.50 (74.27–100) |
PPV (%) | 95.65 (87.32–100) | 89.29 (77.83–100) |
NPV (%) | 88.46 (76.18–100) | 100 (100–100) |
Kappa (κ) | 0.8369 (0.6843–0.9896) | 0.8772 (0.7436–1.0) |
thrA-LAMP | ||
LPTV boiling method | DNeasy® Blood & Tissue Kit | |
SEN (%) | 76.67 (61.53–91.80) | 93.33 (84.41–100) |
SPE (%) | 100 (100–100) | 100 (100–100) |
PPV (%) | 100 (100–100) | 100 (100–100) |
NPV (%) | 73.08 (56.03–90.13) | 90.48 (77.92–100) |
Kappa (κ) | 0.7182 (0.5327–0.9036) | 0.9157 (0.8016–1.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hess, J.; Kreitlow, A.; Rohn, K.; Hennig-Pauka, I.; Abdulmawjood, A. Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms 2023, 11, 2447. https://doi.org/10.3390/microorganisms11102447
Hess J, Kreitlow A, Rohn K, Hennig-Pauka I, Abdulmawjood A. Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms. 2023; 11(10):2447. https://doi.org/10.3390/microorganisms11102447
Chicago/Turabian StyleHess, Julian, Antonia Kreitlow, Karl Rohn, Isabel Hennig-Pauka, and Amir Abdulmawjood. 2023. "Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay" Microorganisms 11, no. 10: 2447. https://doi.org/10.3390/microorganisms11102447
APA StyleHess, J., Kreitlow, A., Rohn, K., Hennig-Pauka, I., & Abdulmawjood, A. (2023). Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms, 11(10), 2447. https://doi.org/10.3390/microorganisms11102447