Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Plantations under Study
2.2. AMF Spore Isolation, Identification and Diversity
2.3. Multiplication of Selected AMF Species
2.4. Effects of AMF Inoculation on Coffee Growth: Experimental Details
2.5. Assessment of Plant Characteristics
2.6. Arbuscular Mycorrhizal Root Colonization
2.7. Analyses of N, P and K Coffee Plant Contents
2.8. Statistical Analyses
3. Results
3.1. AMF Species Richness and Spore Abundance per Species
3.2. AMF Species Selected for Further Multiplication and Functional Experiments
3.3. Effects of AMF on Coffee Plant Growth
3.4. Arbuscular Mycorrhizal Root Colonization in the Growth-Response Experiments
3.5. Impact of AMF on Chlorophyll and Mineral Nutrient Contents in Coffee Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieber, K. The Impact of Coffee on Health. Planta Med. 2017, 83, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 2004, 18, 17–38. [Google Scholar] [CrossRef]
- Avelino, J.; Allinne, C.; Cerda, R.; Willocquet, L.; Savary, S. Multiple-Disease System in Coffee: From Crop Loss Assessment to Sustainable Management. Annu. Rev. Phytopathol. 2018, 56, 611–635. [Google Scholar] [CrossRef] [PubMed]
- USDA, United States Department of Agriculture. Foreign Agricultural Service. 2023. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/home/statsByCountry (accessed on 2 August 2023).
- Tulet, J.C. Peru as a New Major Actor in Latin American Coffee Production. Lat. Am. Perspect. 2012, 37, 133–141. [Google Scholar] [CrossRef]
- Nolte, G.E.; Luxbacher, K.W. Peru-Coffee Annual. USDA Foreign Agricultural Services; Global Agricultural Information Network. 2020. Available online: https://www.fas.usda.gov/data/peru-coffee-annual-4 (accessed on 2 August 2023).
- Perfecto, I.; Rice, R.A.; Greenberg, R.; Van der Voort, M.E. Shade coffee: A disappearing refuge for biodiversity: Shade coffee plantations can contain as much biodiversity as forest habitats. BioScience 1996, 46, 598–608. [Google Scholar] [CrossRef]
- Jha, S.; Bacon, C.M.; Philpot, S.M.; Mendez, V.; Laderach, P.; Rice, R.A. Shade coffee: Update on a disappearing refuge for biodiversity. BioScience 2014, 64, 416–428. [Google Scholar] [CrossRef]
- Jezeer, R.E.; Santos, M.J.; Verweij, P.A.; Boot, R.G.A.; Clough, Y. Benefits for multiple ecosystem services in Peruvian coffee agroforestry systems without reducing yield. Ecosyst. Serv. 2019, 40, 101033. [Google Scholar] [CrossRef]
- Muschler, R.G. Shade improves coffee quality in a sub-optimal coffee zone of Costa Rica. Agroforestry Syst. 2001, 51, 131–139. [Google Scholar] [CrossRef]
- Steiman, S. Shade vs. Sun Coffee: A Review P Microsoft Internet Explorer. 2003. Available online: www.geocities.com/RainForest/Canopy/1290/basics.htm (accessed on 2 August 2023).
- Geromel, C.; Ferreira, L.; Davrieux, F.; Guyot, B. Effects of shade on the development and sugar metabolism of coffee fruits. Plant Physiol. Biochem. 2008, 46, 569–579. [Google Scholar] [CrossRef]
- Vaast, P.; Bertrand, B.; Perriot, J.-J.; Guyot, B.; Génard, M. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agric. 2006, 86, 197–204. [Google Scholar] [CrossRef]
- Jha, S.; Bacon, C.M.; Philpott, S.M.; Rice, R.A.; Méndez, V.; Laderach, P. A Review of Ecosystem Services, Farmer Livelihoods, and Value Chains in Shade Coffee Agroecosystems. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, B.W., López Ortíz, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 141–208. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Balser, T.C.; Firestone, M.K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 2000, 32, 1837–1846. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Singh, B.K.; Quince, C.; Macdonald, C.A.; Khachane, A.; Thomas, N.; Al-Soud, W.A.; Søren, J.S.; Zhili, H.; Duncan, W.; Alex, S.; et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol. 2014, 16, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xiong, W.; Xing, Y.; Sun, Y.; Lin, X.; Dong, Y. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities. Sci. Rep. 2018, 8, 6116. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2007, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Cui, Y.; Li, H.; Kuang, A.; Li, X.; Wei, Y.; Ji, X. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 2017, 194, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Gu, S.; Xin, Y.; Bello, A.; Sun, W.; Xu, X. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil. Front. Microbiol. 2018, 9, 169. [Google Scholar] [CrossRef]
- Brundrett, M.; Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 2018, 221, 18–24. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Simbiosis Micorrícica, 3rd ed.; Prensa Académica: London, UK, 2008. [Google Scholar]
- Bücking, H.; Kafle, A. Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps. Agronomy 2015, 5, 587–612. [Google Scholar] [CrossRef]
- Hodge, A.; Fitter, A.H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. USA 2010, 107, 13754–13759. [Google Scholar] [CrossRef]
- Hammer, E.C.; Pallon, J.; Wallander, H.; Olsson, P.A. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 2011, 76, 236–244. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bucking, H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Nat. Acad. Sci. USA 2012, 109, 2666–2671. [Google Scholar] [CrossRef] [PubMed]
- Casieri, L.; Lahmidi, N.; Doidy, J.; Veneault-Fourrey, C.; Migeon, A. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 2013, 23, 597–625. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Veresoglou, S.D.; Leifheit, E.F.; Rillig, M.C. Arbuscular mycorrhizal influence on zinc nutrition in crop plants a meta-analysis. Soil Biol. Biochem. 2014, 69, 123–131. [Google Scholar] [CrossRef]
- Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- García, K.; Doidy, J.; Zimmermann, S.D.; Wipf, D.; Courty, P.-E. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends Plant Sci. 2016, 21, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Bukovská, P.; Bonkowski, M.; Konvalinková, T.; Beskid, O.; Hujslová, M.; Püschel, D.; Řezáčová, V.; Gutiérrez-Núñez, M.S.; Gryndler, M.; Jansa, J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—Is there a specific role for protists and ammonia oxidizers? Mycorrhiza 2018, 28, 465. [Google Scholar] [CrossRef] [PubMed]
- Jansa, J.; Forczek, S.T.; Rozmoš, M.; Püschel, D.; Bukovská, P.; Hršelová, H. Arbuscular mycorrhiza and soil organic nitrogen: Network of players and interactions. Chem. Biol. Tech. Agric. 2019, 6, 10. [Google Scholar] [CrossRef]
- Crossay, T.; Majorel, C.; Redecker, D.; Gensous, S.; Medevielle, V.; Durrieu, G.; Cavaloc, Y.; Amir, H. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 2019, 29, 325–339. [Google Scholar] [CrossRef]
- Parvin, S.; Van Geel, M.; Yeasmin, T.; Verbruggen, E.; Honnay, O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza 2020, 30, 431–444. [Google Scholar] [CrossRef]
- Jansa, J.; Smith, F.A.; Smith, S.E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 2008, 177, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ortas, I.; Ustuner, O. The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. Eur. J. Soil Biol. 2014, 63, 64–69. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2014, 68, 429–439. [Google Scholar] [CrossRef]
- Walder, F.; van der Heijden, M.G. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 2015, 1, 15159. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, Q.; Koide, R.T.; Hoeksema, J.D.; Tang, J.; Bian, X.; Hu, S.; Chen, X.; Cahill, J. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J. Ecol. 2016, 105, 219–228. [Google Scholar] [CrossRef]
- Van Geel, M.; De Beenhouwer, M.; Lievens, B.; Honnay, O. Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agron. Sustain. Dev. 2016, 36, 37. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef]
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, Ü.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Tchabi, A.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl. Soil Ecol. 2010, 45, 92–100. [Google Scholar] [CrossRef]
- Janse, J.M. Les endophytes radicaux de quelques plantes javanaises. Ann. Jard. Bot. Buitenzorg 1897, 24, 53–201. (In French) [Google Scholar]
- Posada, R.H.; Sieverding, E. Arbuscular mycorrhiza in Colombian coffee plantations fertilized with coffee pulps as organic manure. J. Appl. Bot. Food Qual 2014, 87, 243–248. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Colozzi-Filho, A.; Saggin-Júnior, O.J.; Guimaraes, P.T.G.; Oliveira, E. Crescimento de mudas e produção do cafeeiro sob influência de fungos micorrízicos e superfosfato. Rev. Bras. Cienc. Solo 1993, 17, 53–60. (In Portuguese) [Google Scholar]
- Siqueira, J.O.; Saggin-Júnior, O.J.; Flores-Aylas, W.W.; Guimarães, P.T.G. Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 1998, 7, 293–300. [Google Scholar] [CrossRef]
- Habte, M.; Bittenbender, H.C. Reactions of coffee to soil solution P concentration and arbuscular mycorrhizal colonization. J. South Pac. Agric. 1999, 6, 29–34. [Google Scholar]
- Trejo, D.; Ferrera-Cerrato, R.; García, R.; Varela, L.; Lara, L.; Alarcón, A. Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev. Chil. Hist. Nat. 2011, 84, 23–31. (In Spanish) [Google Scholar] [CrossRef]
- De Beenhouwer, M.; Muleta, D.; Peeters, B.; Van Geel, M.; Lievens, B.; Honnay, O. DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities. Agron. Sustain. Dev. 2014, 35, 241–249. [Google Scholar] [CrossRef]
- Prates, P.; Moreira, B.C.; da Silva, M.; Veloso, T.G.R.; Stürmer, S.L.; Fernandes, R.B.A.; Mendonça, E.D.S.; Kasuya, M.C.M. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 2019, 14, e0209093. [Google Scholar] [CrossRef] [PubMed]
- Vaast, P.; Zasoski, R.J.; Bledsoe, C.S. Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 1997, 6, 493–497. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bagyaraj, D. Effectiveness of arbuscular mycorrhizal fungal isolates on arabica coffee (Coffea arabica L.). Biol. Agric. Hortic. 2002, 20, 125–131. [Google Scholar] [CrossRef]
- Andrade, S.A.L.; Silveira, A.P.D.; Mazzafera, P. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci. Total Environ. 2010, 408, 5381–5391. [Google Scholar] [CrossRef]
- Perea-Rojas, Y.C.; Arias, R.M.; Medel-Ortiz, R.; Trejo-Aguilar, D.; Heredia, G.; Rodríguez-Yon, Y. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agrofor. Syst. 2018, 93, 961–972. [Google Scholar] [CrossRef]
- Cogo, F.D.; Guimarães, P.T.G.; Rojas, E.P.; Júnior, O.J.S.; Siqueira, J.O.; Caneiro, M.A.C. Arbuscular Mycorrhiza in Coffea arabica L.: Review and Meta-Analysis. Coffee Sci. 2017, 12, 419–443. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Hyde, K.D.; Dai, D.Q.; Sánchez-García, M.; Goto, B.T.; Magurno, F. Outline of fungi and fungus-like taxa—2021. Mycosphere 2022, 13, 53–453. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Öpik, M.; Davison, J. Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol. 2016, 24, 106–113. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Mendoza, A.C.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; Silva, G.A.; Oehl, F. Funneliglomus, gen. nov., and Funneliglomus sanmartinensis, a new arbuscular mycorrhizal fungus from the Amazonia region in Peru. Sydowia 2019, 71, 17–24. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; Silva, G.A.; Oehl, F. Nanoglomus plukenetiae, a new fungus from Peru, and a key to small-spored Glomeraceae species, including three new genera in the “Dominikia complex/clades”. Mycol. Prog. 2019, 18, 1395–1409. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Silva, G.A.; Oehl, F. Acaulospora aspera, a new fungal species in the Glomeromycetes from rhizosphere soils of the inka nut (Plukenetia volubilis L.) in Peru. J. Appl. Bot. Food Qual. 2019, 92, 250–257. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.C.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Silva, G.A.; Oehl, F. Fungal Systematics and Evolution: FUSE 5. Sydowia 2019, 71, 141–245. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Vallejos-Tapullima, A.; de la Sota-Ricaldi, A.M.; Vallejos-Torres, G.; Ruíz-Sánchez, M.E.; Santos, V.M.; da Silva, G.A.; Oehl, F. Acaulospora flavopapillosa, a new fungus in the Glomeromycetes from a coffee plantation in Peru, with an updated key for the identification of Acaulosporaceae species. J. Appl. Bot. Food Qual. 2022, 95, 6–16. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Vallejos-Torres, G.; Vallejos-Tapullima, A.; Tenorio-Cercado, M.; Mendoza Caballero, W.; Marín, C.; Santos, V.M.; da Silva, G.A.; Oehl, F. Rhizoglomus cacao, a new species of the Glomeraceae from the rhizosphere of Theobroma cacao in Peru, with an updated identification key for all species attributed to Rhizoglomus. Nova Hedwigia. 2022, 115, 99–115. [Google Scholar] [CrossRef]
- Álvarez-Solís, J.D.; Ferrera-Cerrato, R. Micorriza Arbuscular y Crecimiento del Café en Vivero. In El Cafetal del Futuro, Realidades y Visiones; Pohlan, J., Soto, L., Barrera, J., Eds.; Shaker Verlag: Aechen, Alemania, 2006; pp. 19–22. (In Spanish) [Google Scholar]
- Gerdemann, J.W.; Nicolson, T.H. Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Sieverding, E. Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems; GTZ: Eschborn, Germany, 1991. [Google Scholar]
- Séry, D.J.; Kouadio, Z.; Voko, B.; Zeze, A. Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Front. Microbiol. 2016, 7, 2063. [Google Scholar] [CrossRef] [PubMed]
- Koske, R.E.; Tessier, B. A convenient, permanent slide mounting medium. Mycol. Soc. Am. Newsl. 1983, 34, 59. [Google Scholar]
- Brundrett, M.; Melville, L.; Peterson, L. Practical Methods in Mycorrhizal Research; Mycologue Publications: Waterloo, MD, USA, 1994. [Google Scholar]
- Spain, J.L. Arguments for diagnoses based on unaltered wall structures. Mycotaxon 1990, 38, 71–76. [Google Scholar]
- Schenck, N.C.; Perez, Y. Manual for the Identification of VA Mycorrhizal Fungi; Synergistic Publishing: Gainesville, FL, USA, 1990; p. 286. [Google Scholar]
- Błaszkowski, J.; Kovács, G.M.; Gáspár, B.K.; Balázs, T.K.; Buscot, F.; Ryszka, P. The arbuscular mycorrhizal Paraglomus majewskii sp. nov. represents a new distinct basal lineage in Paraglomeraceae (Glomeromycota). Mycologia 2012, 104, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Błaszkowski, J.; Sanchez-Garcia, M.; Niezgoda, P.; Zubek, S.; Fernandez, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A new order, Entrophosporales, and three new Entrophospora species in Glomeromycota. Front. Microbiol. 2022, 13, 962856. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.A.; Corazon-Guivin, M.A.; de Assis, D.M.A.; Oehl, F. Blaszkowskia, a new genus in Glomeraceae. Mycol. Prog. 2023, 22, 74. [Google Scholar] [CrossRef]
- Hewitt, E.J. Sand and Water Culture Methods Used in the Study of Plant Nutrition; Farnhan Royal, Commonwealth Agricultural Bureau: Farnham, UK, 1966.
- Phillips, D.A.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996. [CrossRef]
- Horneck, D.; Miller, R. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B., Eds.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, Versión 2012.1, Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina. 2012. Available online: https://www.infostat.com.ar/ (accessed on 20 December 2019).
- Baltruschat, H.; Santos, V.M.; Silva, D.K.A.; Schellenberg, I.; Deubel, A.; Sieverding, E.; Oehl, F. Unexpectedly high diversity of arbuscular mycorrhizal fungi in fertile Chernozem croplands in Central Europe. Catena 2019, 182, 104135. [Google Scholar] [CrossRef]
- Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, J.; Egli, S. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol. Fertil. Soils 2017, 53, 777–797. [Google Scholar] [CrossRef]
- Njeru, E.M.; Avio, L.; Bocci, G.; Sbrana, C.; Turrini, A.; Bàrberi, P.; Giovannetti, M.; Oehl, F. Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol. Fertil. Soils 2015, 51, 151–166. [Google Scholar] [CrossRef]
- Wetzel, K.; Silva, G.A.; Matczinski, U.; Oehl, F.; Fester, T. Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol. Biochem. 2014, 72, 88–96. [Google Scholar] [CrossRef]
- Arias, R.M.; Heredia-Abarca, G.; Sosa, V.J.; Fuentes-Ramirez, L.E. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor. Syst. 2012, 85, 179–193. [Google Scholar] [CrossRef]
- Dobo, B.; Asefa, F.; Asfaw, Z. Effect of tree-enset-coffee based agro-forestry practices on arbuscular mycorrhizal fungi (AMF) species diversity and spore density. Agrofor. Syst. 2017, 92, 525–540. [Google Scholar] [CrossRef]
- Aldrich-Wolfe, L.; Black, K.L.; Hartmann, E.D.; Shivega, W.G.; Schmaltz, L.C.; McGlynn, R.D.; Johnson, P.G.; Asheim Keller, R.J.; Vink, S.N. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza 2020, 30, 513–527. [Google Scholar] [CrossRef]
- Belay, Z.; Negash, M.; Kaseva, J.; Vestberg, M.; Kahiluoto, H. Native forests but not agroforestry systems preserve arbuscular mycorrhizal fungal species richness in southern Ethiopia. Mycorrhiza 2020, 30, 749–759. [Google Scholar] [CrossRef]
- Bertolini, V.; Montaño, N.; Salazar-Ortuño, B.; Chimal-Sánchez, E.; Varela, L. Arbuscular mycorrhizal fungi diversity in coffee (Coffea arabica) plantations on the Tacaná volcano, Chiapas, Mexico. Acta Bot. Mex. 2020, 127, e1602. [Google Scholar] [CrossRef]
- Diniz, F.; Saggin, O.; Gontijo, P.; Siquiera, J.; Carbone, M. High rates of agricultural gypsum affect the arbuscular mycorrhiza fungal community and coffee yield. Bragantia 2020, 79, 1–11. [Google Scholar] [CrossRef]
- Lara-Capistran, L.; Zulueta-Rodriguez, R.; Murillo-Amador, B.; Preciado-Rangel, P.; Verdecia-Acosta, D.M.; Hernandez-Montiel, L.G. Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil. Agronomy 2021, 11, 567. [Google Scholar] [CrossRef]
- Posada, R.H.; de Prager, M.S.; Heredia-Abarca, G.; Sieverding, E. Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and Mexico. Agrofor. Syst. 2016, 92, 555–574. [Google Scholar] [CrossRef]
- Bertolini, V.; Montaño, N.; Chimal-Sánchez, E.; Varela-Fregoso, L.; Gómez-Ruiz, J.; Martínez-Vázquez, J. Abundance and richness of arbuscular mycorrhizal fungi in coffee plantations from Soconusco, Chiapas, Mexico. Rev. Biol. Trop. 2018, 66, 91–105. [Google Scholar] [CrossRef]
- Herrera, S.; Castro, R.; Pérez-Moreno, J.; Valdés, E. Endomycorrhizal diversity in coffee plants (Coffea arabica L.) infected with rust (Hemileia vastatrix). Nova Sci. 2019, 11, 102–123. [Google Scholar] [CrossRef]
- Säle, V.; Palenzuela, J.; Azcón-Aguilar, C.; Sánchez-Castro, I.; da Silva, G.A.; Seitz, B.; Sieverding, E.; van der Heijden, M.G.; Oehl, F. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza 2021, 3, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.S.; Oliveira, E.; Neptune, A.M.L.; Moraes, F.R.P. Efeito da inoculação do cafeeiro com diferentes espécies de fungos micorrízicos vesicular-arbusculares. Rev. Bras. Cienc. Solo 1983, 7, 137–141. (In Portuguese) [Google Scholar]
- Fonseca, A.J.; Freitas, A.F.; Carvalho, G.R.; Carneiro, M.A.C.; Vilela, D.J.M.; Fassio, L.d.O. Arbuscular mycorrhizal fungus on the initial growth and nutrition of Coffea arabica L. genotypes. Ciência Agrotecnol. 2019, 2019, 43. [Google Scholar] [CrossRef]
- Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; et al. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science 2011, 333, 880–882. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef]
- Thonar, C.; Frossard, E.; Šmilauer, P.; Jansa, J. Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol. Ecol. 2014, 23, 733–746. [Google Scholar] [CrossRef]
- Dumbrell, A.J.; Nelson, M.; Helgason, T.; Dytham, C.; Fitter, A.H. Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: Is there a role for stochastic processes? J. Ecol. 2010, 98, 419–428. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Hart, M.M. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef]
- Vaast, P.; Zasoski, R.J. Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant Soil. 1992, 147, 31–39. [Google Scholar] [CrossRef]
- Souza, C.; Siqueira, J. Development and nutrient levels of coffee seedlings inoculated with mycorrhizal fungi. Pesqui. Agropecu. Bras. 1991, 26, 1989–2005. [Google Scholar]
- Kahiluoto, H.; Ketoja, E.; Vestberg, M. Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhizato crop P nutrition and growth in contrasting cropping systems. Plant Soil 2012, 350, 85–98. [Google Scholar] [CrossRef]
- Voříšková, A.; Jansa, J.; Püschel, D.; Vosátka, M.; Šmilauer, P.; Janoušková, M. Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. Mycorrhiza 2019, 29, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Symanczik, S.; Courty, P.-E.; Boller, T.; Wiemken, A.; Al-Yahyaei, M.N. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 2015, 25, 639–647. [Google Scholar] [CrossRef]
- Bucher, M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 2007, 173, 11–26. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012, 104, 1–13. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.S.; Yadav, G.S.; Pandey, A. Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int. J. Plant Soil Sci. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 2004, 162, 511–524. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 2003, 133, 16–20. [Google Scholar] [CrossRef]
- Grunwald, U.; Guo, W.; Fischer, K.; Isayenkov, S.; LudwigMuller, J.; Hause, B.; Yan, X.; Kuster, H.; Franken, P. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormonetreated Medicago truncatula roots. Planta 2009, 229, 1023–1034. [Google Scholar] [CrossRef]
- Facelli, E.; Smith, S.E.; Facelli, J.M.; Christophersen, H.M.; Smith, F. Underground friends or enemies: Model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol. 2010, 185, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Bücking, H.; Shachar-Hill, Y.Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol. 2005, 165, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Bever, J.D.; Richardson, S.C.; Lawrence, B.M.; Holmes, J.; Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 2009, 12, 13–21. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Mensah, J.A.; Cloos, A.J.; Strahan, G.E.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 2014, 203, 646–656. [Google Scholar] [CrossRef]
- Hodge, A.; Robinson, D.; Griffiths, B.S.; Fitter, A.H. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 1999, 22, 811–820. [Google Scholar] [CrossRef]
- Hawkins, H.J.; Johansen, A.; George, E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 2000, 226, 275–285. [Google Scholar] [CrossRef]
- Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef]
- Fitter, H.A.; Helgason, T.; Hodge, A. Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biol. Rev. 2011, 25, 68–72. [Google Scholar] [CrossRef]
- Nuccio, E.E.; Hodge, A.; Pett-Ridge, J.; Herman, D.J.; Weber, P.K.; Firestone, M.K. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 2013, 15, 1870–1881. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.; Hodge, A.; Fitter, A.H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 2009, 181, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Nouri, E.; Breuillin-Sessoms, F.; Feller, U.; Reinhardt, D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 2014, 9, e90841. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Storer, K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 2015, 386, 1–19. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Mensah, J.A.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H. The role of carbon in fungal nutrient uptake and transport: Implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 2012, 7, 1509–1512. [Google Scholar] [CrossRef]
- Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 1987, 57, 189–214. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Hartley, A.E.; Vogelsang, K.M.; Bever, J.D.; Schultz, P.A. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol. 2005, 167, 869–880. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Oguchi, R.; Hikosaka, K.; Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: Differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ. 2005, 28, 916–927. [Google Scholar] [CrossRef]
- Konstantopoulou, E.; Kapotis, G.; Salachas, G.; Petropoulos, S.A.; Chatzieustratiou, E.; Karapanos, I.C.; Passam, H.C. Effect of nitrogen application on growth parameters, yield and leaf nitrate content of greenhouse lettuce cultivated during three seasons. J. Plant Nutr. 2012, 35, 1246–1254. [Google Scholar] [CrossRef]
- Kaldorf, M.; Kuhn, A.J.; Schroder, W.H.; Hildebrandt, U.; Bothe, H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J. Plant Physiol. 1999, 154, 718–728. [Google Scholar] [CrossRef]
- Perner, H.; Schwarz, D.; Bruns, C.; Mäder, P.; George, E. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 2007, 17, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef]
- Garcia, K.; Chasman, D.; Roy, S.; Ané, J.-M. Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K + Deprivation. Plant Physiol. 2017, 173, 1811–1823. [Google Scholar] [CrossRef]
- Olsson, P.A.; Hammer, E.C.; Wallander, H.; Pallon, J. Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl. Environ. Microbiol. 2008, 74, 4144–4148. [Google Scholar] [CrossRef]
- Olsson, P.A.; Hammer, E.C.; Pallon, J.; van Aarle, I.M.; Wallander, H. Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol. 2011, 115, 643–648. [Google Scholar] [CrossRef]
Province | Location | Area (ha) | Age | Associated Crops | Cultivar | Fertilizer | Geographic Coordinates | Altitude (m) | |
---|---|---|---|---|---|---|---|---|---|
X | Y | ||||||||
Lamas | Alto Palmiche (LA-1) | 2 | 6 | Inga edulis, Eucalyptus sp. | Pache, Bourbon | Organic | 6°20′3.10″ | 76°35′58.96″ | 978 |
Pamashto (LA-2) | 1 | 10 | Inga edulis | Catimor | Organic | 6°21′8.59″ | 76°32′15.66″ | 851 | |
Pueblo Nuevo (LA-3) | 6 | 10 | Inga edulis | Catimor, Bourbon | Organic | 6°19′5.68″ | 76°42′26.41″ | 1088 | |
El Dorado | Palestina (ED-1) | 3 | 8 | Inga edulis, Citrus sp. | Catimor, Pache | Organic | 6°27′46.32″ | 76°49′18.70″ | 745 |
Requena (ED-2) | 1.5 | 3 | -- | Catimor, Pache | Organic | 6°31′1.30″ | 76°45′38.38″ | 468 | |
San Juan de Talliquihui (ED-3) | 1 | 7 | Inga edulis, Mangifera indica | Catimor, Caturra | Organic | 6°37′44.26″ | 76°36′16.96″ | 602 | |
San Martín | Santa Rosa de Huayali (SM-1) | 0.75 | 4 | Inga edulis, Persea sp. | Catimor | Organic | 6°44′32.12″ | 76° 9′11.51″ | 740 |
Nuevo Lamas (SM-2) | 2 | 6 | Inga edulis | Catimo, Pache | Organic | 6°36′6.67″ | 76°11′56.36″ | 973 | |
Nuevo Porvenir (SM-3) | 2 | 6 | Inga edulis | Caturra, Pache | Organic | 6°45′40.66″ | 76° 7′20.22″ | 782 | |
Moyobamba | Barranquita (MO-1) | 6 | 4 | Inga edulis, Musa sp. | Catimor, Caturra | Organic | 6°10′20.91″ | 76°53′47.71″ | 1054 |
Palmeras (MO-2) | 2 | 4 | Inga edulis, Cedrela sp. | Catimor, Caturra | NPK (20-7-10) | 6° 6′25.25″ | 77° 1′33.53″ | 945 | |
Cocha Negra (MO-3) | 3 | 8 | Inga edulis, Citrus sp. | Catimor, Caturra | Organic | 6°32′37.07″ | 76°54′48.36″ | 860 |
Provinces | El Dorado | Lamas | San Martín | Moyobamba | Occurrence (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMF Species | ED-1 | ED-2 | ED-3 | LA-1 | LA-2 | LA-3 | SM-1 | SM-2 | SM-3 | MO-1 | MO-2 | MO-3 | |
Glomus microcarpum | ++ | ++ | ++ | +++ | ++ | +++ | +++ | + | + | ++ | ++ | +++ | 100 |
Nanoglomus plukenetiae | +++ | +++ | + | ++ | + | ++ | ++ | + | ++ | + | +++ | ++ | 100 |
Rhizoglomus variabile | + | +++ | + | ++ | +++ | +++ | ++ | ++ | +++ | + | ++ | +++ | 100 |
Acaulospora mellea | ++ | - | ++ | +++ | +++ | +++ | ++ | ++ | +++ | + | + | +++ | 92 |
Glomus brohulti | + | - | - | +++ | +++ | +++ | ++ | +++ | +++ | + | +++ | +++ | 83 |
A. spinosissima | + | + | - | + | + | + | - | + | + | + | - | - | 67 |
Entrophospora etunicata | - | + | ++ | - | +++ | + | +++ | ++ | +++ | - | + | - | 67 |
Entrophospora claroidea | - | - | ++ | - | - | +++ | ++ | ++ | ++ | + | + | - | 58 |
Glomus macrocarpum | ++ | ++ | - | - | - | ++ | +++ | + | + | - | + | - | 58 |
Funneliglomus sanmartinense | + | - | + | ++ | - | - | - | - | - | + | + | + | 50 |
A. laevis | - | - | - | + | - | ++ | - | + | - | ++ | + | - | 42 |
A. scrobiculata | + | - | - | - | ++ | + | - | - | - | + | - | + | 42 |
Rhizoglomus fasciculatum | - | - | + | - | - | + | + | +++ | + | - | - | - | 42 |
Ambispora sp. resembling A. gerdemannii | - | - | - | - | + | + | - | - | - | - | + | + | 33 |
Diversispora spurca | - | - | - | ++ | - | ++ | + | + | - | - | - | - | 33 |
A. lacunosa | - | - | - | - | + | - | - | - | - | + | + | - | 25 |
Dominikia sp.1 | - | - | - | - | - | ++ | - | - | - | + | + | - | 25 |
Gigaspora candida | - | - | + | - | - | - | - | - | - | + | - | + | 25 |
Glomus sp. 2 | - | - | + | - | - | - | - | + | - | - | + | - | 25 |
Sclerocystis sinuosa | - | - | - | - | - | ++ | - | ++ | - | ++ | - | - | 25 |
Glomus sp. resembling G. spinuliferum | - | - | - | + | - | - | - | + | - | - | - | - | 17 |
Glomus sp. 3 | - | - | - | - | - | - | + | - | - | - | - | + | 17 |
Glomus sp. 4 | - | - | - | - | - | - | + | - | - | - | - | + | 17 |
A. spinosa | - | - | + | - | - | + | - | - | - | - | - | - | 17 |
Acaulospora sp. resembling A. pustulata | - | - | - | - | - | - | + | - | - | - | - | - | 8 |
A. herrerae | - | - | - | - | - | - | - | - | - | + | - | - | 8 |
A. excavata | - | - | - | - | - | - | - | + | - | - | - | - | 8 |
Dominikia sp. 2 | - | - | - | - | - | - | - | + | - | - | - | - | 8 |
Glomus crenatum | - | - | - | - | + | - | - | - | - | - | - | - | 8 |
Glomus sp. 1 | - | - | - | - | + | - | - | - | - | - | - | - | 8 |
Glomus sp. 5 | - | - | - | - | - | + | - | - | - | - | - | - | 8 |
Rhizoglomus microaggregatum | - | - | - | - | + | - | - | - | - | - | - | - | 8 |
Sclerocystis rubiformis | - | - | - | - | - | - | - | + | - | - | - | - | 8 |
Sclerocystis sp. 1 | - | - | - | - | - | - | + | - | - | - | - | - | 8 |
Sieverdingia tortuosa | - | - | - | - | - | - | + | - | - | - | - | - | 8 |
AMF species richness/site | 9 | 6 | 11 | 10 | 13 | 17 | 15 | 18 | 10 | 15 | 14 | 11 | |
AMF species richness/province | 14 | 24 | 23 | 21 |
Provinces | El Dorado | Lamas | San Martín | Moyobamba | Occurrence (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMF Species | ED-1 | ED-2 | ED-3 | LA-1 | LA-2 | LA-3 | SM-1 | SM-2 | SM-3 | MO-1 | MO-2 | MO-3 | |
A. mellea | + | + | ++ | +++ | ++ | +++ | ++ | + | ++ | - | - | - | 75 |
R. variabile | ++ | +++ | ++ | ++ | +++ | ++ | ++ | ++ | +++ | + | ++ | +++ | 100 |
N. plukenetiae | + | ++ | + | ++ | + | +++ | ++ | + | ++ | + | ++ | ++ | 100 |
G. microcarpum | - | - | - | + | ++ | ++ | +++ | + | ++ | ++ | +++ | - | 58 |
Treatment | Shoot Fresh Matter (g) | Roots Fresh Matter (g) | Shoot Dry Matter (g) | Roots Dry Matter (g) | Chlorophyll Content (SPAD) | Leaf Area (cm2) |
---|---|---|---|---|---|---|
Control (Ctr) | 3.0 c ± 0.5 | 0.8 c ± 0.2 | 0.77 c ± 0.01 | 0.21 c ± 0.01 | 27.4 c ± 0.28 | 155 c ± 6.01 |
R. variable (Rv) | 15.3 a ± 2.4 | 7.4 a ± 1.2 | 3.58 a± 0.04 | 1.81 a ± 0.05 | 59.8 a ± 0.50 | 691 a ± 17.08 |
N. plukenetiae (Np) | 9.7 b ± 1.7 | 4.4 b ± 1.1 | 2.25 b ± 0.03 | 1.04 b ± 0.06 | 48.9 b ± 0.58 | 434 b ± 13.35 |
Rv+Np | 15.9 a ± 2.1 | 7.8 a ± 1.0 | 3.63 a ± 0.03 | 1.77 a ± 0.02 | 60.3 a ± 0.26 | 709 a ± 14.60 |
p and F-Value | ||||||
p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
F = 337.1 | F = 373.7 | F = 2130.0 | F = 303.5 | F = 1288.4 | F = 376.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corazon-Guivin, M.A.; Romero-Cachique, G.; Del Aguila, K.M.; Padilla-Domínguez, A.; Hernández-Amasifuen, A.D.; Cerna-Mendoza, A.; Coyne, D.; Oehl, F. Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia. Microorganisms 2023, 11, 2883. https://doi.org/10.3390/microorganisms11122883
Corazon-Guivin MA, Romero-Cachique G, Del Aguila KM, Padilla-Domínguez A, Hernández-Amasifuen AD, Cerna-Mendoza A, Coyne D, Oehl F. Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia. Microorganisms. 2023; 11(12):2883. https://doi.org/10.3390/microorganisms11122883
Chicago/Turabian StyleCorazon-Guivin, Mike Anderson, Gabriel Romero-Cachique, Karen M. Del Aguila, Amner Padilla-Domínguez, Angel David Hernández-Amasifuen, Agustin Cerna-Mendoza, Danny Coyne, and Fritz Oehl. 2023. "Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia" Microorganisms 11, no. 12: 2883. https://doi.org/10.3390/microorganisms11122883
APA StyleCorazon-Guivin, M. A., Romero-Cachique, G., Del Aguila, K. M., Padilla-Domínguez, A., Hernández-Amasifuen, A. D., Cerna-Mendoza, A., Coyne, D., & Oehl, F. (2023). Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia. Microorganisms, 11(12), 2883. https://doi.org/10.3390/microorganisms11122883