Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of B. cereus
2.3. The 16S rRNA Gene Identification of Isolates and Whole Gene Sequencing
2.4. Antibiotic Resistance Testing of Isolate
2.5. Antibiotic Resistance Gene Analysis
3. Results
3.1. Chromogenic Medium Identification of B. cereus
3.2. The 16S rRNA Sequencing and Whole Gene Sequencing Identification of B. cereus
3.3. Resistance Phenotype of B. cereus
3.4. Comparison of Antibiotic Resistance of B. cereus in Different Regions
3.5. Comparison of Antibiotic Resistance in Different Foodstuffs of B. cereus
3.6. Multi-Antibiotic Resistance Profile Analysis
3.7. Antibiotic Resistance Genotype Analysis
3.8. Correlation Analysis of Antibiotic-Resistant Phenotype and Genotype
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jessberger, N.; Dietrich, R.; Granum, P.E.; Märtlbauer, E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins 2020, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.-S.; Huch, M.; Franz, C.M.A.P. Antibiotics Resistance and Toxin Profiles of Bacillus cereus-Group Isolates from Fresh Vegetables from German Retail Markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, Y.; Effarizah, M.E. Prevalence, Toxigenic Profiles, Multidrug Resistance, and Biofilm Formation of Bacillus cereus Isolated from Ready-to Eat Cooked Rice in Penang, Malaysia. Food Control 2021, 121, 107553–107563. [Google Scholar] [CrossRef]
- Esteban-Cuesta, I.; Drees, N.; Ulrich, S.; Stauch, P.; Sperner, B.; Schwaiger, K.; Gareis, M.; Gottschalk, C. Endogenous Microbial Contamination of Melons (Cucumis Melo) from International Trade: An Underestimated Risk for the Consumer?: Endogenous Microbial Contamination of Retail Melons. J. Sci. Food Agric. 2018, 98, 5074–5081. [Google Scholar] [CrossRef] [PubMed]
- Fasolato, L.; Cardazzo, B.; Carraro, L.; Fontana, F.; Novelli, E.; Balzan, S. Edible Processed Insects from E-Commerce: Food Safety with a Focus on the Bacillus cereus Group. Food Microbiol. 2018, 76, 296–303. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, F.; Zhao, L.; Guo, H. Genotypes and the Persistence Survival Phenotypes of Bacillus cereus Isolated from UHT Milk Processing Lines. Food Control 2017, 82, 48–56. [Google Scholar] [CrossRef]
- Adamski, P.; Byczkowska-Rostkowska, Z.; Gajewska, J.; Zakrzewski, A.J.; Kłębukowska, L. Prevalence and Antibiotic Resistance of Bacillus sp. Isolated from Raw Milk. Microorganisms 2023, 11, 1065. [Google Scholar] [CrossRef]
- Biesta-Peters, E.G.; Dissel, S.; Reij, M.W.; Zwietering, M.H.; In’T Veld, P.H. Characterization and Exposure Assessment of Emetic Bacillus cereus and Cereulide Production in Food Products on the Dutch Market. J. Food Prot. 2016, 79, 230–238. [Google Scholar] [CrossRef]
- Yibar, A.; ÇetiNkaya, F.; SoyutemiZ, E.; Yaman, G. Süt ve Peynirden İzole Edilen Bacillus cereus’un Prevalansı, Enterokoksin Üretimi ve Antibiyotik Direnci. Univ. Vet. Fak. Derg. 2017, 23, 635–642. [Google Scholar]
- Flores-Urbán, K.A.; Natividad-Bonifacio, I.; Vázquez-Quiñones, C.R.; Vázquez-Salinas, C.; Quiñones-Ramírez, E.I. Detection of Toxigenic Bacillus cereus Strains Isolated from Vegetables in Mexico City. J. Food Prot. 2014, 77, 2144–2147. [Google Scholar] [CrossRef]
- Kim, C.-W.; Cho, S.-H.; Kang, S.-H.; Park, Y.-B.; Yoon, M.-H.; Lee, J.-B.; No, W.-S.; Kim, J.-B. Prevalence, Genetic Diversity, and Antibiotic Resistance of Bacillus cereus Isolated from Korean Fermented Soybean Products: B. cereus in Korean Soybean Products. J. Food Sci. 2015, 80, M123–M128. [Google Scholar] [CrossRef] [PubMed]
- Baghbadorani, S.T.; Rahimi, E.; Shakerian, A. Investigation of Virulence and Antibiotic-Resistance of Bacillus cereus Isolated from Various Spices. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 8390778–8390784. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Park, J.-H. Characteristics of Enterotoxin Distribution, Hemolysis, Lecithinase, and Starch Hydrolysis of Bacillus cereus Isolated from Infant Formulas and Ready-to-Eat Foods. J. Dairy Sci. 2015, 98, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Guinebretière, M.-H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.-L.; Nguyen-The, C. Ability of Bacillus cereus Group Strains To Cause Food Poisoning Varies According to Phylogenetic Affiliation (Groups I to VII) Rather than Species Affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D.; Poinar, H. Antibiotic Resistance Is Ancient: Implications for Drug Discovery. Trends Microbiol. 2012, 20, 157–159. [Google Scholar] [CrossRef]
- Toro, N. Who Global Strategy on Integrated People-Centred Health Services (IPCHS)/Estrategia Mundial En Servicios de Salud Integrada Centrado En Las Personas (IPCHS). Int. J. Integr. Care 2015, 15, 19–21. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. Corrigendum to “The Global Threat of Antimicrobial Resistance: Science for Intervention”. New Microbes New Infect. 2015, 8, 22–29. [Google Scholar] [CrossRef]
- Li, G.X.; Cui, L.H.; Liu, Y.S. Evaluation of Antibiotic Pollution in Soil of Vegetable Base in Yangling District, Shaanxi Province. Agric. Eng. 2021, 11, 41–46. [Google Scholar]
- Ding, Y.T. The research progress on mechanism of bacterial resistance at home and aboad. Mod. Prev. Med. 2013, 40, 1109–1111. [Google Scholar]
- Cao, F.Y. Research on the Virulence Genes and Antibiotic Resistance Phenotypes of Bacillus cereus Detected from Fermented Bean Curd in Beijing. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2017. [Google Scholar]
- Li, Y.J. Analysis of Endophytic Bacterial Diversity and Antibiotic Resistance in Edible Fungi in Yunnan. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2020. [Google Scholar]
- Etikala, A.; Thamburaj, S.; Johnson, A.M.; Sarma, C.; Mummaleti, G.; Kalakandan, S.K. Incidence, Toxin Gene Profile, Antibiotic Resistance and Antibacterial Activity of Allium Parvum and Allium Cepa Extracts on Bacillus cereus Isolated from Fermented Millet-Based Food. LWT 2022, 160, 113314–113328. [Google Scholar] [CrossRef]
- Jensen, L.B.; Baloda, S.; Boye, M.; Aarestrup, F.M. Antimicrobial Resistance among Pseudomonas spp. and the Bacillus cereus Group Isolated from Danish Agricultural Soil. Environ. Int. 2001, 26, 581–587. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Zhu, L.; Wang, J.; Xing, B. Antibiotic Resistance in Agricultural Soils: Source, Fate, Mechanism and Attenuation Strategy. Crit. Rev. Environ. Sci. Technol. 2022, 52, 847–889. [Google Scholar] [CrossRef]
- Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, Y.; Liao, X.; Zhang, J.; Wu, S.; Gu, Q.; Xue, L.; et al. Corrigendum: Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front. Microbiol. 2020, 11, 848–850. [Google Scholar] [CrossRef]
- Park, K.M.; Jeong, M.; Park, K.J.; Koo, M. Prevalence, Enterotoxin Genes, and Antibiotic Resistance of Bacillus cereus Isolated from Raw Vegetables in Korea. J. Food Prot. 2018, 81, 1590–1597. [Google Scholar] [CrossRef]
- Jung, J.; Jin, H.; Seo, S.; Jeong, M.; Kim, B.; Ryu, K.; Oh, K. Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. Int. J. Environ. Res. Public Health 2022, 19, 12159. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.G.C.; Ortiz, V.G.; Gómez, J.L.A.; López, M.Á.R.; Morales, J.A.R.; Macías, A.F.; Hidalgo, E.Á.; Ramírez, J.N.; Gallardo, F.J.F.; Gutiérrez, M.C.G.; et al. Detection of Bacillus cereus Sensu Lato Isolates Posing Potential Health Risks in Mexican Chili Powder. Microorganisms 2021, 9, 2226. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yu, P.; Yu, S.; Wang, J.; Zhang, J.; Zhang, Y.; Liao, X.; Wu, S.; Ye, Q.; Yang, X.; et al. Incidence, Toxin Gene Profiling, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated from Quick-Frozen Food in China. LWT 2021, 140, 110824–110832. [Google Scholar] [CrossRef]
- Yu, S.Y.; Deng, S.Z. Epidemiological analysis on foodborne diseases in Yunnan Province from 2010–2014. Occup. Health 2016, 14, 1919–1922. [Google Scholar]
- Su, W.W.; Yang, Y.L.; Dong, H.Y.; Wan, Q.Q.; Zhao, J.; Chen, L.P.; Zhang, Q.; Zhu, X.; Liu, Z.T. Epidemiological analysis of foodborne disease outbreaks in schools in Yunnan Province, 2010–2020. Pract. Prev. Med. 2022, 1035–1038. [Google Scholar]
- Chen, L.P.; Zhao, J.; Liu, Z.T. Analysis of family foodborne disease outbreaks in Yunnan Province from 2015–2019. Chin. J. Food Hyginen 2021, 4, 440–443. [Google Scholar]
- GB 4789.14-2014; National Safety Standard for Food-Microbiological Examination of Food-Test for Bacillus cereus. China Standards Press: Beijing, China, 2015.
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Abbott, S.L. 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.W.; Gu, Q.F.; Chang, Z.Y.; Zhu, Y.Q.; Zhang, X. Molecular characteristics and antibiotic resistance of Bacillus cereus from foods using whole genome sequencing. Chin. J. Food Hyg. 2021, 33, 529–535. [Google Scholar]
- Fraccalvieri, R.; Bianco, A.; Difato, L.M.; Capozzi, L.; Del Sambro, L.; Simone, D.; Catanzariti, R.; Caruso, M.; Galante, D.; Normanno, G.; et al. Toxigenic Genes, Pathogenic Potential and Antimicrobial Resistance of Bacillus cereus Group Isolated from Ice Cream and Characterized by Whole Genome Sequencing. Foods 2022, 11, 2480. [Google Scholar] [CrossRef]
- Léonard, C.; Chen, Y.; Mahillon, J. Diversity and Differential Distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 1997, 143, 2537–2547. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; Yuan, X.; Zhao, S.; Yang, T.; Xiang, J.; Chen, X.; Zhou, L.; Ji, M. Prevalence and Genetic Diversity of Bacillus cereus Isolated from Raw Milk and Cattle Farm Environments. Curr. Microbiol. 2019, 76, 1355–1360. [Google Scholar] [CrossRef]
- Fox, G.E.; Wisotzkey, J.D.; Jurtshuk, P. How Close Is Close: 16S rRNA Sequence Identity May Not Be Sufficient To Guarantee Species Identity. Int. J. Syst. Bacteriol. 1992, 42, 166–170. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Mills, E.; Sullivan, E.; Kovac, J. Comparative Analysis of Bacillus cereus Group Isolates’ Resistance Using Disk Diffusion and Broth Microdilution and the Correlation between Antimicrobial Resistance Phenotypes and Genotypes. Appl. Environ. Microbiol. 2022, 88, e02302-21. [Google Scholar] [CrossRef]
- Rajalingam, N.; Jung, J.; Seo, S.-M.; Jin, H.-S.; Kim, B.-E.; Jeong, M.-I.; Kim, D.; Ryu, J.-G.; Ryu, K.-Y.; Oh, K.K. Prevalence, Distribution, Enterotoxin Profiles, Antimicrobial Resistance, and Genetic Diversity of Bacillus cereus Group Isolates from Lettuce Farms in Korea. Front. Microbiol. 2022, 13, 906040–906052. [Google Scholar] [CrossRef]
- Xiao, D.; Tong, C.; Yang, T.; Huo, Z.; Li, Y.; Zeng, Z.; Xiong, W. First Insights into Antimicrobial Resistance, Toxigenic Profiles, and Genetic Diversity in Bacillus cereus Isolated from Chinese Sausages. LWT 2023, 181, 114717–114725. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, M.; Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, J.; Zhou, H.; Chen, M.; Zeng, H.; et al. Prevalence, Virulence Feature, Antibiotic Resistance and MLST Typing of Bacillus cereus Isolated From Retail Aquatic Products in China. Front. Microbiol. 2020, 11, 1513. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Wang, Y.; Rehman, M.U.; Liu, Y.; Jin, J.; Peng, J.; Nabi, F.; Mehmood, K.; Luo, H.; et al. Investigation and Characterization of β-Lactam Resistance in Escherichia Coli Strains Isolated from Bamboo Rats (Rhizomys Sinensis) in Zhejiang Province, China. J. Vet. Med. Sci. 2017, 79, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Sun, J.M.; Kwon, K.Y.; Kim, H.J.; Koo, M.; Chun, H.S. Genetic Diversity, Antimicrobial Resistance, and Toxigenic Profiles of Bacillus cereus Strains Isolated from Sunsik. J. Food Prot. 2012, 75, 225–230. [Google Scholar] [CrossRef]
- Liu, L.Y.; Huang, W.; Lv, X.; He, X.Y.; Chen, L.H.; Song, Y.K. Effect of Long-term Biogas Slurry Fertilization on Distribution of Tetracycline and Sulfonamide Resistance Genes in Soil. Fujian J. Agric. Sci. 2021, 36, 699–705. [Google Scholar]
- Wang, N.; Yang, X.H.; Guo, X.Y.; Chen, B.; Ye, B.P.; Ge, F. Expression Patterns of sul Genes in Sulfonamide-Resistant Bacteria. Asian J. Ecotoxicol. 2015, 10, 75–81. [Google Scholar]
- Tian, W.F.; Zhang, R.; Long, H.; Liu, L.; He, S.W.; Du, X.; Jiang, M.; Zhao, Y.; Tang, J.N. Analysis of virulence gene detection and antimicrobial susceptibility of Bacillus cereus isolated from fresh food. Sci. Technol. Food Ind. 2018, 39, 135–139+51. [Google Scholar]
- Dou, P.P.; Wang, L.; Fang, Q.; Li, J. Isolation, Idengtification and Drug Resistnce Analysis of Bacillus cereus Isolated from Fish. China Anim. Husb. Vet. Med. 2019, 46, 2745–2752. [Google Scholar]
- Zhuang, Z.H.; He, L.; Guo, Y.C.; Pei, X.Y.; Fu, P.; Wang, X.Y. Virulent gene profiles and antibiotic susceptibility of foodborne Bacillus cereus in China. Chin. J. Food Hyg. 2013, 25, 198–201. [Google Scholar]
- Hummel, A.S.; Hertel, C.; Holzapfel, W.H.; Franz, C.M.A.P. Antibiotic Resistances of Starter and Probiotic Strains of Lactic Acid Bacteria. Appl. Environ. Microbiol. 2007, 73, 730–739. [Google Scholar] [CrossRef] [PubMed]
Antibiotic * | Resistance Rate (%) | ||||||
---|---|---|---|---|---|---|---|
Region A | Region B | Region C | Region D | Region E | Region F | Region G | |
Ceftazidime (CAZ) | 90 | 100 | 80 | 95.45 | 100 | 80 | 91.67 |
Cephalothin (CEP) | 90 | 78.57 | 80 | 72.73 | 80 | 100 | 66.67 |
Ampicillin (AMP) | 90 | 100 | 80 | 95.45 | 80 | 100 | 75 |
Amoxicillin (AMX) | 90 | 85.71 | 80 | 95.45 | 80 | 100 | 83.33 |
Cefotaxime (CTX) | 90 | 100 | 100 | 95.45 | 100 | 80 | 91.67 |
Ticarcillin-Clavulanic acid (TCC) | 60 | 64.29 | 40 | 86.36 | 80 | 80 | 83.33 |
Chloramphenicol (CHL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Imipenem (IPM) | 0 | 0 | 0 | 9.09 | 0 | 0 | 0 |
Streptomycin (STR) | 0 | 7.14 | 0 | 0 | 0 | 20 | 0 |
Kanamycin (KAN) | 0 | 0 | 0 | 0 | 0 | 0 | 8.33 |
Gentamicin (GEN) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nalidixic acid (NAL) | 0 | 0 | 0 | 4.55 | 0 | 0 | 8.33 |
Ciprofloxacin (CIP) | 20 | 28.57 | 40 | 9.09 | 20 | 0 | 0 |
Trimethoprim/Sulfamethoxazole (SXT) | 90 | 100 | 100 | 95.45 | 80 | 100 | 100 |
Sulfisoxazole (SOX) | 20 | 28.57 | 20 | 18.18 | 20 | 60 | 50 |
Antibiotic | Resistance Rate (%) | |||||
---|---|---|---|---|---|---|
Wild Mushroom | Soybean Products | Fresh Vegetables | Preserved Vegetable | Frozen Food | Cereals | |
CAZ | 90.91 | 90 | 93.33 | 94.74 | 92.86 | 100 |
CEP | 72.73 | 50 | 93.33 | 73.68 | 85.71 | 100 |
AMP | 90.91 | 80 | 100 | 89.47 | 92.86 | 75 |
AMX | 81.82 | 80 | 93.33 | 89.47 | 92.86 | 100 |
CTX | 100 | 90 | 100 | 94.74 | 92.86 | 100 |
TCC | 63.64 | 60 | 80 | 73.68 | 78.57 | 100 |
CHL | 0 | 0 | 0 | 0 | 0 | 0 |
IPM | 0 | 0 | 6.67 | 5.26 | 0 | 0 |
STR | 0 | 0 | 6.67 | 0 | 7.14 | 0 |
KAN | 0 | 10 | 0 | 0 | 0 | 0 |
GEN | 0 | 0 | 0 | 0 | 0 | 0 |
NAL | 0 | 0 | 0 | 10.53 | 0 | 0 |
CIP | 18.18 | 10 | 13.33 | 15.79 | 21.43 | 0 |
SXT | 100 | 100 | 100 | 94.74 | 85.71 | 100 |
SOX | 18.18 | 40 | 26.67 | 47.37 | 7.14 | 25 |
Type of Resistance | Resistant Spectrum | Number of Isolates | Proportion (%) |
---|---|---|---|
0 | — | 2 | 2.74% |
2 | K-SXT | 1 | 2.74% |
CTX-SXT | 1 | ||
3 | CAZ-CTX-SXT | 1 | 2.74% |
CF-AMP-AMX | 1 | ||
4 | CAZ-AMP-CTX-SXT | 1 | 1.37% |
5 | CAZ-AMP-AMX-CTX-SXT | 1 | 1.37% |
6 | CAZ-AMP-AMX-CTX-TIC-SXT | 5 | 15.07% |
CAZ-CF-AMP-AMX-CTX-SXT | 1 | ||
CAZ-AMP-CTX-TIC-SXT-SF | 1 | ||
CAZ-AMX-CTX-TIC-SXT-SF | 1 | ||
CAZ-CF-AMP-CTX-SXT-SF | 1 | ||
CAZ-CF-AMP-AMX-CTX-CIP | 1 | ||
CAZ-CF-AMX-CTX-TIC-SXT | 1 | ||
7 | CAZ-CF-AMP-AMX-CTX-TIC-SXT | 26 | 49.31% |
CAZ-CF-AMP-AMX-CTX-CIP-SXT | 8 | ||
CAZ-AMP-AMX-CTX-TIC-SXT-SF | 1 | ||
CAZ-CF-AMP-AMX-CTX-TIC-CIP | 1 | ||
8 | CAZ-CF-AMP-AMX-CTX-TIC-SXT-SF | 13 | 20.55% |
CAZ-AMP-AMX-CTX-TIC-NA-SXT-SF | 1 | ||
CAZ-CF-AMP-AMX-CTX-TIC-S-SXT | 1 | ||
9 | CAZ-CF-AMP-AMX-CTX-TIC-IPM-SXT-SF | 2 | 2.74% |
10 | CAZ-CF-AMP-AMX-CTX-TIC-NA-CIP-SXT-SF | 1 | 1.37% |
Type of Resistance | Resistant Spectrum | Number of Isolates | Proportion (%) |
---|---|---|---|
0 | - | 2 | 2.74% |
2 | β-lactams—Sulfonamides | 54 | 79.45% |
β-lactams—Aminoglycosides | 1 | ||
β-lactams—Quinolones | 2 | ||
Aminoglycosides—Sulfonamides | 1 | ||
3 | β-lactams—Quinolones—Sulfonamides | 10 | 17.81% |
β-lactams—Carbapenems—Sulfonamides | 2 | ||
β-lactams—Aminoglycosides—Sulfonamides | 1 |
Antibiotic Category | Resistance Gene Spectrum | Number of Isolates | Detection Rate (%) |
---|---|---|---|
β-lactams | bla, bla2 | 73 | 100 |
bla, bla2, blaTEM | 1 | 1.37 | |
bla, bla2, hugA | 3 | 4.11 | |
bla, bla2, blaOXA | 1 | 1.37 | |
Chloramphenicols | catA | 37 | 50.68 |
Aminoglycosides | aph(3′)-Iia | 4 | 5.48 |
Ant (6) | 16 | 21.92 | |
aadA1, aadA31 | 2 | 2.74 | |
ant (6), ant (4′)-I | 1 | 1.37 | |
Macrolides | abc-f | 72 | 98.63 |
mphL | 8 | 10.96 | |
abc-f, mphL | 7 | 9.59 | |
abc-f, msr, cfr | 1 | 1.37 | |
Fosfomycins | fosB | 73 | 100 |
Lincosamides | lsa | 11 | 15.07 |
cfr | 1 | 1.37 | |
Streptomycins | vat | 73 | 100 |
vat, lsa | 12 | 16.44 | |
vat, cfr | 1 | 1.37 | |
Glycopeptides | vanR-A | 10 | 13.7 |
vanR, vanS | 3 | 4.11 | |
vanR-A, vanS-Pt, vanY | 3 | 4.11 | |
vanR-A, vanS-Pt | 7 | 9.59 | |
Tetracyclines | tet | 8 | 10.96 |
tet(H) | 1 | 1.37 | |
tet_rib_protect | 2 | 2.74 | |
tet(H), tet_rib_protect | 1 | 1.37 |
Antibiotic Category | Sensitive Strain | Drug Resistant Strain | Total Rates (%) | ||||
---|---|---|---|---|---|---|---|
Sensitivity | Not Carrying Drug-Resistant Genes | Coincidence Rates (%) | Drug Resistance | Carrying Resistance Genes | Coincidence Rates (%) | ||
β-lactams | 0 | 0 | 100 | 70 | 73 | 95.89 | 95.89 |
Chloramphenicols | 71 | 36 | 50.7 | 0 | 37 | 0 | 33.33 |
Carbapenems | 68 | 73 | 93.15 | 2 | 0 | 0 | 90.67 |
Aminoglycosides | 61 | 50 | 81.97 | 3 | 23 | 13.04 | 63.1 |
Quinolones | 57 | 73 | 78.08 | 12 | 0 | 0 | 67.06 |
Sulfonamides | 3 | 73 | 4.11 | 70 | 0 | 0 | 2.1 |
Total | - | - | - | - | - | - | 50.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, X.; Lin, Y.; Brennan, C.; Cao, J.; Shang, Y. Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Microorganisms 2023, 11, 2948. https://doi.org/10.3390/microorganisms11122948
Cha X, Lin Y, Brennan C, Cao J, Shang Y. Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Microorganisms. 2023; 11(12):2948. https://doi.org/10.3390/microorganisms11122948
Chicago/Turabian StyleCha, Xiaoyan, Yingting Lin, Charles Brennan, Jianxin Cao, and Ying Shang. 2023. "Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province" Microorganisms 11, no. 12: 2948. https://doi.org/10.3390/microorganisms11122948
APA StyleCha, X., Lin, Y., Brennan, C., Cao, J., & Shang, Y. (2023). Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Microorganisms, 11(12), 2948. https://doi.org/10.3390/microorganisms11122948