The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Marinade Solutions
2.2. Sample Preparation
2.3. pH Determination
2.4. Water Activity (aw) Determination
2.5. Enumeration of Microorganisms
2.6. Challenge Test
2.7. Sensory Evaluation
2.8. Statistical Analyses
3. Results
3.1. pH and aw in Marinated Fish
3.2. Microorganisms in Marinated Fish
3.3. Challenge Testing
3.4. Sensory Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Origbemisoye, B.A.; Ifesan, B.O.T. Chemical composition of ‘Kiaat’ (Pteropcarpus angolensis) bark and the effect of herb pastes on the quality changes in marinated cat fish during chilled storage. Food Biol. 2019, 8, 7–12. [Google Scholar] [CrossRef]
- Essid, I.; Tajine, S.; Gharbi, S.; Bellagha, S. Use of pomegranate peel and artichoke leaf extracts to improve the quality of marinated sardine (Sardinella aurita) fillets. J. Food Sci. Technol. 2020, 57, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, N.; Nalbone, L.; Di Rosa, A.R.; Ed-Dra, A.; Nait-Mohamed, S.; Mhamdi, R.; Giuffrida, A.; Giarratana, F. Marinated anchovies (Engraulis encrasicolus) prepared with flavored olive oils (Chétoui cv.): Anisakicidal effect, microbiological, and sensory evaluation. Sustainability 2021, 13, 5310. [Google Scholar] [CrossRef]
- Tahiluddin, A.B.; Maribao, I.; Amlani, M.; Sarri, J.H. A review on spoilage microorganisms in fresh and processed aquatic food products. Food Bull. 2022, 1, 21–36. [Google Scholar] [CrossRef]
- Jami, M.; Ghanbari, M.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Listeria monocytogenes in aquatic food products—A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 798–813. [Google Scholar] [CrossRef]
- Kramarenko, T.; Roasto, M.; Keto-Timonen, R.; Mäesaar, M.; Meremäe, K.; Kuningas, M.; Korkeala, H. Listeria monocytogenes in ready-to-eat vacuum and modified atmosphere packaged meat and fish products of Estonian origin at retail level. Food Control 2016, 67, 48–52. [Google Scholar] [CrossRef]
- Koskar, J.; Kramarenko, T.; Meremäe, K.; Kuningas, M.; Sõgel, J.; Mäesaar, M.; Anton, D.; Lillenberg, M.; Roasto, M. Prevalence and numbers of Listeria monocytogenes in various ready-to-eat foods over a 5-year period in Estonia. J. Food Protect. 2019, 4, 597–604. [Google Scholar] [CrossRef]
- Mäesaar, M.; Mamede, R.; Elias, T.; Roasto, M. Retrospective use of Whole-Genome Sequencing expands the multicountry outbreak cluster of Listeria monocytogenes ST1247. Int. J. Genom. 2021, 1, 6636138. [Google Scholar] [CrossRef]
- European Union Reference Laboratory for Listeria monocytogenes (EURL Lm). EURL Lm Technical Guidance Document on Challenge Tests and Durability Studies for Assessing Shelf-Life of Ready-to-Eat Foods Related to Listeria monocytogenes, Version 4 of 1 July 2021. ANSES Laboratory for Food Safety. 2021. Available online: https://food.ec.europa.eu/system/files/2021-07/biosafety_fh_mc_tech-guide-doc_listeria-in-rte-foods_en_0.pdf (accessed on 11 April 2023).
- Häkkinen, S.; Heinonen, M.; Kärenlampi, S.; Mykkänen, H.; Ruuskanen, J.; Törrönen, R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 1999, 32, 345–353. [Google Scholar] [CrossRef]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, P.; Koskar, J.; Anton, D.; Meremäe, K.; Kapp, K.; Laurson, P.; Bleive, U.; Kaldmäe, H.; Roasto, M.; Püssa, T. Antibacterial and antioxidative properties of different parts of garden rhubarb, black currant, chokeberry and blue honeysuckle. J. Sci. Food Agric. 2019, 99, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Anton, D.; Koskar, J.; Raudsepp, P.; Meremäe, K.; Kaart, T.; Püssa, T.; Roasto, M. Antimicrobial and antioxidative effects of plant powders in raw and cooked minced pork. Foods 2019, 8, 661. [Google Scholar] [CrossRef] [PubMed]
- Urbonavičiūtė, G.; Dyglė, G.; Černauskas, D.; Šipailienė, A.; Venskutonis, P.R.; Leskauskaitė, D. Alginate/pectin film containing extracts isolated from cranberry pomace and grape seeds for the preservation of herring. Foods 2023, 12, 1678. [Google Scholar] [CrossRef]
- Zavistanaviciute, P.; Klementaviciute, J.; Klupsaite, D.; Zokaityte, E.; Ruzauskas, M.; Buckiuniene, V.; Viskelis, P.; Bartkiene, E. Effects of marinades prepared from food industry by-products on quality and biosafety parameters of lamb meat. Foods 2023, 12, 1391. [Google Scholar] [CrossRef] [PubMed]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef]
- Celic, F.; Gundogdu, M.; Ercisli, S.; Kaki, B. Variation in organic acid, sugar and phenolic compounds in fruits of historical apple cultivars. Not. Bot. Horti Agrobot. 2018, 46, 622–629. [Google Scholar] [CrossRef]
- Tian, Y.; Laaksonen, O.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.; Karhu, S.; Yang, B. Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European Countries. J. Agric. Food Chem. 2019, 67, 5621–5633. [Google Scholar] [CrossRef]
- Golubkina, N.; Kharchenko, V.; Bogachuk, M.; Koshevarov, A.; Sheshnitsan, S.; Kosheleva, O.; Pirogov, N.; Caruso, G. Biochemical characteristics and elemental composition peculiarities of Rheum tataricum L. in semi-desert conditions and of European garden rhubarb. Int. J. Plant Biol. 2022, 13, 368–380. [Google Scholar] [CrossRef]
- Agius, C.; von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of sugars and organic acids in tomato fruits. Methods X 2018, 5, 537–550. [Google Scholar] [CrossRef]
- Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak organic acids: A panoply of effects on bacteria. Sci. Prog. 2003, 86 Pt 4, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Brul, S.; Coote, P. Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 1999, 15, 1–17. [Google Scholar] [CrossRef]
- EVS-EN ISO 4833-2:2013; Horizontal Method for the Enumeration of Microorganisms. Part 2: Colony Count at 30 °C by the Surface Plating Technique. ISO: Geneva, Switzerland, 2013.
- EVS-ISO 21527-1:2009; Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2009.
- EVS-EN ISO 13720:2010; Meat and Meat Products—Enumeration of Presumptive Pseudomonas spp. ISO: Geneva, Switzerland, 2010.
- EVS-EN ISO 11290-1:2017; Horizontal Method for the Detection and Enumeration of L. monocytogenes and of Listeria spp. Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- EVS-EN ISO 11290-2:2017; Horizontal Method for the Detection and Enumeration of L. monocytogenes and of Listeria spp. Part 2: Enumeration Method. ISO: Geneva, Switzerland, 2017.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 21 June 2023).
- Lado, B.H.; Yousef, A.E. Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis, and Food Safety, 3rd ed.; Ryser, E.T., Marth, E.H., Eds.; CRC Press: Boca Raton, FL, USA, 2007; p. 157213. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific opinion. Guidance on date marking and related food information: Part 1 (date marking). EFSA J. 2020, 18, 6306. [Google Scholar] [CrossRef]
- Uyttendaele, M.; De Loy-Hendrickx, A.; Vermeulen, A.; Jacxsens, L.; Debevere, J.; Devlieghere, F. Microbiological Guidelines: Support for Interpretation of Microbiological Test Results in Foods; Uyttendaele, M., Ed.; Universiteit Gent, Die Keure Professional Publishing: Brugge, Belgium, 2018; pp. 312–313. ISBN 9782874035036. [Google Scholar]
- Aydin, A.; Sudagidan, M.; Mamatova, Z.; Yurt, M.N.Z.; Ozalp, V.C.; Zornu, J.; Tavornpanich, S.; Brun, E. Bacterial skin microbiota of seabass from Aegean fish farms and antibiotic susceptibility of psychrotrophic Pseudomonas. Foods 2023, 12, 1956. [Google Scholar] [CrossRef]
- Nixon, G.M.; Armstrong, D.S.; Carzino, R.; Carlin, J.B.; Olinsky, A.; Robertson, C.F.; Grimwood, K. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J. Pediatr. 2001, 138, 699–704. [Google Scholar] [CrossRef]
- Duman, M.; Mulet, M.; Altun, S.; Saticioglu, I.B.; Ozdemir, B.; Ajmi, N.; Lalucat, J.; Elena García-Valdés, E. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture 2021, 535, 736369. [Google Scholar] [CrossRef]
- Cousin, M.A. Pseudomonas. In Encyclopedia of Food Microbiology; Robinson, R.K., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1864–1867. ISBN 9780122270703. [Google Scholar] [CrossRef]
- Membré, J.M.; Burlot, P.M. Effects of temperature, pH, and NaCl on growth and pectinolytic activity of Pseudomonas marginalis. Appl. Environ. Microbiol. 1994, 60, 2017–2022. [Google Scholar] [CrossRef]
- Gonçalves, L.D.d.A.; Piccoli, R.H.; Peres, A.d.P.; Saúde, A.V. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Braz. J. Microbiol. 2017, 48, 352–358. [Google Scholar] [CrossRef]
- Bushell, F.M.L.; Tonner, P.D.; Jabbari, S.; Schmid, A.K.; Lund, P.A. Synergistic impacts of organic acids and pH on growth of Pseudomonas aeruginosa: A comparison of parametric and bayesian non-parametric methods to model growth. Front. Microbiol. 2019, 9, 3196. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Broadbent, J.R. External concentration of organic acid anions and pH: Key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J. Food Sci. 2009, 74, 12–15. [Google Scholar] [CrossRef]
- Koskar, J.; Meremäe, K.; Püssa, T.; Anton, D.; Elias, T.; Rätsep, R.; Mäesaar, M.; Kapp, K.; Roasto, M. Microbial growth dynamics in minced meat enriched with plant powders. Appl. Sci. 2022, 12, 11292. [Google Scholar] [CrossRef]
- Bērzinš, A.; Hörman, A.; Lunden, J.; Korkeala, H. Factors associated with Listeria monocytogenes contamination of cold-smoked pork products produced in Latvia and Lithuania. Int. J. Food Microbiol. 2007, 115, 173–179. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific opinion. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, 5134. [Google Scholar] [CrossRef]
- Raudsepp, P.; Anton, D.; Roasto, M.; Meremäe, K.; Pedastsaar, P.; Mäesaar, M.; Raal, A.; Laikoja, K.; Püssa, T. The antioxidative and antimicrobial properties of the blue honeysuckle (Lonicera caerulea L.), Siberian rhubarb (Rheum rhaponticum L.) and some other plants, compared to ascorbic acid and sodium nitrite. Food Control 2013, 31, 129–135. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhang, L.-F.; Xu, J.-G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Vasilijević, B.; Mitić-Ćulafić, D.; Djekic, I.; Marković, T.; Knežević-Vukčević, J.; Tomasevic, I.; Velebit, B.; Nikolić, B. Antibacterial effect of Juniperus communis and Satureja montana essential oils against Listeria monocytogenes in vitro and in wine marinated beef. Food Control 2019, 100, 247–256. [Google Scholar] [CrossRef]
- Testa, B.; Lombardi, S.J.; Macciola, E.; Succi, M.; Tremonte, P.; Iorizzo, M. Efficacy of olive leaf extract (Olea europaea L. cv Gentile di Larino) in marinated anchovies (Engraulis encrasicolus, L.) process. Heliyon 2019, 5, e01727. [Google Scholar] [CrossRef] [PubMed]
- Popper, R.; Gibes, K. Workshop summary: Data analysis workshop: Getting the most out of just-about-right data. Food Qual. Prefer. 2004, 15, 891–899. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Interactions between apple (Malus × domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydr. Polym. 2009, 75, 251–261. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
No | Abbreviation | Marinade Composition | pH |
---|---|---|---|
1 | Control | 0.25% citric acid + 1% acetic acid + 3% salt + 3% sugar | 2.24 |
2 | APP | Apple pomace + 0.25% citric acid + 1% acetic acid + 3% salt + 3% sugar | 2.78 |
3 | BCP | Black currant pomace + 0.25% citric acid + 1% acetic acid + 3% salt + 3% sugar | 2.61 |
4 | RHP | Rhubarb pomace + 0.25% citric acid + 1% acetic acid + 3% salt + 3% sugar | 2.48 |
5 | TOP | Tomato pomace + 0.25% citric acid + 1% acetic acid + 3% salt + 3% sugar | 3.03 |
Marinating Solution | Storage (Day) | pH * | Water Activity (aw) * | Total Count (log10 cfu/g) * | δ (log10 cfu/g) ** |
---|---|---|---|---|---|
Control | 1 | 4.78 ± 0.15 | 0.982 ± 0.003 | 3.36 ± 0.03 | 0.169 |
4 | 4.81 ± 0.00 | 0.978 ± 0.003 | 2.85 ± 0.28 | ||
8 | 4.93 ± 0.01 | 0.976 ± 0.004 | 2.74 ± 0.06 | ||
11 | 4.77 ± 0.07 | 0.976 ± 0.002 | 2.95 ± 0.00 | ||
15 | 4.88 ± 0.04 | 0.979 ± 0.000 | 2.90 ± 0.08 | ||
APP | 1 | 4.88 ± 0.17 | 0.969 ± 0.006 | 3.04 ± 0.09 | 0.293 |
4 | 4.92 ± 0.01 | 0.969 ± 0.003 | 3.15 ± 0.09 | ||
8 | 4.76 ± 0.02 | 0.970 ± 0.003 | 3.08 ± 0.10 | ||
11 | 4.78 ± 0.02 | 0.969 ± 0.000 | 3.13 ± 0.12 | ||
15 | 4.75 ± 0.00 | 0.965 ± 0.003 | 2.90 ± 0.16 | ||
BCP | 1 | 4.63 ± 0.17 | 0.969 ± 0.007 | 2.46 ± 0.09 | 0.321 |
4 | 4.75 ± 0.24 | 0.972 ± 0.007 | 2.48 ± 0.00 | ||
8 | 4.64 ± 0.16 | 0.968 ± 0.000 | 2.78 ± 0.21 | ||
11 | 4.68 ± 0.16 | 0.967 ± 0.003 | 4.55 ± 0.09 | ||
15 | 4.67 ± 0.11 | 0.970 ± 0.003 | 4.16 ± 0.48 | ||
RHP | 1 | 4.58 ± 0.17 | 0.983 ± 0.003 | 2.75 ± 0.12 | 0.464 |
4 | 4.56 ± 0.03 | 0.973 ± 0.008 | 2.85 ± 0.40 | ||
8 | 4.64 ± 0.08 | 0.969 ± 0.003 | 2.78 ± 0.10 | ||
11 | 4.67 ± 0.10 | 0.971 ± 0.003 | 2.85 ± 0.04 | ||
15 | 4.64 ± 0.06 | 0.966 ± 0.001 | 2.90 ± 0.08 | ||
TOP | 1 | 4.73 ± 0.08 | 0.989 ± 0.000 | 3.22 ± 0.09 | 0.209 |
4 | 4.77 ± 0.02 | 0.972 ± 0.003 | 2.90 ± 0.00 | ||
8 | 4.74 ± 0.04 | 0.978 ± 0.001 | 2.81 ± 0.14 | ||
11 | 4.76 ± 0.07 | 0.972 ± 0.001 | 2.54 ± 0.28 | ||
15 | 4.76 ± 0.07 | 0.968 ± 0.000 | 2.40 ± 0.43 |
Marinating Solution | Storage Day | Average | ||||
---|---|---|---|---|---|---|
1 | 4 | 8 | 11 | 15 | ||
Control | 2.48 ± 0.051 | 2.08 ± 0.051 | 2.29 ± 0.047 | 2.43 ± 0.023 | 2.65 ± 0.014 | 2.39 ± 0.206 |
A, ab | C, c | AB, a | A, a | C, b | AC | |
APP | 2.43 ± 0.115 | 2.72 ± 0.023 | 2.23 ± 0.110 | 2.31 ± 0.015 | 2.08 ± 0.000 | 2.35 ± 0.235 |
A, a | AB, b | A, cd | A, ac | A, d | A | |
BCP | 2.32 ± 0.029 | 1.90 ± 0.157 | 2.35 ± 0.125 | 2.64 ± 0.000 | 1.30 ± 0.000 | 2.10 ± 0.496 |
A, a | C, b | AB, a | B, c | B, d | B | |
RHP | 2.46 ± 0.098 | 2.92 ± 0.007 | 2.47 ± 0.031 | 2.11 ± 0.095 | 2.31 ± 0.045 | 2.45 ± 0.286 |
A, a | A, b | BC, a | C, c | D, a | C | |
TOP | 2.37 ± 0.066 | 2.55 ± 0.043 | 2.58 ± 0.065 | 2.42 ± 0.082 | 2.48 ± 0.091 | 2.48 ± 0.098 |
A, a | B, ab | C, b | A, a | CD, ab | C | |
Average | 2.41 ± 0.084 | 2.43 ± 0.414 | 2.38 ± 0.148 | 2.38 ± 0.189 | 2.17 ± 0.498 | |
a | a | a | a | b |
Marinating Solution | Storage Day * | ||||
---|---|---|---|---|---|
1 | 4 | 8 | 11 | 15 | |
Control | 2.48 | −0.405 | −0.194 | −0.053 | 0.169 |
APP | 2.43 | 0.293 | −0.201 | −0.120 | −0.352 |
BCP | 2.32 | −0.419 | 0.030 | 0.321 | −1.021 |
RHP | 2.46 | 0.464 | 0.015 | −0.341 | −0.143 |
TOP | 2.37 | 0.179 | 0.209 | 0.052 | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roasto, M.; Mäesaar, M.; Püssa, T.; Anton, D.; Rätsep, R.; Elias, T.; Jortikka, S.; Pärna, M.; Kapp, K.; Tepper, M.; et al. The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout. Microorganisms 2023, 11, 2960. https://doi.org/10.3390/microorganisms11122960
Roasto M, Mäesaar M, Püssa T, Anton D, Rätsep R, Elias T, Jortikka S, Pärna M, Kapp K, Tepper M, et al. The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout. Microorganisms. 2023; 11(12):2960. https://doi.org/10.3390/microorganisms11122960
Chicago/Turabian StyleRoasto, Mati, Mihkel Mäesaar, Tõnu Püssa, Dea Anton, Reelika Rätsep, Terje Elias, Salli Jortikka, Merilin Pärna, Karmen Kapp, Marek Tepper, and et al. 2023. "The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout" Microorganisms 11, no. 12: 2960. https://doi.org/10.3390/microorganisms11122960
APA StyleRoasto, M., Mäesaar, M., Püssa, T., Anton, D., Rätsep, R., Elias, T., Jortikka, S., Pärna, M., Kapp, K., Tepper, M., Kerner, K., & Meremäe, K. (2023). The Effect of Fruit and Berry Pomaces on the Growth Dynamics of Microorganisms and Sensory Properties of Marinated Rainbow Trout. Microorganisms, 11(12), 2960. https://doi.org/10.3390/microorganisms11122960