Exploring the Potential of Sustainable Acid Whey Cheese Supplemented with Apple Pomace and GABA-Producing Indigenous Lactococcus lactis Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Materials
2.3. Production of Acid Whey Protein Cheese
2.4. Microbiological Analysis
2.5. Physicochemical Analysis
2.6. Assessment of Proteolysis
2.7. Determination of Volatile Fatty Acids
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Composition of Materials and Cheese Samples
3.2. Assessment of Proteolysis
3.3. Sugar Profile
3.4. Microbiological Analysis
3.5. Volatile Fatty Acid Content
3.6. Texture and Color Assessment
3.7. Overall Sensory Acceptability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogues—A Review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef]
- Zotta, T.; Solieri, L.; Iacumin, L.; Picozzi, C.; Gullo, M. Valorization of Cheese Whey Using Microbial Fermentations. Appl. Microbiol. Biotechnol. 2020, 104, 2749–2764. [Google Scholar] [CrossRef] [PubMed]
- Khedkar, R.; Singh, K. Food Industry Waste: A Panacea or Pollution Hazard? In Paradigms in Pollution Prevention; Jindal, T., Ed.; SpringerBriefs in Environmental Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 35–47. ISBN 978-3-319-58415-7. [Google Scholar]
- El-Tanboly, E.; El-Hofi, M.K.; Khorshid, A. Recovery of Cheese Whey, a by-Product from the Dairy Industry for Use as an Animal Feed. J. Nutr. Health Food Eng. 2017, 6, 148. [Google Scholar] [CrossRef]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Kasetiene, N.; Sekmokiene, D.; Andruleviciute, V.; Malakauskas, M. Quality and Nutritional Characteristics of Traditional Curd Cheese Enriched with Thermo-Coagulated Acid Whey Protein and Indigenous Lactococcus lactis Strain. Int. J. Food Sci. Technol. 2021, 56, 2853–2863. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zhang, G.; Sadiq, F.A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the Dairy Industry—Advances and Opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3937–3982. [Google Scholar] [CrossRef]
- Sorrentino, E.; Tipaldi, L.; Pannella, G.; Fianza, G.L.; Succi, M.; Tremonte, P. Influence of Ripening Conditions on Scamorza Cheese Quality. Int. J. Agric. Biol. Eng. 2013, 6, 71–79. [Google Scholar] [CrossRef]
- Calvete-Torre, I.; Sabater, C.; Antón, M.J.; Moreno, F.J.; Riestra, S.; Margolles, A.; Ruiz, L. Prebiotic Potential of Apple Pomace and Pectins from Different Apple Varieties: Modulatory Effects on Key Target Commensal Microbial Populations. Food Hydrocoll. 2022, 133, 107958. [Google Scholar] [CrossRef]
- Yurdugul, S.; Najmalddin, H.O. Vegetable and Fruit Waste Production Related to Consumption in Turkey and Certain Middle East Countries. Int. J. Innov. Approaches Sci. Res. 2021, 5, 14–28. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple Pomace as a Source of Dietary Fiber and Polyphenols and Its Effect on the Rheological Characteristics and Cake Making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Masoodi, F.A.; Chauhan, G.S. Use of Apple Pomace as a Source of Dietary Fiber in Wheat Bread. J. Food Process. Preserv. 1998, 22, 255–263. [Google Scholar] [CrossRef]
- Tiwari, S.P.; Narang, M.P.; Dubey, M. Effect of Feeding Apple Pomace on Milk Yield and Milk Composition in Crossbred (Red Sindhi x Jersey) Cow. Available online: http://www.lrrd.org/lrrd20/4/tiwa20062.htm (accessed on 2 February 2023).
- Verma, A.K.; Sharma, B.D.; Banerjee, R. Effect of Sodium Chloride Replacement and Apple Pulp Inclusion on the Physico-Chemical, Textural and Sensory Properties of Low Fat Chicken Nuggets. LWT Food Sci. Technol. 2010, 43, 715–719. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of Polyphenolic Content and In Vitro Antiradical Characteristics of Apple Pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Pizzolante, L.; Toschi, T.G.; Guzzo, F.; Ceoldo, S.; Marconi, A.M.; Andreetta, F.; Levi, M. Phenol Content Related to Antioxidant and Antimicrobial Activities of Passiflora spp. Extracts. Eur. Food Res. Technol. 2006, 223, 102–109. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The Effect of Apple Pomace on the Texture, Rheology and Microstructure of Set Type Yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of Freeze-Dried Immobilized Lactobacillus casei as Probiotic Adjunct Culture in Yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Mileriene, J.; Serniene, L.; Henriques, M.; Gomes, D.; Pereira, C.; Kondrotiene, K.; Kasetiene, N.; Lauciene, L.; Sekmokiene, D.; Malakauskas, M. Effect of Liquid Whey Protein Concentrate-Based Edible Coating Enriched with Cinnamon Carbon Dioxide Extract on the Quality and Shelf Life of Eastern European Curd Cheese. J. Dairy Sci. 2021, 104, 1504–1517. [Google Scholar] [CrossRef]
- Colombo, M.; Nero, L.A.; Todorov, S.D. Safety Profiles of Beneficial Lactic Acid Bacteria Isolated from Dairy Systems. Braz. J. Microbiol. 2020, 51, 787–795. [Google Scholar] [CrossRef]
- Dhakal, R.; Bajpai, V.K.; Baek, K.-H. Production of Gaba (γ—Aminobutyric Acid) by Microorganisms: A Review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Santos-Espinosa, A.; Beltrán-Barrientos, L.M.; Reyes-Díaz, R.; Mazorra-Manzano, M.Á.; Hernández-Mendoza, A.; González-Aguilar, G.A.; Sáyago-Ayerdi, S.G.; Vallejo-Cordoba, B.; González-Córdova, A.F. Gamma-Aminobutyric Acid (GABA) Production in Milk Fermented by Specific Wild Lactic Acid Bacteria Strains Isolated from Artisanal Mexican Cheeses. Ann. Microbiol. 2020, 70, 12. [Google Scholar] [CrossRef]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-Aminobutyric Acid as a Bioactive Compound in Foods: A Review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Serniene, L.; Sekmokiene, D.; Malakauskas, M. Safety Assessment and Preliminary In Vitro Evaluation of Probiotic Potential of Lactococcus lactis Strains Naturally Present in Raw and Fermented Milk. Curr. Microbiol. 2020, 77, 3013–3023. [Google Scholar] [CrossRef]
- Akbar, A.; Sadiq, M.; Ali, I.; Anwar, M.; Muhammad, N.; Muhammad, J.; Shafee, M.; Ullah, S.; Gul, Z.; Anal, A. Lactococcus lactis subsp. lactis Isolated from Fermented Milk Products and Its Antimicrobial Potential. CyTA J. Food 2019, 17, 214–220. [Google Scholar] [CrossRef]
- Lee, N.-K.; Han, K.J.; Son, S.-H.; Eom, S.J.; Lee, S.-K.; Paik, H.-D. Multifunctional Effect of Probiotic Lactococcus lactis KC24 Isolated from Kimchi. LWT Food Sci. Technol. 2015, 64, 1036–1041. [Google Scholar] [CrossRef]
- Lopes, L.A.A.; Pimentel, T.C.; Carvalho, R.D.S.F.; Madruga, M.S.; de Sousa Galvão, M.; Bezerra, T.K.A.; Barão, C.E.; Magnani, M.; Stamford, T.C.M. Spreadable Goat Ricotta Cheese Added with Lactobacillus acidophilus La-05: Can Microencapsulation Improve the Probiotic Survival and the Quality Parameters? Food Chem. 2021, 346, 128769. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Gallo, M.; Speranza, B.; Sinigaglia, M. Immobilization and Microencapsulation of Lactobacillus plantarum: Performances and In Vivo Applications. Innov. Food Sci. Emerg. Technol. 2013, 18, 196–201. [Google Scholar] [CrossRef]
- Elezi, O.; Kourkoutas, Y.; Koutinas, A.A.; Kanellaki, M.; Bezirtzoglou, E.; Barnett, Y.A.; Nigam, P. Food Additive Lactic Acid Production by Immobilized Cells of Lactobacillus brevis on Delignified Cellulosic Material. J. Agric. Food Chem. 2003, 51, 5285–5289. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Effect of Cooling Rate, Freeze-Drying, and Storage on Survival of Free and Immobilized Lactobacillus casei ATCC 393. LWT Food Sci. Technol. 2016, 69, 468–473. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Sidira, M.; Charalampopoulos, D.; Ypsilantis, P.; Galanis, A.; Simopoulos, C.; Kourkoutas, Y. Effect of Cell Immobilization on Properties of Presumptive Probiotics. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., Barbosa-Cánovas, G.V., Eds.; Food Engineering Series; Springer International Publishing: Cham, Switzerland, 2016; pp. 257–268. ISBN 978-3-319-24040-4. [Google Scholar]
- Sidira, M.; Galanis, A.; Ypsilantis, P.; Karapetsas, A.; Progaki, Z.; Simopoulos, C.; Kourkoutas, Y. Effect of Probiotic-Fermented Milk Administration on Gastrointestinal Survival of Lactobacillus casei ATCC 393 and Modulation of Intestinal Microbial Flora. J. Mol. Microbiol. Biotechnol. 2010, 19, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Kondrotiene, K.; Kasnauskyte, N.; Serniene, L.; Gölz, G.; Alter, T.; Kaskoniene, V.; Maruska, A.S.; Malakauskas, M. Characterization and Application of Newly Isolated Nisin Producing Lactococcus lactis Strains for Control of Listeria monocytogenes Growth in Fresh Cheese. LWT 2018, 87, 507–514. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Alesi, A.; Vittori, S.; Sagratini, G.; Caprioli, G. Development of Functional Whey Cheese Enriched in Vitamin D3: Nutritional Composition, Fortification, Analysis, and Stability Study during Cheese Processing and Storage. Int. J. Food Sci. Nutr. 2021, 72, 746–756. [Google Scholar] [CrossRef]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Sekmokiene, D.; Malakauskas, M. Effect of Indigenous Lactococcus lactis on Physicochemical and Sensory Properties of Thermo-Coagulated Acid Whey Protein. J. Food Process. Preserv. 2021, 45, e15420. [Google Scholar] [CrossRef]
- ISO 15214:1999; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 6611:2004; Milk and Milk Products—Enumeration of Colony-Forming Units of Yeasts and/or Moulds—Colony-Count Technique at 25 Degrees C. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 5534:2004; Cheese and Processed Cheese. Determination of the Total Solids Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- Horwitz, W. Official Methods of Analysis; AOAC-Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO 1735:2004; Cheese and Processed Cheese Products. Determination of Fat Content. Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 8968-3:2004; Milk—Determination of Nitrogen Content—Part 3: Block-Digestion Method (Semi-Micro Rapid Routine Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 5498:1981; Agricultural Food Products—Determination of Crude Fibre Content—General Method. International Organization for Standardization: Geneva, Switzerland, 1981.
- ISO/TS 11869:2012; Fermented Milks—Determination of Titratable Acidity—Potentiometric Method. International Organization for Standardization: Geneva, Switzerland, 2012.
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Santarmaki, V.; Kourkoutas, Y.; Vasiliauskaite, A.; Lauciene, L.; Malakauskas, M. Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese. Foods 2022, 11, 1311. [Google Scholar] [CrossRef]
- Rubel, I.A.; Iraporda, C.; Gallo, A.; Manrique, G.D.; Genovese, D.B. Spreadable Ricotta Cheese with Hydrocolloids: Effect on Physicochemical and Rheological Properties. Int. Dairy J. 2019, 94, 7–15. [Google Scholar] [CrossRef]
- Guiné, R.; Leitão, S.; Gonçalves, F.; Correia, P. Evaluation of Colour in a Newly Developed Food Product: Fresh Cheese with Red Fruits. J. Sci. Eng. Res. 2017, 4, 108–115. [Google Scholar]
- Fenelon, M.A.; O’Connor, P.; Guinee, T.P. The Effect of Fat Content on the Microbiology and Proteolysis in Cheddar Cheese During Ripening. J. Dairy Sci. 2000, 83, 2173–2183. [Google Scholar] [CrossRef]
- Kuchroo, C.N.; Fox, P. Soluble Nitrogen in Cheddar Cheese: Comparison of Extraction Procedures. Milchwissenschaft 1982, 37, 331–335. [Google Scholar]
- Sousa-Gallagher, M.J.; Ardö, Y.; McSweeney, P.L.H. Advances in the Study of Proteolysis during Cheese Ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Bennato, F.; Ianni, A.; Grotta, L.; Martino, G. Evaluation of Chemical-Nutritional Characteristics of Whey and Ricotta Obtained by Ewes Fed Red Grape Pomace Dietary Supplementation. Food Sci. Anim. Resour. 2022, 42, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Hasan, S.M.; Abusalloum, S.T. Chemical characteristies of Italian ricotta cheese as influenced by the proteolysis during ripening. J. Food Dairy Sci. 2014, 5, 45–53. [Google Scholar] [CrossRef]
- Koak, J.-H.; Kim, H.-S.; Choi, Y.J.; Baik, M.-Y.; Kim, B.-Y. Characterization of a Protease from Over-Matured Fruits and Development of a Tenderizer Using an Optimization Technique. Food Sci. Biotechnol. 2011, 20, 485–490. [Google Scholar] [CrossRef]
- Abd-Rabou, H.S.; El-Ziney, M.G.; Awad, S.M.; El Sohaimy, S.A.; Dabour, N.A. Impact of Probiotic and Synbiotic Supplementation on the Physicochemical, Texture and Sensory Characteristics of Wheyless Domiati-Like Cheese. MOJ Food Process. Technol. 2016, 3, 317–325. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Yvon, M.; Rijnen, L. Cheese Flavour Formation by Amino Acid Catabolism. Int. Dairy J. 2001, 11, 185–201. [Google Scholar] [CrossRef]
- Gutiérrez-Méndez, N.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Nevárez-Moorillón, G.V.; Rivera-Chavira, B. Evaluation of Aroma Generation of Lactococcus lactis with an Electronic Nose and Sensory Analysis. J. Dairy Sci. 2008, 91, 49–57. [Google Scholar] [CrossRef]
- Mazzoli, R.; Pessione, E.; Dufour, M.; Laroute, V.; Giuffrida, M.G.; Giunta, C.; Cocaign-Bousquet, M.; Loubière, P. Glutamate-Induced Metabolic Changes in Lactococcus lactis NCDO 2118 during GABA Production: Combined Transcriptomic and Proteomic Analysis. Amino Acids 2010, 39, 727–737. [Google Scholar] [CrossRef]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Sachan, S. Enzymes Used in the Food Industry: Friends or Foes? In Enzymes in Food Biotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 827–843. ISBN 978-0-12-813280-7. [Google Scholar]
- Wang, Z.; Qi, J.; Goddard, J.M. Concentrated Sugar Solutions Protect Lactase from Thermal Inactivation. Int. Dairy J. 2021, 123, 105168. [Google Scholar] [CrossRef]
- Borba, K.K.S.; Silva, F.A.; Madruga, M.S.; de Cássia Ramos do Egypto Queiroga, R.; de Souza, E.L.; Magnani, M. The Effect of Storage on Nutritional, Textural and Sensory Characteristics of Creamy Ricotta Made from Whey as Well as Cow’s Milk and Goat’s Milk. Int. J. Food Sci. Technol. 2014, 49, 1279–1286. [Google Scholar] [CrossRef]
- Sheehan, J.J.; Guinee, T.P. Effect of PH and Calcium Level on the Biochemical, Textural and Functional Properties of Reduced-Fat Mozzarella Cheese. Int. Dairy J. 2004, 14, 161–172. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Beermann, C.; Gruschwitz, N.; Walkowski, K.; Göpel, A. Growth modulating properties of polyphenolic apple pomace extract on food associated microorganisms. J. Microbiol. Biotechnol. Food Sci. 2018, 3, 176. [Google Scholar]
- Bertuzzi, A.S.; McSweeney, P.L.H.; Rea, M.C.; Kilcawley, K.N. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the Lactic Acid Bacteria in Kazak Cheese and Their Contributions to Cheese Fermentation. Front. Microbiol. 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour Formation by Lactic Acid Bacteria and Biochemical Flavour Profiling of Cheese Products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Koca, N.; Metin, M. Textural, Melting and Sensory Properties of Low-Fat Fresh Kashar Cheese Produced by Using Fat Replacers. Int. Dairy J. 2004, 14, 365–373. [Google Scholar] [CrossRef]
- Ortiz Araque, L.C.; Darré, M.; Ortiz, C.M.; Massolo, J.F.; Vicente, A.R. Quality and Yield of Ricotta Cheese as Affected by Milk Fat Content and Coagulant Type. Int. J. Dairy Technol. 2018, 71, 340–346. [Google Scholar] [CrossRef]
- Popescu, L.; Ceșco, T.; Gurev, A.; Ghendov-Mosanu, A.; Sturza, R.; Tarna, R. Impact of Apple Pomace Powder on the Bioactivity, and the Sensory and Textural Characteristics of Yogurt. Foods 2022, 11, 3565. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.E.G.D.; Garcia, E.F.; Queiroga, R.D.C.R.D.E.; Souza, E.L.D. Technological, Physicochemical and Sensory Characteristics of a Brazilian Semi-Hard Goat Cheese (Coalho) with Added Probiotic Lactic Acid Bacteria. Sci. Agric. 2012, 69, 370–379. [Google Scholar] [CrossRef]
- Meira, Q.G.S.; Magnani, M.; de Medeiros Júnior, F.C.; do Egito, R.D.C.R.; Madruga, M.S.; Gullón, B.; Gomes, A.M.P.; Pintado, M.M.E.; de Souza, E.L. Effects of Added Lactobacillus acidophilus and Bifidobacterium lactis Probiotics on the Quality Characteristics of Goat Ricotta and Their Survival under Simulated Gastrointestinal Conditions. Food Res. Int. 2015, 76, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.; O’Connell-Motherway, M.; Sybesma, W.; Hugenholtz, J.; van Sinderen, D. Riboflavin Production in Lactococcus lactis: Potential for In Situ Production of Vitamin-Enriched Foods. Appl. Environ. Microbiol. 2004, 70, 5769–5777. [Google Scholar] [CrossRef] [PubMed]
- De Souza, C.H.B.; Buriti, F.C.A.; Behrens, J.H.; Saad, S.M.I. Sensory evaluation of probiotic Minas fresh cheese with Lactobacillus acidophilus added solely or in co-culture with a thermophilic starter culture. Int. J. Food Sci. Technol. 2008, 43, 871–877. [Google Scholar] [CrossRef]
- Niro, S.; Succi, M.; Cinquanta, L.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Panfili, G. Production of functional ricotta cheese. Agro Food Ind. Hi-Tech 2013, 24, 56–59. [Google Scholar]
- Rodríguez Madrera, R.; Pando Bedriñana, R.; Suárez Valles, B. Production and Characterization of Aroma Compounds from Apple Pomace by Solid-State Fermentation with Selected Yeasts. LWT Food Sci. Technol. 2015, 64, 1342–1353. [Google Scholar] [CrossRef]
Parameter | Storage Time (Days) | Cheese Treatments | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
Moisture | 1 | 71.20 ± 0.00 aA | 68.64 ± 0.13 b | 71.72 ± 0.00 cA | 70.58 ± 0.05 dA |
7 | 70.30 ± 0.04 aB | 68.92 ± 0.16 b | 72.41 ± 0.03 cB | 69.86 ± 0.14 dB | |
14 | 71.15 ± 0.04 aA | 69.07 ± 0.03 b | 72.55 ± 0.02 cB | 70.27 ± 0.05 dA | |
Protein | 1 | 17.49 ± 0.01 aA | 16.98 ± 0.00 bA | 17.33 ± 0.01 cA | 16.32 ± 0.01 dA |
7 | 18.30 ± 0.01 aB | 17.92 ± 0.00 bB | 17.48 ± 0.01 cB | 17.27 ± 0.02 dB | |
14 | 18.29 ± 0.01 aB | 17.71 ± 0.00 bB | 17.19 ± 0.01 cC | 17.63 ± 0.01 dC | |
Fat | 1 | 5.18 ± 0.03 aA | 5.48 ± 0.04 b | 5.30 ± 0.01 ab | 5.15 ± 0.10 a |
7 | 5.62 ± 0.07 aB | 5.51 ± 0.01 a | 5.32 ± 0.04 b | 5.25 ± 0.03 c | |
14 | 5.62 ± 0.00 aB | 5.49 ± 0.03 b | 5.44 ± 0.01 b | 5.31 ± 0.01 c | |
Ash | 1 | 0.72 ± 0.04 | 0.76 ± 0.01 | 0.71 ± 0.01 | 0.71 ± 0.01 |
7 | 0.72 ± 0.00 | 0.73 ± 0.00 | 0.71 ± 0.00 | 0.72 ± 0.00 A | |
14 | 0.71 ± 0.00 | 0.71 ± 0.00 | 0.70 ± 0.00 | 0.69 ± 0.00 B |
Variables | Storage Time (Days) | Cheese Treatments | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
pH 4.6-soluble Nitrogen (g/100 g) | 1 | 1.20 ± 0.01 * a | 1.09 ± 0.00 * b | 0.91 ± 0.00 * c | 1.45 ± 0.00 * d |
14 | 1.08 ± 0.01 * a | 1.28 ± 0.00 * b | 0.94 ± 0.00 * c | 0.79 ± 0.00 * d | |
Free Amino Acids (mg/100 g) | 1 | 3.29 ± 0.01 * a | 2.91 ± 0.00 * b | 2.48 ± 0.00 * c | 3.71 ± 0.00 * d |
14 | 3.09 ± 0.00 * a | 3.56 ± 0.00 * b | 2.54 ± 0.00 * c | 2.18 ± 0.00 * d |
Parameter | Storage Time (Days) | Samples | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
Saccharose, % | 1 | nd * | 0.61 ± 0.01 | nd | 0.59 ± 0.05 |
7 | nd | 0.56 ± 0.01 | nd | 0.59 ± 0.00 | |
14 | nd | 0.61 ± 0.03 a | nd | 0.52 ± 0.03 b | |
Glucose, % | 1 | nd | 0.34 ± 0.02 aA | nd | 0.24 ± 0.02 bA |
7 | nd | 0.15 ± 0.00 B | nd | 0.14 ± 0.04 B | |
14 | nd | 0.11 ± 0.02 B | nd | 0.12 ± 0.03 B | |
Fructose, % | 1 | nd | 0.79 ± 0.01 a | nd | 0.75 ± 0.01 b |
7 | nd | 0.75 ± 0.03 a | nd | 0.67 ± 0.02 b | |
14 | nd | 0.73 ± 0.03 | nd | 0.65 ± 0.04 | |
Lactose, % | 1 | 3.57 ± 0.02 | 3.63 ± 0.01 | 3.64 ± 0.04 A | 3.57 ± 0.02 A |
7 | 3.52 ± 0.01 a | 3.55 ± 0.03 a | 3.09 ± 0.02 bB | 3.21 ± 0.02 aB | |
14 | 3.54 ± 0.02 | 3.57 ± 0.02 | 3.16 ± 0.06 B | 3.10 ± 0.05 B | |
Total sugars, % | 1 | 3.57 ± 0.02 a | 5.37 ± 0.01 b | 3.64 ± 0.04 aA | 5.13 ± 0.01 bA |
7 | 3.22 ± 0.01 a | 5.27 ± 0.01 b | 3.20 ± 0.00 aB | 4.60 ± 0.04 bB | |
14 | 3.27 ± 0.03 a | 5.20 ± 0.01 b | 3.16 ± 0.06 aB | 4.39 ± 0.15 bB | |
Fiber, % | 1 | nd | 1.10 ± 0.00 | nd | 1.15 ± 0.07 |
7 | nd | 1.20 ± 0.00 | nd | 1.15 ± 0.07 | |
14 | nd | 1.20 ± 0.00 | nd | 1.20 ± 0.00 | |
pH | 1 | 4.68 ± 0.01 a | 4.59 ± 0.02 b | 4.69 ± 0.01 aA | 4.72 ± 0.05 a |
7 | 4.66 ± 0.03 a | 4.66 ± 0.01 a | 4.78 ± 0.02 bB | 4.72 ± 0.02 | |
14 | 4.69 ± 0.01 | 4.62 ± 0.07 | 4.71 ± 0.03 A | 4.66 ± 0.04 | |
Lactic acid, mg/100 g | 1 | 804.50 ± 2.12 aA | 703.50 ± 3.54 bA | 718.50 ± 0.71 cA | 719.00 ± 1.41 dA |
7 | 790.00 ± 2.83 aB | 761.00 ± 2.83 bB | 706.50 ± 3.54 cA | 666.50 ± 2.12 dB | |
14 | 584.50 ± 2.12 aC | 681.00 ± 11.31 bA | 568.50 ± 6.36 aB | 680.50 ± 10.61 bB |
Media | Storage Time (Days) | Samples | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
M17 | 1 | <1 | <1 | 6.66 ± 0.02 A | 6.65 ± 0.17 A |
7 | <1 | <1 | 6.18 ± 0.08 * B | 6.32 ± 0.02 * A | |
14 | <1 | <1 | 5.28 ± 0.26 C | 5.51 ± 0.43 B |
Volatile Fatty Acids, ppm | Storage Time (Days) | Samples | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
Acetic acid | 1 | 3.06 ± 0.01 aA | 2.97 ± 0.01 bA | 3.04 ± 0.02 abA | 2.98 ± 0.01 bA |
14 | 2.60 ± 0.03 aB | 2.70 ± 0.01 bB | 2.76 ± 0.03 bB | 3.04 ± 0.01 cB | |
Propionic acid | 1 | 0.04 ± 0.00 | 0.04 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.01 |
14 | 0.03 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.00 | |
Butyric acid | 1 | 0.13 ± 0.00 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.13 ± 0.01 |
14 | 0.11 ± 0.00 a | 0.13 ± 0.00 b | 0.12 ± 0.00 ab | 0.11 ± 0.01 ac |
Parameters | Storage Time (Days) | Cheese Treatments | |||
---|---|---|---|---|---|
C | C + AP | C + LL16 | C + AP + LL16 | ||
Texture, mJ | 1 | 0.33 ± 0.06 aA | 1.03 ± 0.06 bA | 0.40 ± 0.00 aA | 0.40 ± 0.01 aA |
7 | 0.20 ± 0.00 aB | 0.80 ± 0.20 bAB | 0.70 ± 0.10 bB | 0.40 ± 0.00 aA | |
14 | 0.47 ± 0.06 aC | 0.63 ± 0.06 bB | 0.57 ± 0.06 aC | 0.70 ± 0.00 bB | |
L* | 1 | 91.98 ± 0.69 aA | 89.08 ± 2.70 aA | 96.49 ± 1.30 bA | 89.85 ± 1.67 aA |
7 | 103.99 ± 5.89 aB | 97.11 ± 1.57 bB | 107.79 ± 1.78 aB | 98.56 ± 0.79 bB | |
14 | 105.30 ± 1.15 aB | 96.46 ± 0.28 bB | 104.39 ± 0.91 aB | 98.66 ± 0.62 cB | |
a* | 1 | −0.84 ± 0.09 aA | 1.31 ± 0.07 bA | −1.18 ± 0.11 c | 1.27 ± 0.03 bA |
7 | −1.40 ± 0.16 aB | 2.24 ± 0.10 bB | −1.15 ± 0.05 a | 1.47 ± 0.07 cB | |
14 | −1.29 ± 0.06 aB | 2.17 ± 0.11 bB | −1.29 ± 0.11 a | 1.76 ± 0.11 cC | |
b* | 1 | 18.97 ± 0.25 aA | 20.58 ± 0.57 bA | 19.07 ± 0.27 aA | 20.70 ± 0.47 bA |
7 | 21.24 ± 0.92 aB | 25.35 ± 0.41 bB | 21.95 ± 0.39 aB | 22.80 ± 0.21 cB | |
14 | 22.58 ± 0.05 aB | 24.35 ± 0.31 bB | 20.99 ± 0.28 cC | 23.28 ± 0.08 dB | |
ΔE (color change) | 1 | - | - | - | - |
7 | 12.29 ± 5.47 | 9.43 ± 3.44 | 11.66 ± 1.28 | 8.96 ± 2.45 | |
14 | 13.86 ± 1.74 a | 8.36 ± 2.91 b | 8.14 ± 2.11 b | 9.19 ± 1.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileriene, J.; Serniene, L.; Kasparaviciene, B.; Lauciene, L.; Kasetiene, N.; Zakariene, G.; Kersiene, M.; Leskauskaite, D.; Viskelis, J.; Kourkoutas, Y.; et al. Exploring the Potential of Sustainable Acid Whey Cheese Supplemented with Apple Pomace and GABA-Producing Indigenous Lactococcus lactis Strain. Microorganisms 2023, 11, 436. https://doi.org/10.3390/microorganisms11020436
Mileriene J, Serniene L, Kasparaviciene B, Lauciene L, Kasetiene N, Zakariene G, Kersiene M, Leskauskaite D, Viskelis J, Kourkoutas Y, et al. Exploring the Potential of Sustainable Acid Whey Cheese Supplemented with Apple Pomace and GABA-Producing Indigenous Lactococcus lactis Strain. Microorganisms. 2023; 11(2):436. https://doi.org/10.3390/microorganisms11020436
Chicago/Turabian StyleMileriene, Justina, Loreta Serniene, Beatrice Kasparaviciene, Lina Lauciene, Neringa Kasetiene, Gintare Zakariene, Milda Kersiene, Daiva Leskauskaite, Jonas Viskelis, Yiannis Kourkoutas, and et al. 2023. "Exploring the Potential of Sustainable Acid Whey Cheese Supplemented with Apple Pomace and GABA-Producing Indigenous Lactococcus lactis Strain" Microorganisms 11, no. 2: 436. https://doi.org/10.3390/microorganisms11020436
APA StyleMileriene, J., Serniene, L., Kasparaviciene, B., Lauciene, L., Kasetiene, N., Zakariene, G., Kersiene, M., Leskauskaite, D., Viskelis, J., Kourkoutas, Y., & Malakauskas, M. (2023). Exploring the Potential of Sustainable Acid Whey Cheese Supplemented with Apple Pomace and GABA-Producing Indigenous Lactococcus lactis Strain. Microorganisms, 11(2), 436. https://doi.org/10.3390/microorganisms11020436