Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argudín, M.A.; Lauzat, B.; Kraushaar, B.; Alba, P.; Agerso, Y.; Cavaco, L.; Butaye, P.; Porrero, M.C.; Battisti, A.; Tenhagen, B.-A.; et al. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet. Microbiol. 2016, 191, 88–95. [Google Scholar] [CrossRef]
- Deng, W.; Quan, Y.; Yang, S.; Guo, L.; Zhang, X.; Liu, S.; Chen, S.; Zhou, K.; He, L.; Li, B.; et al. Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance. Microb. Drug Resist. 2018, 24, 782–791. [Google Scholar] [PubMed] [Green Version]
- Guo, L.; Long, M.; Huang, Y. Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas. J. Appl. Microbiol. 2015, 119, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, L.; Kromann, S.; Meng, H. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. Foodborne Pathog. Dis. 2017, 14, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Nagaya, Y.; Pradel, E.; Ooka, T.; Ogura, Y.; Katsura, K.; Kurokawa, K.; Oshima, K.; Hattori, M.; Parkhill, J.; et al. Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biol. Evol. 2014, 6, 2096–2110. [Google Scholar] [PubMed] [Green Version]
- Juhas, M.; Van Der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic islands: Tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [PubMed] [Green Version]
- Mc Carlie, S.; Boucher, C.; Bragg, R. Molecular basis of bacterial disinfectant resistance. Drug Resist. Updat. 2020, 48, 100672. [Google Scholar]
- Verma, J.; Bag, S.; Saha, B.; Kumar, P.; Ghosh, T.S.; Dayal, M.; Senapati, T.; Mehra, S.; Dey, P.; Desigamani, A.; et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2019, 116, 6226–6231. [Google Scholar]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microbiol. 2018, 84, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, C.; Tilley, K.E.; Brinkman, F.S.L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 2019, 20, 1685–1698. [Google Scholar]
- Langille, M.G.I.; Hsiao, W. genomic islands using bioinformatics approaches. llia. W.L.; Brinkman, F.S.L. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 2010, 8, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Hacker, J.; Bender, L.; Ott, M.; Wingender, J.; Lund, B.; Marre, R.; Goebel, W. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 1990, 8, 213–225. [Google Scholar] [PubMed]
- Juhas, M.; Power, P.M.; Harding, R.M.; Ferguson, D.J.P.; Dimopoulou, I.D.; Elamin, A.R.E.; Mohd-Zain, Z.; Hood, D.W.; Adegbola, R.; Erwin, A.; et al. Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol. 2007, 8, R237. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar]
- Li, W.; Wang, A. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci-evidence from genomic sequences. BMC Microbiol. 2021, 21, 55. [Google Scholar] [CrossRef]
- Gilmour, M.W.; Graham, M.; Van Domselaar, G.; Tyler, S.; Kent, H.; Trout-Yakel, K.M.; Larios, O.; Allen, V.; Lee, B.; Nadon, C. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 2010, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, J.; Ziegler, J.; Walecka-Zacharska, E.; Reimer, A.; Kitts, D.D.; Gilmour, M.W. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl. Environ. Microbiol. 2015, 82, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Ren, S.; Geng, Y.; Yu, T.; Li, Y.; Liu, L.; Liu, G.; Wang, H.; Shi, L. The sug operon involves in resistance to quaternary ammonium compounds in Listeria monocytogenes EGD-e. Appl. Microbiol. Biotechnol. 2020, 104, 7093–7104. [Google Scholar] [CrossRef]
- Mc Carlie, S.; Hellmuth, J.; Newman, J.; Boucher, C.E.; Bragg, R.R. Genome Sequence of Resistant Serratia sp. Strain HRI, Isolated from a Bottle of Didecyldimethylammonium Chloride-Based Disinfectant. Microbiol. Resour. Announc. 2020, 9, e00095-20. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Sun, L.; Yu, J.; Jin, Q. VFDB 2008 release: An enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res. 2008, 36, D539–D542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, C.; Abraham, D.; Wattam, A.R.; Wilson, M.J.C.; Shukla, M.; Yoo, H.S.; Sobral, B.W. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 2015, 31, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Ho Sui, S.J.; Fedynak, A.; Hsiao, W.W.L.; Langille, M.G.I.; Brinkman, F.S.L. The association of virulence factors with genomic islands. PLoS One 2009, 4, e8094. [Google Scholar] [CrossRef]
- Dhillon, B.K.; Laird, M.R.; Shay, J.A.; Winsor, G.L.; Lo, R.; Nizam, F.; Pereira, S.K.; Waglechner, N.; McArthur, A.G.; Langille, M.G.I.; et al. IslandViewer 3: More flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res. 2015, 43, W104–W108. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [PubMed] [Green Version]
- Vong, K.; Auclair, K. Understanding and overcoming aminoglycoside resistance caused by N-6′-acetyltransferase. Medchemcomm 2012, 3, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Liu, D.; Wang, L.; Wang, Y.; Zang, Z.; Liu, Z.; Song, B.; Gu, L.; Fan, Z.; Yang, S.; et al. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na+(Li+)/H+ Transport. Front. Microbiol. 2020, 11, 556. [Google Scholar] [PubMed]
- Liu, Q. TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Descheemaeker, P.; Chapelle, S.; Lammens, C.; Hauchecorne, M.; Wijdooghe, M.; Vandamme, P.; Ieven, M.; Goossens, H. Macrolide resistance and erythromycin resistance determinants among Belgian Streptococcus pyogenes and Streptococcus pneumoniae isolates. J. Antimicrob. Chemother. 2000, 45, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijima, T. Distribution of mefE and ermB genes in macrolide-resistant strains of Streptococcus pneumoniae and their variable susceptibility to various antibiotics. J. Antimicrob. Chemother. 1999, 43, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-H.; Lin, Y.-T.; Chen, P.-Y.; Li, L.-H.; Ning, H.-C.; Yang, T.-C. ClpA and HtpX Proteases Are Involved in Intrinsic Aminoglycoside Resistance of Stenotrophomonas maltophilia and Are Potential Aminoglycoside Adjuvant Targets. Antimicrob. Agents Chemother. 2018, 62, e00554-18. [Google Scholar] [CrossRef] [Green Version]
- Basta, D.W.; Angeles-Albores, D.; Spero, M.A.; Ciemniecki, J.A.; Newman, D.K. Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest. Proc. Natl. Acad. Sci. USA 2020, 117, 4358–4367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, B.; Li, M.; Shi, J.; Long, Y.; Jin, Y.; Bai, F.; Cheng, Z.; Jin, S.; Wu, W. HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins 2018, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.L.; Wood, T.K. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiol. Open 2016, 5, 499–511. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, S.J.; Hall, R.M. Loss and gain of aminoglycoside resistance in global clone 2 Acinetobacter baumannii in Australia via modification of genomic resistance islands and acquisition of plasmids. J. Antimicrob. Chemother. 2016, 71, 2432–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Zhang, L.; Wang, G.; Lin, Y.; Ramanathan, S.; Yang, G.; Lin, W.; Lin, X. The LysR-Type Transcriptional Regulator YeeY Plays Important Roles in the Regulatory of Furazolidone Resistance in Aeromonas hydrophila. Front. Microbiol. 2020, 11, 577376. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zhu, J.; Feng, L.; Li, J.; Liu, X. Characterization of LuxI/LuxR and their regulation involved in biofilm formation and stress resistance in fish spoilers Pseudomonas fluorescens. Int. J. Food Microbiol. 2019, 297, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, J. Role and regulation of bacterial LuxR-like regulators. J. Cell. Biochem. 2011, 112, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- Manjasetty, B.A.; Halavaty, A.S.; Luan, C.-H.; Osipiuk, J.; Mulligan, R.; Kwon, K.; Anderson, W.F.; Joachimiak, A. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. J. Struct. Biol. 2016, 194, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Skurray, R.A.; Tam, R.; Saier, M.H.; Turner, R.J.; Weiner, J.H.; Goldberg, E.B.; Grinius, L.L. The SMR family: A novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol. 1996, 19, 1167–1175. [Google Scholar] [CrossRef]
- Cuthbertson, L.; Nodwell, J.R. The TetR Family of Regulators. Microbiol. Mol. Biol. Rev. 2013, 77, 440–475. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.L.; Martínez-Bueno, M.; Molina-Henares, A.J.; Terán, W.; Watanabe, K.; Zhang, X.; Gallegos, M.T.; Brennan, R.; Tobes, R. The TetR Family of Transcriptional Repressors. Microbiol. Mol. Biol. Rev. 2005, 69, 326–356. [Google Scholar] [CrossRef] [Green Version]
Genomic Island | Antimicrobial Resistance Genes | Hypothetical Proteins | Toxin-Antitoxin Systems | Mobility Genes | Non-Resistance Efflux Genes | Transcriptional Regulators |
---|---|---|---|---|---|---|
11 | 7 | 40 | 2 * | 9 | 0 | 5 |
18 | 2 | 0 | 0 | 0 | 1 | 0 |
20 | 3 | 10 | 0 | 11 | 1 | 3 |
23 | 1 | 1 | 0 | 0 | 0 | 0 |
28 | 1 | 1 | 0 | 3 | 1 | 0 |
33 | 1 | 5 | 0 | 0 | 0 | 0 |
42 | 13 | 23 | 7 * | 13 | 0 | 0 |
46 | 1 | 5 | 0 | 1 | 0 | 0 |
76 | 3 | 28 | 2 | 5 | 0 | 1 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Periplasmic fimbrial chaperone StfD | 3 | 764 | 762 | |
2 | Hypothetical protein | 799 | 1455 | 657 | Fimbrial protein (Serratia) |
3 | Hypothetical protein | 1472 | 1966 | 495 | Fimbrial protein (Serratia marcescens) |
4 | MrfF | 1983 | 2474 | 492 | |
5 | Minor fimbrial subunit StfG | 2484 | 3014 | 531 | |
6 | Hypothetical protein | 3158 | 3697 | 540 | LuxR C-terminal-related transcriptional regulator (Serratia marcescens) |
7 | Hypothetical protein | 3715 | 3888 | 174 | |
8 | IS1 protein InsB | 4211 | 3969 | 243 | |
9 | Inner-membrane proton/drug antiporter (MSF type) of tripartite multidrug efflux system | 6496 | 4208 | 2289 | |
10 | Transcriptional regulator, LysR family | 6637 | 7539 | 903 | |
11 | Colicin immunity protein PA0984 | 7645 | 8010 | 366 | |
12 | YpjF toxin protein | 8619 | 8251 | 369 | |
13 | Uncharacterized protein YagB | 9016 | 8678 | 339 | |
14 | UPF0758 family protein | 9526 | 9047 | 480 | DNA repair protein RadC (Serratia marcescens) |
15 | Hypothetical protein | 9541 | 9765 | 225 | |
16 | Hypothetical protein | 9887 | 10,069 | 183 | |
17 | FIG01222608: hypothetical protein | 10,562 | 10,206 | 357 | |
18 | Hypothetical protein | 11,008 | 10,697 | 312 | |
19 | Hypothetical protein | 11,323 | 11,021 | 303 | |
20 | Hypothetical protein | 11,845 | 11,342 | 504 | |
21 | Hypothetical protein | 12,570 | 11,842 | 729 | WYL-domain-containing protein (Serratia marcescens) |
22 | Hypothetical protein | 13,008 | 12,772 | 237 | |
23 | Hypothetical protein | 13,903 | 13,019 | 885 | |
24 | Hypothetical protein | 14,462 | 15,091 | 630 | Inovirus Gp2 family protein (Serratia marcescens) |
25 | Hypothetical protein | 15,213 | 15,425 | 213 | AlpA family phage regulatory protein (Serratia marcescens) |
26 | Hypothetical protein | 15,474 | 15,632 | 159 | |
27 | Hypothetical protein | 17,366 | 15,774 | 1593 | DUF3987-domain-containing protein (Serratia marcescens) |
28 | Hypothetical protein | 17,395 | 17,535 | 141 | |
29 | Hypothetical protein | 17,784 | 17,963 | 180 | ShlB/FhaC/HecB family hemolysin secretion/activation protein (unclassified Serratia) |
30 | Hypothetical protein | 17,960 | 18,208 | 249 | |
31 | Phosphoglycerate mutase (EC 5.4.2.11) | 18,243 | 18,860 | 618 | |
32 | Il-IS_2, transposase | 19,280 | 18,843 | 438 | |
33 | Hypothetical protein | 20,125 | 19,277 | 849 | SMP-30/gluconolactonase/LRE family protein (Serratia marcescens) |
34 | Oxidoreductase, short-chain dehydrogenase/reductase family | 20,988 | 20,122 | 867 | |
35 | Transcriptional regulator, LysR family | 21,133 | 21,426 | 294 | |
36 | Mobile element protein | 22,121 | 21,606 | 516 | |
37 | Insertion element IS401 (Burkholderia multivorans) transposase | 22,400 | 22,173 | 228 | |
38 | Phage integrase | 22,837 | 22,553 | 285 | |
39 | Phage-associated DNA N-6-adenine methyltransferase | 23236 | 22,955 | 282 | |
40 | Hypothetical protein | 23,677 | 23,531 | 147 | |
41 | Hypothetical protein | 23,838 | 23,680 | 159 | |
42 | Hypothetical protein | 23,837 | 23,971 | 135 | |
43 | Hypothetical protein | 24,125 | 23,997 | 129 | |
44 | FIG01055438: hypothetical protein | 24,208 | 24,387 | 180 | |
45 | Hypothetical protein | 24,456 | 24,620 | 165 | |
46 | Hypothetical protein | 24,617 | 24,712 | 96 | |
47 | Hypothetical protein | 24,706 | 24,834 | 129 | |
48 | Hypothetical protein | 25,094 | 24,936 | 159 | |
49 | Efflux transport system, outer membrane factor (OMF) lipoprotein | 25,470 | 26,885 | 1416 | |
50 | ABC-type antimicrobial peptide transport system, permease component | 26,885 | 28,021 | 1137 | |
51 | ABC-type antimicrobial peptide transport system, ATPase component | 28,039 | 28,764 | 726 | |
52 | Probable Co/Zn/Cd efflux system membrane fusion protein | 28,775 | 29,683 | 909 | |
53 | 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase related protein | 29,715 | 30,416 | 702 | |
54 | Hydrolase, alpha/beta fold family | 30,413 | 31,303 | 891 | |
55 | Permease of the drug/metabolite transporter (DMT) superfamily | 31,300 | 31,659 | 360 | |
56 | Permease of the drug/metabolite transporter (DMT) superfamily | 31,662 | 32,087 | 426 | |
57 | Hypothetical protein | 33,118 | 32,228 | 891 | |
58 | FIG110192: hypothetical protein | 34,184 | 33,120 | 1065 | Peptidogalycan biosysnthesis protein (Serratia) |
59 | Aminotransferase, class III | 35,560 | 34184 | 1377 | |
60 | Mobile element protein | 35,743 | 35,856 | 114 | |
61 | Hypothetical protein | 36,927 | 35,869 | 1059 | ATP-binding protein (Serratia sp. HRI) |
62 | Two-component transcriptional response regulator, LuxR family | 37,624 | 36,929 | 696 | |
63 | Hypothetical protein | 37,940 | 38,161 | 222 | |
64 | Core lipopolysaccharide phosphoethanolamine transferase EptC | 38,236 | 39,933 | 1698 | |
65 | Two-component response regulator | 40,672 | 40,502 | 171 | |
66 | Two-component response regulator | 40,948 | 40,685 | 264 | |
67 | Hypothetical protein | 41,166 | 41,032 | 135 | |
68 | Hypothetical protein | 42,468 | 41,395 | 1074 | RelA/SpoT-domain-containing protein (Serratia) |
69 | Hypothetical protein | 42,751 | 42,542 | 210 | |
70 | Hypothetical protein | 42,965 | 42,822 | 144 | |
71 | Hydrolase, alpha/beta fold family | 43,881 | 43,006 | 876 | |
72 | Monooxygenase, flavin-binding family | 45,404 | 43,878 | 1527 | |
73 | Transcriptional regulator, AcrR family | 46,310 | 45,717 | 594 | |
74 | Hypothetical protein | 46,429 | 46,310 | 120 | |
75 | Hypothetical protein | 46,428 | 46,628 | 201 | |
76 | MmcH | 46,648 | 47,535 | 888 | |
77 | Hypothetical protein | 47,657 | 47,857 | 201 | |
78 | Possible regulatory protein Trx | 47,870 | 49,126 | 1257 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Conjugative transfer protein TrbK | 326 | 3 | 324 | |
2 | Conjugative transfer protein TrbJ | 1082 | 339 | 744 | |
3 | Conjugative transfer protein TrbE | 3529 | 1079 | 2451 | |
4 | Conjugative transfer protein TrbD | 3811 | 3542 | 270 | |
5 | Conjugative transfer protein TrbC | 4194 | 3808 | 387 | |
6 | Conjugative transfer protein TrbB | 5261 | 4191 | 1071 | |
7 | CopG-domain-containing protein | 5734 | 5258 | 477 | |
8 | Coupling protein VirD4, ATPase required for T-DNA transfer | 7728 | 5731 | 1998 | |
9 | Transcriptional regulator, LysR family | 8034 | 8939 | 906 | |
10 | Hypothetical protein | 9221 | 9751 | 531 | |
11 | Transposase and inactivated derivatives | 9796 | 10,032 | 237 | |
12 | Small multidrug resistance family (SMR) protein | 10,578 | 10,261 | 318 | |
13 | Probable lipoprotein | 10,900 | 10,637 | 264 | |
14 | Transcriptional regulator, LysR family | 11,838 | 10,933 | 906 | |
15 | Hypothetical protein | 13,335 | 11,932 | 1404 | TolC family protein |
16 | Transcriptional regulator, TetR family | 13,446 | 14,087 | 642 | |
17 | Probable Co/Zn/Cd efflux system membrane fusion protein | 14,084 | 15,250 | 1167 | MULTISPECIES: efflux RND transporter periplasmic adaptor subunit |
18 | Hypothetical protein | 15,275 | 18,379 | 3105 | MULTISPECIES: efflux RND transporter permease subunit |
19 | Hypothetical protein | 18,460 | 18,807 | 348 | MULTISPECIES: SMR family transporter |
20 | Hypothetical protein | 18,823 | 19,443 | 621 | |
21 | ABC transporter, permease protein (cluster 9, phospholipid) | 19,440 | 20,597 | 1158 | |
22 | Mobile element protein | 21,909 | 21,205 | 705 | |
23 | Integron integrase IntI1 | 21,900 | 22,196 | 297 | |
24 | Mobile element protein | 22,571 | 23,209 | 639 | |
25 | Transposase | 23,176 | 26,100 | 2925 | |
26 | Beta-glucosidase (EC 3.2.1.21) | 27,418 | 26,180 | 1239 | |
27 | Putative polysaccharide export protein YccZ precursor | 27,383 | 28,471 | 1089 | |
28 | Tyrosine-protein kinase (EC 2.7.10.2) | 28,730 | 30,892 | 2163 | |
29 | Hypothetical protein | 30,933 | 32,171 | 1239 | |
30 | Hypothetical protein | 32,197 | 33,204 | 1008 | |
31 | Hypothetical protein | 33,223 | 33,972 | 750 | |
32 | Poly(glycerol-phosphate) alpha-glucosyltransferase (EC 2.4.1.52) | 34,315 | 35,256 | 942 | |
33 | Hypothetical protein | 35,283 | 36,419 | 1137 | |
34 | UDP-galactopyranose mutase (EC 5.4.99.9) | 36,474 | 37,625 | 1152 | |
35 | Low-molecular-weight protein-tyrosine-phosphatase (EC 3.1.3.48) => Etp | 38,004 | 38,438 | 435 | |
36 | Tyrosine-protein kinase (EC 2.7.10.2) | 38,450 | 40,621 | 2172 | |
37 | Hypothetical protein | 40,702 | 41,862 | 1161 | |
38 | Hypothetical protein | 41,828 | 43,288 | 1461 | MULTISPECIES: aldo/keto reductase |
39 | Glycosyltransferase | 43,278 | 44,186 | 909 | |
40 | Glycosyl transferase, group 1 | 44,233 | 45,276 | 1044 | |
41 | Glycosyltransferase | 45,351 | 47,300 | 1950 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Hypothetical protein | 923 | 411 | 513 | Hypothetical protein (Serratia sp. SSNIH1) |
2 | Polyketide synthase modules and related proteins | 4124 | 1122 | 3003 | |
3 | Hypothetical protein | 4338 | 4222 | 117 | |
4 | Autoinducer synthase | 4424 | 5584 | 1161 | |
5 | Hypothetical protein | 5859 | 6110 | 252 | |
6 | ABC-type multidrug transport system, permease component | 6668 | 6546 | 123 | |
7 | Hypothetical protein | 6969 | 6658 | 312 | Multidrug efflux ABC transporter permease/ATP-binding subunit SmdA (Serratia marcescens) (WP_033641139.1) |
8 | Hypothetical protein | 7032 | 8279 | 1248 | MbeB family mobilization protein (Serratia marcescens) |
9 | MobA | 8378 | 8599 | 222 | |
10 | Small multidrug resistance family (SMR) protein | 8666 | 8998 | 333 | |
11 | Hypothetical protein | 9165 | 8995 | 171 | GNAT family N-acetyltransferase (Serratia marcescens) |
12 | Hypothetical protein | 9377 | 9207 | 171 | |
13 | Hypothetical protein | 9746 | 9531 | 216 | |
14 | Mobilization protein MobC | 10,181 | 10,339 | 159 | |
15 | Hypothetical protein | 11,258 | 10,875 | 384 | |
16 | Hypothetical protein | 11,371 | 12,447 | 1077 | |
17 | Hypothetical protein | 13,804 | 12,512 | 1293 | Site-specific integrase (Serratia) |
18 | Probable site-specific recombinase | 15,011 | 13,806 | 1206 | |
19 | Transcriptional regulator, AlpA-like | 15,550 | 15,344 | 207 | |
20 | Hypothetical protein | 16,511 | 15,651 | 861 | DUF6387 family protein (Serratia) |
21 | Hypothetical protein | 16,691 | 16,575 | 117 | |
22 | Hypothetical protein | 17,617 | 16,709 | 909 | DUF4760-domain-containing protein (Enterobacterales) |
23 | Hypothetical protein | 17,972 | 17,856 | 117 | |
24 | Hypothetical protein | 18,388 | 19,452 | 1065 | |
25 | Repeat region | 19,395 | 19,521 | 127 | |
26 | Replication protein | 20,789 | 19,809 | 981 | |
27 | Hypothetical protein | 21,202 | 20,993 | 210 | |
28 | Hypothetical protein | 21,229 | 21,357 | 129 | Conjugal transfer protein TraD (Yersinia) |
29 | Hypothetical protein | 21,836 | 21,384 | 453 | |
30 | Mobilization protein | 21,871 | 23,106 | 1236 | |
31 | Hypothetical protein | 23,121 | 23,711 | 591 | tRNA modification GTPase (Yersinia enterocolitica) |
32 | Restriction enzyme BcgI alpha chain-like protein (EC:2.1.1.72) | 23,769 | 25,805 | 2037 | |
33 | Hypothetical protein | 25,847 | 26,941 | 1095 | |
34 | YoeB toxin protein | 27,235 | 26,981 | 255 | |
35 | YefM protein (antitoxin to YoeB) | 27,483 | 27,232 | 252 | |
36 | Hypothetical protein | 27,667 | 28,959 | 1293 | |
37 | Repeat region | 27,757 | 27,883 | 127 | |
38 | Phage integrase | 28,952 | 29,149 | 198 | |
39 | Type I restriction-modification system, restriction subunit R (EC 3.1.21.3) | 29,715 | 30,176 | 462 | |
40 | Hypothetical protein | 30,943 | 30,173 | 771 | MFS transporter (Serratia) |
41 | Hypothetical protein | 31,191 | 31,382 | 192 | GNAT family N-acetyltransferase (Paenibacillus xylanexedens) |
42 | Hypothetical protein | 31,502 | 31,410 | 93 | Phytanoyl-CoA dioxygenase family protein (Serratia) |
43 | Hypothetical protein | 31,702 | 32,502 | 801 | |
44 | Nodulation protein nolO (EC 2.1.3.-) | 32,512 | 34,344 | 1833 | |
45 | Hypothetical protein | 34,355 | 34,492 | 138 | |
46 | Hypothetical protein | 34,496 | 35,602 | 1107 | G-D-S-L family lipolytic protein (Serratia) |
47 | Hypothetical protein | 35,662 | 36,966 | 1305 | ATP-grasp-domain-containing protein (Serratia) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarlie, S.J.; Boucher, C.E.; Bragg, R.R. Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms 2023, 11, 515. https://doi.org/10.3390/microorganisms11020515
McCarlie SJ, Boucher CE, Bragg RR. Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms. 2023; 11(2):515. https://doi.org/10.3390/microorganisms11020515
Chicago/Turabian StyleMcCarlie, Samantha J., Charlotte E. Boucher, and Robert R. Bragg. 2023. "Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements" Microorganisms 11, no. 2: 515. https://doi.org/10.3390/microorganisms11020515
APA StyleMcCarlie, S. J., Boucher, C. E., & Bragg, R. R. (2023). Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms, 11(2), 515. https://doi.org/10.3390/microorganisms11020515