Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. perfringens Strains
2.2. Animals
2.3. Intracloacal Inoculation
2.4. Experimental Challenge and Gross Pathology
2.5. Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Intracloacal Inoculation with the Food Dye
3.2. Gross Pathology and Body Weight Gains
3.3. Immune System Gene Expression in Lymphoid Tissues
3.3.1. Cecal Tonsils
3.3.2. Bursa of Fabricius
3.3.3. Harderian Gland
3.3.4. Spleen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Coursodon, C.F.; Glock, R.D.; Moore, K.L.; Cooper, K.K.; Songer, J.G. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 2012, 18, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Lillehoj, H.S.; Sun, Z.; Lee, Y.; Zhao, H.; Xianyu, Z.; Yan, X.; Wang, Y.; Lin, S.; Liu, L.; et al. Characterization of Virulent netB(+)/tpeL(+) Clostridium perfringens Strains from Necrotic Enteritis-Affected Broiler Chicken Farms. Avian Dis. 2019, 63, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Fletcher, O.J. Mucosal and systemic lymphoid immune responses against Clostridium perfringens strains with variable virulence in the production of necrotic enteritis in broiler chickens. Avian Pathol. 2022, 52, 108–118. [Google Scholar] [CrossRef]
- Wade, B.; Keyburn, A. The true cost of necrotic enteritis. World Poultry 2015. Available online: https://www.poultryworld.net/poultry/the-true-cost-of-necrotic-enteritis/ (accessed on 12 March 2023).
- Alizadeh, M.; Shojadoost, B.; Boodhoo, N.; Astill, J.; Taha-Abdelaziz, K.; Hodgins, D.C.; Kulkarni, R.R.; Sharif, S. Necrotic enteritis in chickens: A review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim. Health Res. Rev. 2021, 22, 147–162. [Google Scholar] [CrossRef]
- Prescott, J.F.; Smyth, J.A.; Shojadoost, B.; Vince, A. Experimental reproduction of necrotic enteritis in chickens: A review. Avian Pathol. 2016, 45, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Chasser, K.M.; Wilson, K.M.; Briggs, W.N.; Duff, A.F.; Bielke, L.R. Comparison of multiple methods for induction of necrotic enteritis in broilers: II. Impact on the growth curve. Poult. Sci. 2019, 98, 5488–5496. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar] [CrossRef]
- Lu, Y.; Sarson, A.J.; Gong, J.; Zhou, H.; Zhu, W.; Kang, Z.; Yu, H.; Sharif, S.; Han, Y. Expression profiles of genes in Toll-like receptor-mediated signaling of broilers infected with Clostridium perfringens. Clin. Vaccine Immunol. 2009, 16, 1639–1647. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.H.; Song, W.; Lee, S.H.; Lillehoj, H.S. Differential gene expression profiles of beta-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult. Sci. 2012, 91, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Vince, A.R.; Prescott, J.F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 2012, 43, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol. 2014, 169, 188–197. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Parreira, V.R.; Sharif, S.; Prescott, J.F. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis. Clin. Vaccine Immunol. 2007, 14, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneshmand, A.; Kermanshahi, H.; Mohammed, J.; Sekhavati, M.H.; Javadmanesh, A.; Ahmadian, M.; Alizadeh, M.; Razmyar, J.; Kulkarni, R.R. Intestinal changes and immune responses during Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult. Sci. 2022, 101, 101652. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Lillehoj, H.S. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poult. Sci. 2019, 98, 188–198. [Google Scholar] [CrossRef]
- Zahoor, I.; Ghayas, A.; Basheer, A. Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: A review. Mol. Biol. Rep. 2018, 45, 31–37. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Gaghan, C.; Mohammed, J. Avian Macrophage Responses to Virulent and Avirulent Clostridium perfringens. Pathogens 2022, 11, 100. [Google Scholar] [CrossRef]
- Thompson, D.R.; Parreira, V.R.; Kulkarni, R.R.; Prescott, J.F. Live attenuated vaccine-based control of necrotic enteritis of broiler chickens. Vet. Microbiol. 2006, 113, 25–34. [Google Scholar] [CrossRef]
- Arsi, K.; Donoghue, A.M.; Woo-Ming, A.; Blore, P.J.; Donoghue, D.J. Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. J. Food Prot. 2015, 78, 209–213. [Google Scholar] [CrossRef]
- Gaghan, C.; Adams, D.; Mohammed, J.; Crespo, R.; Livingston, K.; Kulkarni, R.R. Characterization of vaccine-induced immune responses against coccidiosis in broiler chickens. Vaccine 2022, 40, 3893–3902. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.S.; Cox, N.A.; Cosby, D.E.; Richardson, L.J. Movement and persistence of Salmonella in broiler chickens following oral or intracloacal inoculation. J. Food Prot. 2005, 68, 2698–2701. [Google Scholar] [CrossRef] [Green Version]
- Cox, N.A.; Hofacre, C.L.; Bailey, J.S.; Buhr, R.J.; Wilson, J.L.; Hiett, K.L.; Richardson, L.J.; Musgrove, M.T.; Cosby, D.E.; Tankson, J.D.; et al. Presence of Campylobacter jejuni in various organs one hour, one day, and one week following oral or intracloacal inoculations of broiler chicks. Avian Dis. 2005, 49, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, H.J.; Dwars, R.M.; Vernooij, J.C.; Landman, W.J. Cloacal reflexes and uptake of fluorescein-labeled polystyrene beads in broiler chickens. Poult. Sci. 2009, 88, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Duff, A.F.; Vuong, C.N.; Searer, K.L.; Briggs, W.N.; Wilson, K.M.; Hargis, B.M.; Berghman, L.R.; Bielke, L.R. Preliminary studies on development of a novel subunit vaccine targeting Clostridium perfringens mucolytic enzymes for the control of necrotic enteritis in broilers. Poult. Sci. 2019, 98, 6319–6325. [Google Scholar] [CrossRef]
- Prescott, J.F.; Parreira, V.R.; Mehdizadeh Gohari, I.; Lepp, D.; Gong, J. The pathogenesis of necrotic enteritis in chickens: What we know and what we need to know: A review. Avian Pathol. 2016, 45, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Latorre, J.D.; Adhikari, B.; Park, S.H.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Kwon, Y.M.; Ricke, S.C.; et al. Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Front. Vet. Sci. 2018, 5, 199. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Lv, P.; Hao, G.; Sun, S. Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poult. Sci. 2022, 101, 102077. [Google Scholar] [CrossRef]
- Guo, S.; Liu, D.; Zhang, B.; Li, Z.; Li, Y.; Ding, B.; Guo, Y. Two Lactobacillus Species Inhibit the Growth and alpha-Toxin Production of Clostridium perfringens and Induced Proinflammatory Factors in Chicken Intestinal Epithelial Cells in Vitro. Front. Microbiol. 2017, 8, 2081. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Sharif, S.; Taha-Abdelaziz, K. Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Hornef, M.W.; Wick, M.J.; Rhen, M.; Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 2002, 3, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- D’Hauteville, H.; Khan, S.; Maskell, D.J.; Kussak, A.; Weintraub, A.; Mathison, J.; Ulevitch, R.J.; Wuscher, N.; Parsot, C.; Sansonetti, P.J. Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J. Immunol. 2002, 168, 5240–5251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sela, U.; Euler, C.W.; Correa da Rosa, J.; Fischetti, V.A. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome. PLoS Pathog. 2018, 14, e1006726. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Lillehoj, H.S.; Allen, P.C.; Park, D.W.; FitzCoy, S.; Bautista, D.A.; Lillehoje, E.P. Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis. 2008, 52, 14–22. [Google Scholar] [CrossRef]
- Guo, S.; Li, C.; Liu, D.; Guo, Y. Inflammatory responses to a Clostridium perfringens type A strain and alpha-toxin in primary intestinal epithelial cells of chicken embryos. Avian Pathol. 2015, 44, 81–91. [Google Scholar] [CrossRef]
- Boodhoo, N.; Shojadoost, B.; Alizadeh, M.; Kulkarni, R.R.; Sharif, S. Ex Vivo Differential Responsiveness to Clostridium perfringens and Lactococcus lactis by Avian Small Intestine Macrophages and T Cells. Front. Immunol. 2022, 13, 807343. [Google Scholar] [CrossRef]
- Clavijo, V.; Florez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Sarker, M.; Wan, D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed Res. Int. 2018, 2018, 8063647. [Google Scholar] [CrossRef] [Green Version]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Nochi, T.; Jansen, C.A.; Toyomizu, M.; van Eden, W. The Well-Developed Mucosal Immune Systems of Birds and Mammals Allow for Similar Approaches of Mucosal Vaccination in Both Types of Animals. Front. Nutr. 2018, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.K.; Gu, M.J.; Ko, K.H.; Bae, S.; Kim, G.; Jin, G.D.; Kim, E.B.; Kong, Y.Y.; Park, T.S.; Park, B.C.; et al. Regulation of CD4(+)CD8(−)CD25(+) and CD4(+)CD8(+)CD25(+) T cells by gut microbiota in chicken. Sci. Rep. 2018, 8, 8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, A.P.; Sato, K.; Glick, B. The chicken lacrimal gland, gland of Harder, caecal tonsil, and accessory spleens as sources of antibody-producing cells. Cell Immunol. 1971, 2, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Deist, M.S.; Lamont, S.J. What Makes the Harderian Gland Transcriptome Different from Other Chicken Immune Tissues? A Gene Expression Comparative Analysis. Front. Physiol. 2018, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Liew, F.Y.; Xu, D.; Brint, E.K.; O’Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 2005, 5, 446–458. [Google Scholar] [CrossRef]
- Ansari, A.R.; Arshad, M.; Masood, S.; Huang, H.B.; Zhao, X.; Li, N.; Sun, Z.; Cui, L.; Hu, Y.; Liu, H.Z. Salmonella infection may alter the expression of toll like receptor 4 and immune related cells in chicken bursa of Fabricius. Microb. Pathog. 2018, 121, 59–64. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (F-Forward; R-Reverse) | Annealing Temperature (°C) | GenBank Accession Number |
---|---|---|---|
IFNγ | F: 5′-ACACTGACAAGTCAAAGCCGCACA-3′ R: 5′-AGTCGTTCATCGGGAGCTTGGC-3′ | 60 | X99774 |
IL-4 | F: 5′-TGTGCCCACGCTGTGCTTACA-3′ R: 5′-CTTGTGGCAGTGCTGGCTCTCC-3′ | 60 | AJ621249.1 |
IL-6 | F: 5′-CGTGTGCGAGAACAGCATGGAGA-3′ R: 5′-TCAGGCATTTCTCCTCGTCGAAGC-3′ | 60 | NM_204628.1 |
IL-10 | F: 5′-AGCAGATCAAGGAGACGTTC-3′ R: 5′-ATCAGCAGGTACTCCTCGAT-3′ | 55 | AJ621614 |
IL-1β | F: 5′-GTGAGGCTCAACATTGCGCTGTA-3′ R: 5′-TGTCCAGGCGGTAGAAGATGAAG-3′ | 64 | AJ009800 |
IL-13 | F: 5′-ATCCTGCTGGAGCCCATTCAGAG-3′ R: 5′-TTGCTCTTCATCAGGAGGCCACT-3′ | 60 | NM_204278.1 |
TLR-21 | F: 5′-CCTGCGCAAGTGTCCGCTCA-3′ R: 5′-GCCCCAGGTCCAGGAAGCAG-3′ | 60 | NM_001030558.1 |
TGFβ | F: 5′-CGGCCGACGATGAGTGGCTC-3′ R: 5′-CGGGGCCCATCTCACAGGGA-3′ | 60 | M31160.1 |
β-actin | F: 5′-CAACACAGTGCTGTCTGGTGGTA-3′ R: 5′-ATCGTACTCCTGCTTGCTGATCC-3′ | 58 | X00182 |
Lymphoid Tissues * | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cecal Tonsil | Bursa | Harderian Gland | |||||||
CP5 | CP18 | CP26 | CP5 | CP18 | CP26 | CP5 | CP18 | CP26 | |
TLR21 | = | + | = | - | - | - | = | = | = |
IL-1 β | = | + | + | + | = | = | = | = | = |
IL-6 | = | + | + | = | = | = | = | = | = |
IFNγ | = | + | + | = | = | = | - | - | - |
IL-4 | = | = | = | = | = | = | + | = | = |
IL-13 | = | = | = | + | = | = | + | = | = |
IL-10 | = | = | + | + | + | + | = | = | = |
TGFβ | = | + | = | = | = | = | = | = | = |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaghan, C.; Gorrell, K.; Taha-Abdelaziz, K.; Sharif, S.; Kulkarni, R.R. Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses. Microorganisms 2023, 11, 771. https://doi.org/10.3390/microorganisms11030771
Gaghan C, Gorrell K, Taha-Abdelaziz K, Sharif S, Kulkarni RR. Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses. Microorganisms. 2023; 11(3):771. https://doi.org/10.3390/microorganisms11030771
Chicago/Turabian StyleGaghan, Carissa, Kaitlin Gorrell, Khaled Taha-Abdelaziz, Shayan Sharif, and Raveendra R. Kulkarni. 2023. "Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses" Microorganisms 11, no. 3: 771. https://doi.org/10.3390/microorganisms11030771
APA StyleGaghan, C., Gorrell, K., Taha-Abdelaziz, K., Sharif, S., & Kulkarni, R. R. (2023). Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses. Microorganisms, 11(3), 771. https://doi.org/10.3390/microorganisms11030771