Isolation and Characterisation of Electrogenic Bacteria from Mud Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mud Sampling and Processing
2.2. Bacterium Isolation and Identification
2.3. Tungsten Nanorod Assay for Electroative Bacterium Detection
2.4. Biofilm Assay—96-Well Plate
2.5. Biofilm Assay—Glass Surface
2.6. Biofilm Assay on Carbon Tissue
2.7. Scanning Electron Microscopy (SEM) Analysis
2.8. Extracellular Enzymatic Assays
2.8.1. Proteolytic Activity
2.8.2. Lipase Degradation
2.8.3. Starch Hydrolysis
3. Results
3.1. Bacterium Isolation and Identification
3.2. Tungsten Nanorod Reduction Assay
3.3. Biofilm-Forming Capacities on Polystyrene and Glass Surfaces
3.4. Biofilm-Forming on Carbon Tissue
3.5. Extracellular Enzymatic Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabaey, K.; Angenent, L.; Schroder, U.; Keller, J. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application, 1st ed.; Rabaey, K., Angenent, L., Schroder, U., Keller, J., Eds.; IWA Publishing: London, UK, 2009; ISBN 9781843392330. [Google Scholar]
- Tahernia, M.; Plotkin-Kaye, E.; Mohammadifar, M.; Gao, Y.; Oefelein, M.R.; Cook, L.C.; Choi, S. Characterization of Electrogenic Gut Bacteria. ACS Omega 2020, 5, 29439–29446. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Kovács, T.; Rákhely, G.; Czeller, M. Biosensoric potential of microbial fuel cells. Appl. Microbiol. Biotechnol. 2016, 100, 7001–7009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Van Le, Q.; Yang, H.; Lam, S.S.; Yang, Y.; Gu, H.; Sonne, C.; Peng, W. Progress in microbial biomass conversion into green energy. Chemosphere 2021, 281, 130835. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.H. Trends in renewable energy production employing biomass-based biochar. Bioresour. Technol. 2021, 340, 125644. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, M.; Liu, M.; Yang, W.; Gu, T. Microbial fuel cells for biosensor applications. Biotechnol. Lett. 2015, 37, 2357–2364. [Google Scholar] [CrossRef]
- Lu, H.; Yu, Y.; Xi, H.; Wang, C.; Zhou, Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzym. Microb. Technol. 2020, 140, 109565. [Google Scholar] [CrossRef]
- Schneider, G.; Czeller, M.; Rostás, V.; Kovács, T. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enzym. Microb. Technol. 2015, 73–74, 59–64. [Google Scholar] [CrossRef]
- Greenman, J.; Mendis, B.A.; Gajda, I.; Ieropoulos, I.A. Microbial fuel cell compared to a chemostat. Chemosphere 2022, 296, 133967. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Factories 2019, 18, 39. [Google Scholar] [CrossRef] [Green Version]
- Pant, D.; Bogaert, G.V.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2009, 101, 1533–1543. [Google Scholar] [CrossRef]
- Baby, M.G.; Ahammed, M.M. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems—A review. Water Sci. Technol. 2022, 86, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Bennetto, H.P. Electricity generation by microorganisms. Biotechnol. Educ. 1990, 1, 163–168. [Google Scholar]
- Allen, R.M.; Bennetto, H.P. Microbial fuel-cells. Appl. Biochem. Biotechnol. 1993, 39, 27–40. [Google Scholar] [CrossRef]
- Caccavo, F., Jr.; Lonergan, D.J.; Lovley, D.R.; Davis, M.; Stolz, J.F.; McInerney, M.J. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 1994, 60, 3752–3759. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, K.; Moser, D.P.; Dollhopf, M.E.; Lies, D.P.; Saffarini, D.A.; MacGregor, B.J.; Ringelberg, D.B.; White, D.C.; Nishijima, M.; Sano, H.; et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 705–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holkara, C.R.; Arorab, H.; Halderb, D.; Dipak, V.; Pinjaria, C.V. Biodegradation of reactive blue 19 with simultaneous electricity generation by the newly isolated electrogenic Klebsiella sp. C NCIM 5546 bacterium in a microbial fuel cell. Int. Biodeterior. Biodegrad. 2018, 133, 194–201. [Google Scholar] [CrossRef]
- Paquete, C.M. Electroactivity across the cell wall of Gram-positive bacteria. Comput. Struct. Biotechnol. J. 2020, 18, 3796–3802. [Google Scholar] [CrossRef] [PubMed]
- Nandy, A.; Kumar, V.; Kundu, P.P. Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzym. Microb. Technol. 2013, 53, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Sacco, N.J.; Bonetto, M.C.; Cortón, E. Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4. PloS ONE 2017, 12, e0169955. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Huang, Y.H.; Long, Z.E.; Qiao, Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J. Microbiol. Biotechnol. 2018, 35, 9. [Google Scholar] [CrossRef]
- Žalnėravičius, R.; Paškevičius, A.; Samukaitė-Bubnienė, U.; Ramanavičius, S.; Vilkienė, M.; Mockevičienė, I.; Ramanavičius, A. Microbial Fuel Cell Based on Nitrogen-Fixing Rhizobium anhuiense Bacteria. Biosensors 2022, 12, 113. [Google Scholar] [CrossRef]
- Rivalland, C.; Radouani, F.; Gonzalez-Rizzo, S.; Robert, F.; Salvin, P. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Bioelectrochemistry 2022, 143, 107954. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Ajunwa, O.M.; Odeniyi, O.A.; Garuba, E.O.; Marsili, E.; Onilude, A.A. Influence of enhanced electrogenicity on anodic biofilm and bioelectricity production by a novel microbial consortium. Process. Biochem. 2021, 104, 27–38. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Soavi, F. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy 2021, 282 Pt A, 116150. [Google Scholar] [CrossRef]
- Toczyłowska-Mamińska, R.; Szymona, K.; Madej, H.; Wong, W.Z.; Bala, A.; Brutkowski, W.; Krajewski, K.; H’ng, P.S.; Mamiński, M. Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Appl. Energy 2015, 160, 88–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Chen, X.; Huang, G.; Xu, Y.; Yuan, Y.; Sun, J.; Li, G.; Ning, X.A.; Lu, X.; et al. Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems. Chemosphere 2018, 211, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Szydlowski, L.; Lan, T.C.T.; Shibata, N.; Goryanin, I. Metabolic engineering of a novel strain of electrogenic bacterium Arcobacter butzleri to create a platform for single analyte detection using a microbial fuel cell. Enzym. Microb. Technol. 2020, 139, 109564. [Google Scholar] [CrossRef]
- Hou, H.; Li, L.; Cho, Y.; de Figueiredo, P.; Han, A. Microfabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes. PLoS ONE 2009, 4, e6570. [Google Scholar] [CrossRef]
- Yuan, S.J.; Li, W.W.; Cheng, Y.Y.; He, H.; Chen, J.J.; Tong, Z.H.; Lin, Z.Q.; Zhang, F.; Sheng, G.P.; Yu, H.Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat. Protoc. 2014, 9, 112–119. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 pr oceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Vallé, Q.; Hancock, R.E.W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Kammoun, R.; Zmantar, T.; Ghoul, S. Scanning electron microscopy approach to observe bacterial adhesion to dental surfaces. MethodsX 2020, 7, 101107. [Google Scholar] [CrossRef]
- Masi, C.; Gemechu, G.; Tafesse, M. Isolation, screening, characterization, and identification of alkaline protease-producing bacteria from leather industry effluent. Ann. Microbiol. 2021, 71, 24. [Google Scholar] [CrossRef]
- MacFaddin, J.F. Biochemical Tests for Identification of Medical Bacteria, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 412–423. [Google Scholar]
- Zimbro, M.J.; Power, D.A.; Millwer, S.M.; Wilson, G.E.; Johnson, J.A. Difco and BBL Manual: Manual of Biological Culture Media, 10th ed.; Becton Dickinson and Co.: Sparks, MD, USA, 2009; pp. 879–880. [Google Scholar]
- Fadzli, F.S.; Bhawani, S.A.; Mohammad, R.E.A. Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J. Chem. 2021, 2021, 4570388. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Pandis, P.K.; Mamma, D.; Sourkouni, G.; Argirusis, C. Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. Energies 2022, 15, 5616. [Google Scholar] [CrossRef]
- Chabert, N.; Amin Ali, O.; Achouak, W. All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 2015, 106 Pt A, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Naveen, J.; Lucas, J.; Viswanath, N.; Findlay, R.; Sprinkle, J.; Strickland, M.S.; Winford, E.; Kolok, A.S. Investigation of relationships between fecal contamination, cattle grazing, human recreation, and microbial source tracking markers in a mixed-land-use rangeland watershed. Water Res. 2021, 194, 116921. [Google Scholar]
- Puvanendran, V.; Rud, I.; Breiland, M.S.W.; Arnesen, J.A.; Axelsson, L. Probiotic Carnobacterium divergens increase growth parameters and disease resistance in farmed Atlantic cod (Gadus morhua) larvae without influencing the microbiota. Aquaculture 2021, 532, 736072. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens. Disease of Farmed and Wild Fish; Springer: Cham, Switzerland, 2007; ISBN 978-1-4020-6069-4. [Google Scholar]
- Ghaly, A.E.; Dave, D.; Budge, S.; Brooks, M. Fish spoilage mechanisms and preservation techniques: Review. Am. J. Appl. Sci. 2010, 7, 859. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, B.; Hernández, I.; Le Marc, Y.; Pin, C. Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products. Food Control 2013, 29, 429–437. [Google Scholar] [CrossRef]
- Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomuram, N. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, G.F.; Bukhari, M.A. Factors Influencing Bacterial Biofilm Formation and Development. Am. J. Biomed. Sci. Res. 2021, 12, 001820. [Google Scholar] [CrossRef]
- Marchand, S.; Block, J.D.; De Jonghe, V.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Raksha, L.; Gangashettappa, N.; Shantala, G.B.; Nandan, B.R.; Sinha, D. Study of biofilm formation in bacterial isolates from contact lens wearers. Indian J. Ophthalmol. 2020, 68, 23–28. [Google Scholar] [CrossRef]
- Wagner, E.M.; Fischel, K.; Rammer, N.; Beer, C.; Palmetzhofer, A.L.; Conrady, B.; Roch, F.F.; Hanson, B.T.; Wagner, M.; Rychli, K. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. Int. J. Food Microbiol. 2021, 349, 109232. [Google Scholar] [CrossRef]
- Cangui-Panchi, S.P.; Ñacato-Toapanta, A.L.; Enríquez-Martínez, L.J.; Reyes, J.; Garzon-Chavez, D.; Machado, A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: A systematic review. Curr. Res. Microb. Sci. 2022, 3, 100175. [Google Scholar] [CrossRef]
- Ajijah, N.; Fiodor, A.; Pandey, A.K.; Rana, A.; Pranaw, K. Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. Diversity 2023, 15, 112. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yang, G.; Zhuang, L. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Sci. Total Environ. 2022, 806, 150713. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, G.; Zhang, H.; Wen, H.; Li, W. Effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs. Biotechnol. Biofuels 2020, 13, 162. [Google Scholar] [CrossRef]
- Ainebyona, P.; Banadda, N.; Kiggundu, N. Extracting economic value from breweries wastewater: A review. MOJ Ecol. Environ. Sci. 2021, 6, 8–13. [Google Scholar] [CrossRef]
- Moradian, J.M.; Fang, Z.; Yong, Y.-C. Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess 2021, 8, 14. [Google Scholar] [CrossRef]
- Angelaalincy, M.J.; Khrisnaraj, R.N.; Shakambari, G.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems. Front. Energy Res. 2018, 6, 63. [Google Scholar] [CrossRef]
- Greenman, J.; Gajda, I.; You, J.; Mendis, B.A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Microbial fuel cells and their electrified biofilms. Biofilm 2021, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Schouwer, F.D.; Claes, L.; Vandekerkhove, L.; Verduyckt, J.; De Vos, D.E. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. ChemSusChem 2019, 12, 1272–1303. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam Dilip Kumar, S.D.; Yasasve, M.; Karthigadevi, G.; Aashabharathi, M.; Subbaiya, R.; Karmegam, N.; Govarthanan, M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications—A review. Chemosphere 2022, 287, 132439. [Google Scholar] [CrossRef] [PubMed]
Strain | Genus of Proteins Identified | Growth on LB Agar | Reduction Ability on RB5 Agar | WO3 Nanoreduction Assay | |||
---|---|---|---|---|---|---|---|
Aerob | Anaerob | Aerob | Anaerob | 1 h | 24 h | ||
1 | Enterobacter | + | + | + | + | - | + |
2 | Aeromonas | + | + | + | + | - | + |
3 | Aeromonas | + | + | + | + | - | + |
4 | Enterococcus | + | + | + | + | + | - |
5 | Enterococcus | + | + | + | + | + | - |
6 | Aeromonas | + | + | + | + | - | + |
7 | Aeromonas | + | + | + | - | - | + |
8 | Enterococcus | + | + | + | + | + | - |
9 | unknown | + | + | + | - | + | + |
10 | unknown | + | + | + | - | - | + |
11 | Bacillus | + | + | + | - | - | + |
12 | Aeromonas | + | + | + | + | - | + |
13 | Providencia | + | + | + | - | - | + |
14 | Aeromonas | + | + | + | - | - | + |
15 | Carnobacteriium | + | + | + | + | + | - |
16 | Aeromonas | + | + | + | - | - | + |
17 | Citrobacter | + | + | + | + | - | + |
18 | Shewanella | + | + | + | + | + | + |
19 | Shewanella | + | + | + | + | + | + |
20 | Shewanella | + | + | + | + | + | + |
21 | Shewanella | + | + | + | + | + | + |
22 | Shewanella | + | + | + | + | + | + |
23 | Lelliotittia | + | + | + | + | - | + |
24 | Enterococcus | + | + | + | + | - | + |
25 | Staphylococcus | + | + | + | - | - | + |
26 | Enterococus | + | + | + | + | + | + |
27 | Salmonella | + | + | + | + | + | + |
28 | Escherichia | + | + | + | + | - | + |
29 | Salmonella | + | + | + | + | - | + |
30 | Klebsiella | + | + | + | + | - | + |
31 | unknown | + | + | + | - | - | + |
32 | unknown | + | + | + | - | - | - |
33 | Pleisomonas | + | + | + | + | - | + |
34 | Aeromonas | + | + | + | + | + | + |
35 | Aeromonas | + | + | + | + | - | + |
36 | Buttiauxella | + | + | - | + | - | + |
37 | Citrobacter | + | + | - | + | - | + |
38 | Aeromonas | + | + | - | + | + | + |
39 | Enterococcus | + | + | - | + | - | + |
40 | Escherichia | + | + | - | + | - | + |
41 | Citrobacter | + | + | - | + | - | + |
42 | Lactococcus | + | + | - | + | - | - |
43 | Citrobacter | + | + | - | + | - | + |
44 | Citrobacter | + | + | - | + | + | + |
45 | Citrobacter | + | + | - | + | - | + |
46 | Lactococcus | + | + | - | + | - | - |
47 | Aeromonas | + | + | + | + | - | + |
48 | Lactococcus | + | + | + | + | - | - |
49 | Citrobacter | + | + | - | + | - | + |
50 | Citrobacter | + | + | - | + | - | + |
51 | Lactococcus | + | + | + | + | - | + |
52 | Pantotea | + | + | + | - | - | + |
Strain | Genus of Proteins Identified | Plate 83.349 | Plate 83.1835 | Glass Tube | Carbon Tissue | |||
---|---|---|---|---|---|---|---|---|
23 °C | 30 °C | 23 °C | 30 °C | 23 °C | 30 °C | 23 °C | ||
1 | Enterobacter kobel | - | - | +++ | + | +++ | + | + |
2 | Aeromonas | - | - | + | - | + | ++ | ++ |
3 | Aeromonas | - | - | ++ | ++ | + | ++ | ++ |
4 | Enterococcus | - | + | ++ | + | + | + | ++++ |
5 | Enterococcus | + | - | + | ++ | - | - | +++ |
6 | Aeromonas | + | - | ++ | +++ | ++ | - | +++ |
7 | Aeromonas | + | - | ++ | + | - | - | +++ |
8 | Enterococcus | +++ | ++ | ++++ | +++ | - | - | ++ |
9 | unknown | +++ | +++ | +++ | +++ | + | + | +++ |
10 | unknown | +++++ | ++++ | +++++ | +++++ | +++ | +++ | +++++ |
11 | Bacillus | +++ | - | ++ | ++++ | +++ | ++ | ++ |
12 | Aeromonas | - | - | +++ | ++ | + | ++ | ++ |
13 | Providencia | ++ | + | + | + | - | + | +++ |
14 | Aeromonas | +++ | +++ | ++ | ++ | - | + | ++ |
15 | Carnobacteriium | ++ | - | ++ | +++ | + | + | ++ |
16 | Aeromonas | ++ | - | ++++ | +++ | + | ++ | ++ |
17 | Citrobacter | +++++ | +++ | +++++ | +++++ | +++ | +++ | ++++ |
18 | Shewanella | +++++ | - | +++++ | + | +++ | + | + |
19 | Shewanella | +++ | ++ | +++ | ++ | +++ | ++ | ++ |
20 | Shewanella | - | + | ++ | + | ++ | +++ | +++ |
21 | Shewanella | ++ | ++ | ++ | + | - | + | ++ |
22 | Shewanella | ++ | - | + | + | ++ | +++ | + |
23 | Lelliotittia | ++ | + | + | + | - | ++ | +++++ |
24 | Enterococcus | - | + | + | + | - | + | ++ |
25 | Staphylococcus | ++ | ++ | +++ | ++++ | + | + | + |
26 | Enterococus | + | - | - | + | - | + | - |
27 | Salmonella | - | + | - | + | +++ | ++ | +++++ |
28 | Escherichia | +++++ | ++++ | +++++ | +++++ | ++ | +++ | ++ |
29 | Salmonella | - | ++ | + | +++++ | +++ | +++ | ++ |
30 | Klebsiella | +++ | +++ | +++ | ++++ | + | ++ | ++ |
31 | unknown | ++ | ++ | +++ | ++++ | ++ | ++ | +++ |
32 | unknown | + | + | ++ | + | - | + | + |
33 | Pleisomonas | - | - | + | + | - | - | ++ |
34 | Aeromonas | - | - | + | + | ++ | ++ | + |
35 | Aeromonas | +++ | + | ++ | ++ | - | + | ++ |
36 | Buttiauxella | +++ | - | +++ | + | + | - | +++++ |
37 | Citrobacter | + | - | ++ | + | ++ | ++ | +++ |
38 | Aeromonas | ++++ | +++ | +++++ | +++++ | + | ++ | +++ |
39 | Enterococcus | +++++ | - | ++++ | ++++ | + | ++ | ++ |
40 | Escherichia | - | - | - | + | - | + | ++++ |
41 | Citrobacter | ++ | +++ | ++ | +++ | +++ | +++ | ++ |
42 | Lactococcus | +++ | + | +++++ | +++++ | - | - | ++ |
43 | Citrobacter | +++ | + | ++++ | +++++ | - | + | +++ |
44 | Citrobacter | + | + | ++++ | +++ | +++ | + | ++ |
45 | Citrobacter | ++ | + | ++ | + | + | ++ | + |
46 | Lactococcus | + | + | ++ | + | - | - | ++ |
47 | Aeromonas | - | + | + | + | + | ++ | ++ |
48 | Lactococcus | - | + | + | + | - | - | ++++ |
49 | Citrobacter | +++++ | +++ | +++++ | ++++ | +++ | ++ | +++ |
50 | Citrobacter | ++++ | ++++ | +++ | ++++ | ++ | +++ | |
51 | Lactococcus | ++ | + | ++ | ++++ | + | - | |
52 | Pantotea | + | ++++ | + | + | +++ | +++ |
Strain | Genus of Proteins Identified | Protease | Lipase | Amylase | |||
---|---|---|---|---|---|---|---|
23 °C | 30 °C | 23 °C | 30 °C | 23 °C | 30 °C | ||
1 | Enterobacter | - | - | - | - | - | - |
2 | Aeromonas | + | + | +++ | +++ | +++ | +++ |
3 | Aeromonas | + | + | +++ | +++ | +++ | +++ |
4 | Enterococcus | +++ | +++ | - | - | - | - |
5 | Enterococcus | +++ | +++ | - | - | - | - |
6 | Aeromonas | +++ | +++ | +++ | +++ | +++ | +++ |
7 | Aeromonas | ++ | +++ | +++ | +++ | +++ | +++ |
8 | Enterococcus | ++ | ++ | - | - | - | - |
9 | unknown | - | - | - | ++ | - | - |
10 | unknown | +++ | +++ | - | - | +++ | +++ |
11 | Bacillus | +++ | ++ | + | + | +++ | ++ |
12 | Aeromonas | +++ | +++ | +++ | +++ | +++ | +++ |
13 | Providencia | +++ | +++ | - | - | - | - |
14 | Aeromonas | +++ | +++ | +++ | +++ | +++ | +++ |
15 | Carnobacteriium | - | - | - | - | - | - |
16 | Aeromonas | ++ | ++ | +++ | +++ | +++ | +++ |
17 | Citrobacter | - | - | - | - | - | - |
18 | Shewanella | - | - | + | + | - | - |
19 | Shewanella | - | - | + | + | - | - |
20 | Shewanella | + | + | + | + | - | - |
21 | Shewanella | - | - | + | + | - | - |
22 | Shewanella | + | + | ++ | ++ | - | - |
23 | Lelliotittia | - | - | - | - | - | - |
24 | Enterococcus | ++ | ++ | - | - | - | - |
25 | Staphylococcus | ++ | ++ | + | + | - | - |
26 | Enterococus | +++ | +++ | - | - | - | - |
27 | Salmonella | - | - | - | - | - | - |
28 | Escherichia | - | - | - | - | - | - |
29 | Salmonella | - | - | - | - | - | - |
30 | Klebsiella | + | + | - | - | - | - |
31 | unknown | + | + | ++ | ++ | - | - |
32 | unknown | - | - | + | - | + | ++ |
33 | Pleisomonas | - | - | - | - | - | - |
34 | Aeromonas | +++ | +++ | +++ | +++ | + | + |
35 | Aeromonas | - | - | +++ | +++ | - | ++ |
36 | Buttiauxella | + | + | - | - | - | - |
37 | Citrobacter | ++ | ++ | - | - | - | - |
38 | Aeromonas | +++ | +++ | +++ | +++ | ++ | + |
39 | Enterococcus | +++ | +++ | - | - | +++ | ++ |
40 | Escherichia | +++ | +++ | - | - | - | - |
41 | Citrobacter | ++ | ++ | - | - | - | - |
42 | Lactococcus | ++ | +++ | - | - | - | - |
43 | Citrobacter | - | - | - | - | - | - |
44 | Citrobacter | +++ | +++ | - | - | - | - |
45 | Citrobacter | +++ | +++ | - | - | - | - |
46 | Lactococcus | +++ | +++ | - | - | - | - |
47 | Aeromonas | +++ | +++ | +++ | +++ | +++ | +++ |
48 | Lactococcus | +++ | +++ | - | - | - | - |
49 | Citrobacter | ++ | ++ | - | - | - | - |
50 | Citrobacter | ++ | ++ | - | - | - | - |
51 | Lactococcus | +++ | +++ | - | - | - | - |
52 | Pantotea | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, G.; Pásztor, D.; Szabó, P.; Kőrösi, L.; Kishan, N.S.; Raju, P.A.R.K.; Calay, R.K. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023, 11, 781. https://doi.org/10.3390/microorganisms11030781
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms. 2023; 11(3):781. https://doi.org/10.3390/microorganisms11030781
Chicago/Turabian StyleSchneider, György, Dorina Pásztor, Péter Szabó, László Kőrösi, Nandyala Siva Kishan, Penmetsa Appala Rama Krishna Raju, and Rajnish Kaur Calay. 2023. "Isolation and Characterisation of Electrogenic Bacteria from Mud Samples" Microorganisms 11, no. 3: 781. https://doi.org/10.3390/microorganisms11030781