Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health
Abstract
:1. Introduction
2. Mechanism of QS Inhibition
2.1. Probiotics as QSIs in Foodborne Pathogenic Bacteria
2.2. Potential Role of Probiotics in QS Inhibition in Food Spoilage Bacteria
3. QS, Biofilm Formation, and Gut Health
4. Microencapsulation and QS
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garg, N.; Manchanda, G.; Kumar, A. Bacterial quorum sensing: Circuits and applications. Antonie Leeuwenhoek 2014, 105, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Deep, A.; Chaudhary, U.; Gupta, V. Quorum sensing and bacterial pathogenicity: From molecules to disease. J. Lab. Physicians 2011, 3, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Bourret, R.B. Two-Component Signal Transduction; Hoch, J.A., Silhavy, T., Eds.; ASM Press: Washington, WA, USA, 1995; Volume 2. [Google Scholar]
- Wu, L.; Luo, Y. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front. Microbiol. 2021, 12, 611413. [Google Scholar] [CrossRef]
- Bai, A.J.; Rai, V.R. Bacterial quorum sensing and food industry. Compr. Rev. Food Sci. Food Saf. 2011, 10, 183–193. [Google Scholar] [CrossRef]
- Falà, A.K.; Álvarez-Ordóñez, A.; Filloux, A.; Gahan, C.; Cotter, P.D. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Nakatsu, C.H.; Bhunia, A.K. Bacterial biofilms and their implications in pathogenesis and food safety. Foods 2021, 10, 2117. [Google Scholar] [CrossRef]
- Machado, I.; Silva, L.R.; Giaouris, E.D.; Melo, L.F.; Simões, M. Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res. Int. 2020, 127, 108754. [Google Scholar] [CrossRef]
- Martins, M.L.; Pinto, U.M.; Riedel, K.; Vanetti, M.C.D. Quorum sensing and spoilage potential of psychrotrophic Enterobacteriaceae isolated from milk. BioMed Res. Int. 2018, 2018, 2723157. [Google Scholar] [CrossRef] [Green Version]
- Davares, A.K.L.; Arsene, M.M.J.; Viktorovna, P.I.; Vyacheslavovna, Y.N.; Vladimirovna, Z.A.; Aleksandrovna, V.E.; Nikolayevich, S.A.; Nadezhda, S.; Anatolievna, G.O.; Nikolaevna, S.I.; et al. Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. Fermentation 2022, 8, 711. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Filannino, P.; Di Cagno, R.; Calasso, M.; Gobbetti, M. Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits. Appl. Environ. Microbiol. 2014, 80, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Zhang, J.; Qu, J.; Liu, J.; Yin, P.; Zhang, G.; Shang, D. Lactobacillus rhamnosus GG microcapsules inhibit Escherichia coli biofilm formation in coculture. Biotechnol. Lett. 2019, 41, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Luo, X.M.; Liu, J.; Wang, H. Quorum sensing, biofilm, and intestinal mucosal barrier: Involvement the role of probiotic. Front. Cell. Infect. Microbiol. 2020, 10, 538077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 2020, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Qais, F.A.; Ahmad, I. Anti-quorum sensing and biofilm inhibitory effect of some medicinal plants against Gram-negative bacterial pathogens: In Vitro and in silico investigations. Heliyon 2022, 8, e11113. [Google Scholar]
- Gao, Z.; Daliri, E.B.M.; Wang, J.U.N.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Inhibitory effect of lactic acid bacteria on foodborne pathogens: A review. J. Food Prot. 2019, 82, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Ding, X.; Wang, J.; Zhan, X. Inhibitory effects of reuterin on biofilm formation, quorum sensing and virulence genes of Clostridium perfringens. LWT 2022, 162, 113421. [Google Scholar] [CrossRef]
- Yun, B.; Oh, S.; Griffiths, M.W. Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J. Dairy Sci. 2014, 97, 4745–4758. [Google Scholar] [CrossRef] [Green Version]
- Yong, C.; Lim, J.; Kim, B.K.; Park, D.J.; Oh, S. Suppressive effect of Lactobacillus fermentum Lim2 on Clostridioides difficile 027 toxin production. Lett. Appl. Microbiol. 2019, 68, 386–3933. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Xu, S.X.; Magarvey, N.A.; McCormick, J.K. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc. Natl. Acad. Sci. USA 2011, 108, 3360–3365. [Google Scholar] [CrossRef] [Green Version]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.-S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, X.; Gu, S.; Yang, Y.; Zhao, L.; He, X.; Chen, H.; Ge, J.; Liu, D. Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion. Future Microbiol. 2019, 14, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.B.; Baik, J.E.; Yun, C.H.; Han, S.H. Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation. Front. Microbiol. 2018, 9, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kim, J.; Kim, Y.; Oh, S.; Song, M.; Choe, J.H.; Whang, K.-Y.; Kim, K.H.; Oh, S. Influences of quorum-quenching probiotic bacteria on the gut microbial community and immune function in weaning pigs. Anim. Sci. J. 2018, 89, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, S.H. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157: H7. Biochem. Biophys. Res. Commun. 2009, 379, 324–329. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.W.; Kang, S.G.; Oh, S.; Griffiths, M.W. Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157: H7. Anaerobe 2012, 18, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Oh, S.; Park, S.; Seo, J.B.; Kim, S.H. Lactobacillus acidophilus reduces expression of enterohemorrhagic Escherichia coli O157: H7 virulence factors by inhibiting autoinducer-2-like activity. Food Control. 2008, 19, 1042–1050. [Google Scholar] [CrossRef]
- Liang, Y.; Pan, Y.; Li, Q.; Wu, B.; Hu, M. RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition in Pseudomonas aeruginosa by Lactobacillus brevis. Int. Microbiol. 2022, 25, 447–456. [Google Scholar] [CrossRef]
- Díaz, M.A.; González, S.N.; Alberto, M.R.; Arena, M.E. Human probiotic bacteria attenuate Pseudomonas aeruginosa biofilm and virulence by quorum-sensing inhibition. Biofouling 2020, 36, 597–609. [Google Scholar] [CrossRef]
- Devi, S.; Chhibber, S.; Harjai, K. Optimization of cultural conditions for enhancement of anti-quorum sensing potential in the probiotic strain Lactobacillus rhamnosus GG against Pseudomonas aeruginosa. 3 Biotech 2022, 12, 133. [Google Scholar] [CrossRef]
- Azami, S.; Arefian, E.; Kashef, N. Postbiotics of Lactobacillus casei target virulence and biofilm formation of Pseudomonas aeruginosa by modulating quorum sensing. Arch. Microbiol. 2022, 204, 157. [Google Scholar] [CrossRef]
- Boopathi, S.; Vashisth, R.; Manoharan, P.; Kandasamy, R.; Sivakumar, N. Stigmatellin Y–An anti-biofilm compound from Bacillus subtilis BR4 possibly interferes in PQS–PqsR mediated quorum sensing system in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 2017, 27, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Djokic, L.; Stankovic, N.; Galic, I.; Moric, I.; Radakovic, N.; Šegan, S.; Pavic, A.; Senerovic, L. Novel Quorum Quenching YtnP Lactonase from Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy In Vivo. Front. Microbiol. 2022, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- Algburi, A.; Zehm, S.; Netrebov, V.; Bren, A.B.; Chistyakov, V.; Chikindas, M.L. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob. Proteins 2017, 9, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Lee, N.K.; Paik, H.D. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci. Biotechnol. 2021, 30, 97–106. [Google Scholar] [CrossRef]
- Merino, L.; Trejo, F.M.; De Antoni, G.; Golowczyc, M.A. Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res. Int. 2019, 123, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tazehabadi, M.H.; Algburi, A.; Popov, I.V.; Ermakov, A.M.; Chistyakov, V.A.; Prazdnova, E.V.; Weeks, R.; Chikindas, M.L. Probiotic bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Front. Microbiol. 2021, 12, 615328. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019, 7, e7555. [Google Scholar] [CrossRef] [Green Version]
- Siddique, A.; Azim, S.; Ali, A.; Adnan, F.; Arif, M.; Imran, M.; Ganda, E.; Rahman, A. Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals 2021, 11, 3435. [Google Scholar] [CrossRef]
- Xu, X.; Peng, Q.; Zhang, Y.; Tian, D.; Zhang, P.; Huang, Y.; Ma, L.; Qiao, Y.; Shi, B. A novel exopolysaccharide produced by Lactobacillus coryniformis NA-3 exhibits antioxidant and biofilm-inhibiting properties In Vitro. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Piewngam, P.; Chiou, J.; Ling, J.; Liu, R.; Pupa, P.; Zheng, Y.; Otto, M. Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Sci. Transl. Med. 2021, 13, eabf4692. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Hamadou, W.S.; Ashraf, S.A.; Hassan, M.I.; Snoussi, M.; Badraoui, R.; Jamal, A.; Bardakci, F.; Awadelkareem, A.; et al. Functional and structural characterization of pediococcus pentosaceus-derived biosurfactant and its biomedical potential against bacterial adhesion, quorum sensing, and biofilm formation. Antibiotics 2021, 10, 1371. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Jiang, N.; Zhou, X.; Zhang, C.; Zhao, Y.; Li, Z.; Li, C. Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microb. Pathog. 2022, 164, 105446. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Cheng, J.; Lee, Y.G.; Cho, J.H.; Suh, J.W. Discovery of Novel Iminosugar Compounds Produced by Lactobacillus paragasseri MJM60645 and Their Anti-Biofilm Activity against Streptococcus mutans. Microbiol. Spectr. 2022, 10, e01122-22. [Google Scholar] [CrossRef] [PubMed]
- Tahmourespour, A.; Kasra-Kermanshahi, R.; Salehi, R. Lactobacillus rhamnosus biosurfactant inhibits biofilm formation and gene expression of caries-inducing Streptococcus mutans. Dent. Res. J. 2019, 16, 87. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, M.; Liu, R.; Tian, Y.; Vu, V.H.; Li, Y.; Liu, B.; Kushmaro, A.; Li, Y.; Sun, Q. Inhibition of Streptococcus mutans biofilm formation and virulence by Lactobacillus plantarum K41 isolated from traditional Sichuan pickles. Front. Microbiol. 2020, 11, 774. [Google Scholar] [CrossRef]
- Dong, W.; Cai, Y.; Xu, Z.; Fu, B.; Chen, Q.; Cui, Y.; Ruan, Z.; Liang, Y.; Peng, N.; Zhao, S. Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4. Microb. Cell Factories 2020, 19, 191. [Google Scholar] [CrossRef]
- Hossain, M.I.; Mizan, M.F.R.; Roy, P.K.; Nahar, S.; Toushik, S.H.; Ashrafudoulla, M.; Ha, S.D. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B. 67 and Lactobacillus plantarum M. 2. Food Res. Int. 2021, 148, 110595. [Google Scholar] [CrossRef]
- Melian, C.; Segli, F.; Gonzalez, R.; Vignolo, G.; Castellano, P. Lactocin AL705 as quorum sensing inhibitor to control Listeria monocytogenes biofilm formation. J. Appl. Microbiol. 2019, 127, 911–920. [Google Scholar] [CrossRef]
- Sudan, S.; Li, J. Dispersal of pathogen-associated multispecies biofilm by novel probiotic Bacillus subtilis in a contact-dependent manner. J. Appl. Microbiol. 2022, 133, 2501–2515. [Google Scholar] [CrossRef]
- Shangguan, W.; Xie, T.; Zhang, R.; Lu, C.; Han, X.; Zhong, Q. Anti-biofilm potential of kefir-derived Lactobacillus paracasei L10 against Vibrio parahaemolyticus. Lett. Appl. Microbiol. 2021, 73, 750–758. [Google Scholar] [CrossRef]
- Lee, D.; Im, J.; Park, D.H.; Jeong, S.; Park, M.; Yoon, S.; Park, J.; Han, S.H. Lactobacillus plantarum Lipoteichoic Acids Possess Strain-Specific Regulatory Effects on the Biofilm Formation of Dental Pathogenic Bacteria. Front. Microbiol. 2021, 12, 758161. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Kim, D.H.; Song, K.Y.; Seo, K.H. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. J. Oral Microbiol. 2018, 10, 1472985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, T.; Zhao, L.; Sun, H.; Zhou, X.; Sun, B. LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res. 2009, 19, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Muciño, E.; Arenas-Hernández, M.M.; Luna-Guevara, M.L. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022, 10, 884. [Google Scholar] [CrossRef]
- Zuo, J.; Yin, H.; Hu, J.; Miao, J.; Chen, Z.; Qi, K.; Wang, Z.; Gong, J.; Phouthapane, V.; Jiang, W.; et al. Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic Escherichia coli. Veter. Res. 2019, 50, 109. [Google Scholar] [CrossRef] [Green Version]
- Van Hal, S.J.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386. [Google Scholar] [CrossRef] [Green Version]
- Bleul, L.; Francois, P.; Wolz, C. Two-component systems of S. aureus: Signaling and sensing mechanisms. Genes 2022, 13, 34. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Xue, T.; Sun, B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 2012, 12, 288. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, J.; Wang, S.; Anderson, E.M.; Lam, J.S.; Parsek, M.R.; Wozniak, D.J. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ. Microbiol. 2012, 14, 1995–2005. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.G.; Pandey, S. Pseudomonas Aeruginosa; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 2006, 30, 274–291. [Google Scholar] [CrossRef] [Green Version]
- Manasian, P.; Bustos, A.S.; Pålsson, B.; Håkansson, A.; Peñarrieta, J.M.; Nilsson, L.; Linares-Pastén, J.A. First evidence of Acyl-Hydrolase/Lipase activity from human probiotic bacteria: Lactobacillus rhamnosus GG and Bifidobacterium longum NCC 2705. Front. Microbiol. 2020, 11, 1534. [Google Scholar] [CrossRef]
- Toushik, S.H.; Kim, K.; Park, S.-H.; Park, J.-H.; Ashrafudoulla; Ulrich, M.S.I.; Mizan, F.R.; Hossain, I.; Shim, W.-B.; Kang, I.; et al. Prophylactic efficacy of Lactobacillus curvatus B67-derived postbiotic and quercetin, separately and combined, against Listeria monocytogenes and Salmonella enterica ser. Typhimurium on processed meat sausage. Meat Sci. 2023, 197, 109065. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.P.; Van Delden, C.; Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 1999, 181, 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Domenech, A.; Brochado, A.R.; Sender, V.; Hentrich, K.; Henriques-Normark, B.; Typas, A.; Veening, J.W. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe 2020, 27, 544–555.e3. [Google Scholar] [CrossRef]
- Sutyak Noll, K.; Sinko, P.J.; Chikindas, M.L. Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins 2011, 3, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.; Rahman, R.; Islam, S.M.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Burmølle, M.; Liu, T.; He, G. Insights into bacterial milk spoilage with particular emphasis on the roles of heat-stable enzymes, biofilms, and quorum sensing. J. Food Prot. 2018, 81, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, N.; Sadiq, F.A.; He, G. RNA sequencing reveals the involvement of quorum sensing in dairy spoilage caused by psychrotrophic bacteria. LWT 2020, 127, 109384. [Google Scholar] [CrossRef]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Liu, T.J.; Li, Y.; Gu, J.S.; Yang, H.Y.; He, G.Q. Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J. Zhejiang Univ. B 2018, 19, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, Y.; An, Q.; Sa, R.; Zhang, D.; Xu, R. Research on the role of LuxS/AI-2 quorum sensing in biofilm of Leuconostoc citreum 37 based on complete genome sequencing. 3 Biotech 2021, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.K.; Grasso, M.; Wright, V.; Garcia, V.; Williams, P.; Atkinson, S. The quorum sensing system of Yersinia enterocolitica 8081 regulates swimming motility, host cell attachment, and virulence plasmid maintenance. Genes 2018, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Opara, E.U.; Asuquo, A.A. An overview of characterization and identification of soft rot bacterium Erwinia in some vegetable crops. Greener J. Biol. Sci. 2016, 6, 46–55. [Google Scholar] [CrossRef]
- Põllumaa, L.; Alamäe, T.; Mäe, A. Quorum sensing and expression of virulence in pectobacteria. Sensors 2012, 12, 3327–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laasik, E.; Andresen, L.; Mäe, A. Type II quorum sensing regulates virulence in Erwinia carotovora ssp. carotovora. FEMS Microbiol. Lett. 2006, 258, 227–234. [Google Scholar] [CrossRef]
- Rasch, M.; Andersen, J.B.; Nielsen, K.F.; Flodgaard, L.R.; Christensen, H.; Givskov, M.; Gram, L. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl. Environ. Microbiol. 2005, 71, 3321–3330. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Wang, C.; Liu, N.; Ma, A.; Wang, Y. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res. Int. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Meng, X.; Qian, Y.; Yan, S.; Liu, Z. AI-2/Lux-S Quorum Sensing of Lactobacillus plantarum SS-128 Prolongs the Shelf Life of Shrimp (Litopenaeus vannamei): From Myofibril Simulation to Practical Application. Foods 2022, 11, 2273. [Google Scholar] [CrossRef]
- Gui, M.; Wu, R.; Liu, L.; Wang, S.; Zhang, L.; Li, P. Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii LP-11. Int. J. Food Microbiol. 2017, 252, 61–68. [Google Scholar] [CrossRef]
- Husain, F.M.; Ahmad, I.; Al-Shabib, N.A.; Khan, M.S.; Mohammed, Y.A.; Althubiani, A.S. Quorum sensing and biofilm inhibition by lactonase producing Bacillus amyloliquefaciens SBF1 strain isolated from date palm rhizosphere of Saudi Arabia. J. Pure Appl. Microbiol. 2016, 10, 1745–1755. [Google Scholar]
- Garge, S.S.; Nerurkar, A.S. Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PloS ONE 2016, 11, e0167344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachhadia, R.; Kapadia, C.; Singh, S.; Gandhi, K.; Jajda, H.; Alfarraj, S.; Ansari, M.J.; Danish, S.; Datta, R. Quorum sensing inhibitory and quenching activity of Bacillus cereus RC1 extracts on Soft Rot-Causing Bacteria Lelliottia amnigena. ACS Omega 2022, 7, 25291–25308. [Google Scholar] [CrossRef] [PubMed]
- Coquant, G.; Aguanno, D.; Brot, L.; Belloir, C.; Delugeard, J.; Roger, N.; Pham, H.-P.; Briand, L.; Moreau, M.; de Sordi, L.; et al. 3-oxo-C12: 2-HSL, quorum sensing molecule from human intestinal microbiota, inhibits pro-inflammatory pathways in immune cells via bitter taste receptors. Sci. Rep. 2022, 12, 9440. [Google Scholar] [CrossRef] [PubMed]
- Landman, C.; Grill, J.P.; Mallet, J.M.; Marteau, P.; Humbert, L.; Le Balc’h, E.; Maubert, M.-A.; Perez, K.; Chaara, W.; Brot, L.; et al. IBD Network. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12: 2, a major quorum-sensing molecule from gut microbiota. PLoS ONE 2018, 13, e0202587. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.A.; Oliveira, R.A.; Djukovic, A.; Ubeda, C.; Xavier, K.B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 2015, 10, 1861–1871. [Google Scholar] [CrossRef]
- Deng, Z.; Dai, J.; Wei, Y.; Ma, Y.; Mao, Y.; Zhang, J.; Hua, W.; Wang, H. Comparison between Lactobacillus rhamnosus GG and LuxS-deficient strain in regulating gut barrier function and inflammation in early-weaned piglets. Front. Immunol. 2022, 13, 1080789. [Google Scholar] [CrossRef]
- Ji, Y.-C.; Sun, Q.; Fu, C.-Y.; She, X.; Liu, X.-C.; He, Y.; Ai, Q.; Li, L.-Q.; Wang, Z.-L. Exogenous Autoinducer-2 Rescues Intestinal Dysbiosis and Intestinal Inflammation in a Neonatal Mouse Necrotizing Enterocolitis Model. Front. Cell. Infect. Microbiol. 2021, 11, 694395. [Google Scholar] [CrossRef]
- Fteita, D.; Könönen, E.; Gürsoy, M.; Ma, X.; Sintim, H.O.; Gürsoy, U.K. Quorum sensing molecules regulate epithelial cytokine response and biofilm-related virulence of three Prevotella species. Anaerobe 2018, 54, 128–135. [Google Scholar] [CrossRef]
- Li, Q.; Peng, W.; Wu, J.; Wang, X.; Ren, Y.; Li, H.; Peng, Y.; Tang, X.; Fu, X. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology 2019, 8, e1626192. [Google Scholar] [CrossRef]
- Zargar, A.; Quan, D.N.; Carter, K.K.; Guo, M.; Sintim, H.O.; Payne, G.F.; Bentley, W.E. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: A closer investigation of interkingdom signaling. Mbio 2015, 6, e00025-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Wu, R.; Zhang, J.; Li, P. Overexpression of luxS promotes stress resistance and biofilm formation of Lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes. Front. Microbiol. 2018, 9, 2628. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; He, X.; Brancaccio, V.F.; Yuan, J.; Riedel, C.U. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PLoS ONE 2014, 9, e88260. [Google Scholar] [CrossRef] [Green Version]
- Coquant, G.; Grill, J.P.; Seksik, P. Impact of N-acyl-homoserine lactones, quorum sensing molecules, on gut immunity. Front. Immunol. 2020, 11, 1827. [Google Scholar] [CrossRef]
- Krzyżek, P. Challenges and limitations of anti-quorum sensing therapies. Front. Microbiol. 2019, 10, 2473. [Google Scholar] [CrossRef] [Green Version]
- Desai, K.G.H.; Jin Park, H. Recent developments in microencapsulation of food ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Song, J.J.; Tian, W.J.; Kwok, L.Y.; Wang, Y.L.; Shang, Y.N.; Menghe, B.; Wang, J.G. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Br. J. Nutr. 2017, 118, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yin, C.; Qian, J. Microencapsulation of Lactobacillus plantarum LN66 and its survival potential under different packaging conditions. J. Microencapsul. 2022, 39, 601–608. [Google Scholar] [CrossRef]
- Gao, M.; Song, H.; Liu, X.; Yu, W.; Ma, X. Improved quorum sensing capacity by culturing Vibrio harveyi in microcapsules. J. Biosci. Bioeng. 2016, 121, 406–412. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Shi, G.; Zeng, M.; Liu, Z. Improving 3-phenyllactic acid production of Lactobacillus plantarum AB-1 by enhancing its quorum-sensing capacity. J. Food Sci. Technol. 2019, 56, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zheng, H.; Ren, Y.; Lou, R.; Wu, F.; Yu, W.; Liu, X.; Ma, X. A crucial role for spatial distribution in bacterial quorum sensing. Sci. Rep. 2016, 6, 34695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Gao, M.; Zheng, G.; Ma, X.; Liu, X.; Yu, W. Enhanced quorum sensing capacity via regulating microenvironment to facilitate stress resistance of probiotic in alginate-based microcapsules. Int. J. Biol. Macromol. 2022, 225, 605–614. [Google Scholar] [CrossRef]
- Song, H.; Lou, N.; Liu, J.; Xiang, H.; Shang, D. Label-free quantitative proteomic analysis of the inhibition effect of Lactobacillus rhamnosus GG on Escherichia coli biofilm formation in co-culture. Proteome Sci. 2021, 19, 4. [Google Scholar] [CrossRef] [PubMed]
Microorganism | QSI | Target | Type of Study | Mechanism | Reference |
---|---|---|---|---|---|
Lb. reuteri LR 21 | Reuterin | C. perfringens 13124 | In vitro | Repression of toxins-producing genes (cpa and pfo) and agrB and luxS. | [17] |
Lb. acidophilus GP1B | CE/CFS |
C. difficile
(ribotype 027) | In vitro | Inhibition of AI-2 production and downregulation of luxS and tcdA, tcdB, and txeR (virulence genes). Growth inhibition of C. difficile in the colon. | [18] |
Lb. fermentum Lim2 | Inactivated CE | C. difficile 027 | In vitro | Anti AI-2 activity due to repression of lux gene. Expression of virulence genes also reduced. QSIs are not measured. | [19] |
Lb. reuteri RC-14 | CFS | Staph. aureus MN8 | In vitro | Cyclo-dipeptides inhibited the expression of agr and tst genes as well as disrupting saeRS system. | [20] |
B. subtilis | Fengycin | Staph. aureus | Cross-sectional analysis (Thai population) | Fengycin competes with AIP for binding to agrC. | [21] |
Lb. helveticus | Biosurfactant | Staph. aureus | In vitro | Inhibition of biofilm formation by interfering with AI-2 signaling and biofilm-related genes expression (dltB, sarA, agrA, and icdA). | [22] |
In vivo | Prevention of hemolytic activity through biofilm formation inhibition. | ||||
Lb. plantarum KCTC10887BP | LPA | Staph. aureus | In vitro | Biofilm formation was inhibited. LPA induced AI-2 release in Staph. Aureus, which repressed biofilm-related genes. | [23] |
Lb. acidophillus 30SC | N/A | E. coli O157:H7 43894 | In vivo | Inhibition of AI-2 synthesis and modulation of microbial gut community. | [24] |
Lb. rhamnosus GG microcapsules | N/A | E. coli | In vitro | Repression of lsrK and luxS genes (disruption in AI-2/luxS-typeQS network). | [13] |
Lb. acidophilus A4 | EPS | E. coli O157:H7 | In vitro | Repression levels of curli genes (crl, csgA, and csgB) and chemotaxis (cheY) related to biofilm formation. | [25] |
Bifidobacterium longum ATCC15707 | CE | E. coli O157:H7 | In vitro | Inhibition of AI-2 activity and virulence gene expression (NifU, DsbA, and FlgI). | [26] |
Lb. acidophilus A4 | N/A | E. coli (EHEC) | In vitro | Downregulation of biofilm-related genes (crl, csgA, and csgB) and chemotaxis (cheY). | [27] |
Lb. brevis 3M004 | N/A | P. aeruginosa PA002 biofilm formation | In vitro | Degradation of AIs and repression of biofilm formation, pyocyanin, and polysaccharide synthesis-related genes (lasA, lasB, and PhzAB). | [28] |
Lb. casei CRL 431 Lb. acidophilus CRL 730 | DKPs | P. aeruginosa | In vitro | DKPs compete with AI for binding QS receptors. | [29] |
Lb. rhamnosus GG | CFS | P. aeruginosa | In vitro | Inhibition of AHL synthesis. | [30] |
Lb. casei PTCC 1608 | Lyophilized postbiotics | P. aeruginosa | In vitro | Repression of QS genes controlling biofilm formation and virulence (rhlI, rhlR, and pelf), potentially due to organic acid content. | [31] |
B. subtilis BR4 | Stigmatellin Y | P. aeruginosa (ATCC 27853) | In vitro | Stigmatellin Y competes with PQS signal for binding with PqsR gene, and thus, PqsR-PQS QS pathway is disrupted. | [32] |
B. paralicheniformis ZP1 | Lactonase | P. aeruginosa | In vitro | Inhibition of biofilm formation due to AHL hydrolysis by lactonase. | [33] |
B. subtilis KATMIRA1933 | Subtilisin | L. monocytogenes biofilm formation E. coli biofilm formation | In vitro | Inhibition of proton motive forces and efflux pumps. | [34] |
Lb. plantarum C2 | N/A | E. coli DSM 30083 Enterobacter aerogenes DSM 30053 Yersinia enterolitica DSM 4780 Leuconostoc lactis 20202 Ent. durans DSM 20633 B. megaterium F6 | In vitro | Antibacterial activity by plantaricin produced through QS mechanism. (AI not measured). | [11] |
Lb. plantarum KU200656 | CFS | Staph. aureus Listeria monocytogenes E. coli S. Typhimurium | In vitro | Biofilm-related genes are downregulated by anti-biofilm activity. (Exact QSI mechanism is not measured). | [35] |
Lb.
kefiri
8321 and 83113 Lb. plantarum 83114 | CFS | S. Enteritidis 115 | In vitro | Biofilm formation inhibition. (QSI mechanism not investigated). | [36] |
B. subtilis KATMIRA1933 B. amyloliquefaciens B-1895 | CE/CFS | S. (Thompson, Enteritidis phage type 4, and Hadar) | In vitro | Biofilm inhibition due to the subtilosin effect. AI/luxS QS pathway is necessary for biofilm formation. | [37] |
W. viridescens
WM33 W. confusa WM36 (LAB) | CFS | S. Typhi and S. Typhimurium | In vitro | Inhibition of AI-2 activity and biofilm formation. | [38] |
Lb. reuteri PFS4 Ent. faecium PFS13 and PFS14. | CFS | S. Typhimurium and S. Enteritidis | In vitro | Inhibition of biofilm formation. (Mechanism not investigated). | [39] |
Lb. coryniformis NA-3 | EPS | B. cereus and S. Typhimurium | In vitro | Inhibition of biofilm formation. (Mechanism not investigated). | [40] |
B. subtilis ZK3814 | Fengycin and surfactin | Ent. faecalis OG1RF | In vitro | Inhibition of fsr system, which regulates expression of proteolytic activity related-genes (gelE/sprE). | [41] |
Pd. pentosaceus | Crude biosurfactant |
B. subtilis
andStaph. aureus P. aeruginosa, Staph. aureus, and E. coli | In vitro | Anti-QS and anti-biofilm activity. | [42] |
Lb. curvatus BSF206 and Pd. pentosaceus AC1-2 | CFS | Str. mutans | In vitro | Biofilm formation inhibition by downregulation of related genes (tfA, gtfB, ftf, and brpA). (Exact mechanism not known). | [43] |
Lb. paragasseri MJM60645 | Crude extract | Str. mutans | In vitro |
Downregulation of biofilm-associated genes (gtfB, gtfC, gtfD, gbpB, brpA, spaP, ftf, and smu0630) by iminosugar, a novel chemical compound produced. | [44] |
Lb. rhamnosus GG | Biosurfactant | Str. mutans | In vitro | Anti-biofilm activity due to downregulation of biofilm-related genes (gtfB/C and ftf). | [45] |
Lb. plantarum K41 | N/A | Str. mutans | In vitro and in vivo | Inhibition of biofilm formation by inhibition of exopolysaccharide production. | [46] |
Lb. casei MCJΔ1 (expressed with AHL-lactonase AiiK gene) | Lactonase | Aeromonas hydrophila | In vitro | Enzymatic QQ activity of lactonase. | [47] |
Lb. curvatus B.67 and Lb. plantarum M.2 | Postbiotics | L. monocytogenes | In vitro | Repression of biofilm-related genes (flaA, fbp, agrA, prfA, and hlyA). | [48] |
Lb. curvatus CRL1579 | Lactocin | L. monocytogenes | In vitro | QSI mechanism not investigated. | [49] |
B. subtilis-9 | N/A | E. coli (ETEC), S. Typhimurium, Staph. aureus (MSRA) | In vitro | Biofilm inhibition in a cell-to-cell contact manner. Biofilm-related genes were repressed in ETEC (bssS, luxS, and ihfB). | [50] |
Lb. paracasei L10 | CFS | V. parahaemolyticus | In vitro | Biofilm formation significantly inhibited. (Mechanism not investigated). | [51] |
Lb. plantarum LRCC 5193 | LPA | Str. mutans, E. faecalis, and Str. Gordonii | In vitro | Biofilm formation inhibition. (QSI mechanism is suggested but not investigated). | [52] |
Lb. kefiranofaciens DD2 | CFS | Str. mutans and Str. sobrinus | In vitro | Antibiofilm activity through repression biofilm-associated genes (ftf, comDE, brpA, and vicR). | [53] |
Microorganism | QSI | Target | Type of Study | Mechanism | Reference |
---|---|---|---|---|---|
Lb. plantarum ss-128 | N/A | Spoilage bacterial community (Shewanella, Carnobacterium, and Vagococcus) | Food matrix (shrimp) | AI-2/LuxS-type QS system promotes growth of Lb. plantarum that reduces PH, protease activity, and growth of spoilage microorganism. | [81] |
B. sp. AI96 | Lactonase | Aeromonas veronii LP-11 | In vitro | Spoilage inhibition due to QS disruption by lactonase. | [82] |
B. amyloliquefaciens SBF1 | Culture extract | P. aeruginosa PAO1 | In vitro | Biofilm inhibition due to anti-QS activity. | [83] |
Lysinibacillus sp. Gs50 | Lactonase | Pectobacterium carotovorum | Food matrix | Vegetables soft rot reduced due to QQ of AHLs. | [84] |
B. cereus RC1 | DKPs | Lelliottia amnigena | Food matrix (vegetables) | Soft rot decreased due to anti-QS activity. DKPs compete for binding QS receptors with the AI. | [85] |
QS Molecule | Source | Type of Study | Health Outcomes | Reference |
---|---|---|---|---|
3-oxo-C12:2-HSL | Synthetic | In vitro | Anti-inflammatory effect. | [86] |
3-oxo-C12:2 HSL | Human gut microbiota | Cross sectional (analysis of fecal samples of patients with IBDs) | Positive correlation with normobiosis (increased levels of Firmicutes). | [87] |
In vitro | Anti-inflammatory and positive effect on gut epithelial cell function. | |||
AI-2 | Mutant E. coli engineered to overproduce AI-2 | Animal study | Increased ratio of Firmicutes to Bacteroidetes in antibiotic-treated mice group. | [88] |
AI-2 | Lb. rhamnosus GG (LGG) | Animal study | Protective effect of ΔluxS LGG on intestinal cells is significantly lower than effect of wild-type LGG. | [89] |
AI-2 | Exogenous AI-2 added to milk | Animal study | Dysbiosis was reversed, and inflammation was ameliorated. | [90] |
DPD (precursor of AI-2) | Exogenous (synthetic) | In vitro (co-culture of WCE of Prevotella. intermedia, Prevotella nigrescens, and estradiol with HMK cells) | DPD modulated the pro-inflammatory effect of estradiol + and inhibited biofilm formation. | [91] |
AI-2 | Fusobacterium nucleatum | Cross-sectional (analysis of fecal, saliva, and serum samples from patients with CRC and healthy people) | AI-2 levels are higher in CRC samples compared with control samples. | [92] |
AI-2 | Non-pathogenic E. coli BL21 and W3110 | In vitro (co-culture with HCT-cells) | Increased expression of pro-inflammatory cytokine IL-8 but downregulated after 24 h. | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, M.K.; Abuqwider, J.; Mauriello, G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023, 11, 793. https://doi.org/10.3390/microorganisms11030793
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms. 2023; 11(3):793. https://doi.org/10.3390/microorganisms11030793
Chicago/Turabian StyleSalman, Mohammed Kamal, Jumana Abuqwider, and Gianluigi Mauriello. 2023. "Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health" Microorganisms 11, no. 3: 793. https://doi.org/10.3390/microorganisms11030793
APA StyleSalman, M. K., Abuqwider, J., & Mauriello, G. (2023). Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms, 11(3), 793. https://doi.org/10.3390/microorganisms11030793