Special Issue “Microbial Biodegradation and Biotransformation”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galvão, T.C.; Mohn, W.W.; de Lorenzo, V. Exploring the Microbial Biodegradation and Biotransformation Gene Pool. Trends Biotechnol. 2005, 23, 497–506. [Google Scholar] [CrossRef]
- Ivshina, I.; Bazhutin, G.; Tyumina, E. Rhodococcus Strains as a Good Biotool for Neutralizing Pharmaceutical Pollutants and Obtaining Therapeutically Valuable Products: Through the Past into the Future. Front Microbiol. 2022, 13, 3861. [Google Scholar] [CrossRef]
- Fenner, K.; Elsner, M.; Lueders, T.; McLachlan, M.S.; Wackett, L.P.; Zimmermann, M.; Drewes, J.E. Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence? ACS EST Water 2021, 1, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Cepoi, L.; Zinicovscaia, I.; Rudi, L.; Chiriac, T.; Djur, S.; Yushin, N.; Grozdov, D. Assessment of Metal Accumulation by Arthrospira Platensis and Its Adaptation to Iterative Action of Nickel Mono-and Polymetallic Synthetic Effluents. Microorganisms 2022, 10, 1041. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Cepoi, L.; Rudi, L.; Chiriac, T.; Yushin, N.; Grozdov, D. Arthrospira Platensis as Bioremediator of Rhenium Mono- and Polymetallic Synthetic Effluents. Microorganisms 2022, 10, 2109. [Google Scholar] [CrossRef] [PubMed]
- Thi Mo, L.; Irina, P.; Natalia, S.; Irina, N.; Lenar, A.; Andrey, F.; Ekaterina, A.; Sergey, A.; Olga, P. Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms 2022, 10, 1594. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Arya, S.K. Recent Insight into Enzymatic Degradation of Plastics Prevalent in the Environment: A Mini—Review. Clean. Eng. Technol. 2021, 2, 100083. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of Microbial Consortia for Microbial Degradation of Complex Compounds. Front. Bioeng. Biotechnol. 2022, 10, 2296. [Google Scholar] [CrossRef]
- Krivoruchko, A.; Kuyukina, M.; Ivshina, I. Advanced Rhodococcus Biocatalysts for Environmental Biotechnologies. Catalysts 2019, 9, 236. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Maslova, O.; Senko, O.; Aslanli, A.; Lyagin, I. “Unity and Struggle of Opposites” as a Basis for the Functioning of Synthetic Bacterial Immobilized Consortium That Continuously Degrades Organophosphorus Pesticides. Microorganisms 2022, 10, 1394. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, L.; Qi, L.; Dong, Z. A Novel Organophosphorus Acid Anhydrolase from Deep Sea Sediment with High Degradation Efficiency for Organophosphorus Pesticides and Nerve Agent. Microorganisms 2022, 10, 1112. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.J.C.; de Carvalho, C.C.C.R. Process Development for Benzyl Alcohol Production by Whole-Cell Biocatalysis in Stirred and Packed Bed Reactors. Microorganisms 2022, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. RO Membrane Fouling. In Reverse Osmosis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–220. [Google Scholar] [CrossRef]
- Al-Ashhab, A.; Sweity, A.; Al-Hadidi, L.; Herzberg, M.; Ronen, Z. Antiscalants Used in Seawater Desalination: Biodegradability and Effects on Microbial Diversity. Microorganisms 2022, 10, 1580. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.H.; Kaykhaii, M. Azo Dyes: Sources, Occurrence, Toxicity, Sampling, Analysis, and Their Removal Methods. In Emerging Freshwater Pollutants: Analysis, Fate and Regulations; Dalu, T., Tavengwa, N.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 267–287. [Google Scholar] [CrossRef]
- Kamal, I.M.; Abdeltawab, N.F.; Ragab, Y.M.; Farag, M.A.; Ramadan, M.A. Biodegradation, Decolorization, and Detoxification of Di-Azo Dye Direct Red 81 by Halotolerant, Alkali-Thermo-Tolerant Bacterial Mixed Cultures. Microorganisms 2022, 10, 994. [Google Scholar] [CrossRef]
- Rossi, M.M.; Matturro, B.; Amanat, N.; Rossetti, S.; Petrangeli Papini, M. Coupled Adsorption and Biodegradation of Trichloroethylene on Biochar from Pine Wood Wastes: A Combined Approach for a Sustainable Bioremediation Strategy. Microorganisms 2022, 10, 101. [Google Scholar] [CrossRef]
- Danilaev, M.; Yakovleva, G.; Karandashov, S.; Kuklin, V.; Le, H.Q.; Kurdy, W.; Ilinskaya, O. Polysiloxane Coatings Biodeterioration in Nature and Laboratory. Microorganisms 2022, 10, 1597. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galban-Malag, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Nippes, R.P.; Macruz, P.D.; da Silva, G.N.; Scaliante, M.H.N.O. A Critical Review on Environmental Presence of Pharmaceutical Drugs Tested for the COVID-19 Treatment. Process. Saf. Environ. 2021, 152, 568. [Google Scholar] [CrossRef]
- Lucien, M.A.B.; Canarie, M.F.; Kilgore, P.E.; Jean-Denis, G.; Fénélon, N.; Pierre, M.; Cerpa, M.; Joseph, G.A.; Maki, G.; Zervos, M.J.; et al. Antibiotics and Antimicrobial Resistance in the COVID-19 Era: Perspective from Resource-Limited Settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Pashaei, R.; Dzingelevičienė, R.; Bradauskaitė, A.; Lajevardipour, A.; Mlynska-Szultka, M.; Dzingelevičius, N.; Raugelė, S.; Razbadauskas, A.; Abbasi, S.; Rees, R.M.; et al. Pharmaceutical and Microplastic Pollution before and during the COVID-19 Pandemic in Surface Water, Wastewater, and Groundwater. Water 2022, 14, 3082. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, H.; Jiang, Z.; Jiang, J.; Lu, Z. Degradation of Triclosan in the Water Environment by Microorganisms: A Review. Microorganisms 2022, 10, 1713. [Google Scholar] [CrossRef] [PubMed]
- Ivshina, I.; Bazhutin, G.; Tyan, S.; Polygalov, M.; Subbotina, M.; Tyumina, E. Cellular Modifications of Rhodococci Exposed to Separate and Combined Effects of Pharmaceutical Pollutants. Microorganisms 2022, 10, 1101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivshina, I.; Tyumina, E. Special Issue “Microbial Biodegradation and Biotransformation”. Microorganisms 2023, 11, 1047. https://doi.org/10.3390/microorganisms11041047
Ivshina I, Tyumina E. Special Issue “Microbial Biodegradation and Biotransformation”. Microorganisms. 2023; 11(4):1047. https://doi.org/10.3390/microorganisms11041047
Chicago/Turabian StyleIvshina, Irina, and Elena Tyumina. 2023. "Special Issue “Microbial Biodegradation and Biotransformation”" Microorganisms 11, no. 4: 1047. https://doi.org/10.3390/microorganisms11041047
APA StyleIvshina, I., & Tyumina, E. (2023). Special Issue “Microbial Biodegradation and Biotransformation”. Microorganisms, 11(4), 1047. https://doi.org/10.3390/microorganisms11041047