The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. E.coli Strains and Growth Conditions
2.2. Antibacterial Compounds
2.3. Determination of Sublethal Concentrations, Area under the Curve (AUC), and Classical Methods
2.4. Combination Experiments
2.5. Synergism, Indifference, or Antagonism of the Binary Combinations
2.6. Effective Concentrations and the Optimal Effective Concentration Combination (OPECC)
3. Results
3.1. Sublethal Concentrations
3.2. Optimal Effective Concentration Combination (OPECC)
3.3. Fractional Inhibitory Concentration (∑FIC) and Synergism
3.4. Optimal Effective Concentration Combination (OPECC) and Synergism
4. Discussion
4.1. Compounds
4.2. Sublethal Concentrations
4.3. Minimum Inhibitory Concentration (MIC)
4.4. Incubation Period
4.5. Combination Experiments
4.6. Definition and Determination of the Optimal Effective Concentration Combination (OPECC)
4.7. Predictive Statements and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barra, F.; Roscetto, E.; Soriano, A.A.; Vollaro, A.; Postiglione, I.; Pierantoni, G.M.; Palumbo, G.; Catania, M.R. Photodynamic and Antibiotic Therapy in Combination to Fight Biofilms and Resistant Surface Bacterial Infections. Int. J. Mol. Sci. 2015, 16, 20417–20430. [Google Scholar] [CrossRef]
- Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Mantengoli, E. Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin. Microbiol. Infect. 2008, 14 (Suppl. 6), 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Römling, U.; Nadeem, F.; Bilal, H.M.; Zafar, M.; Jahan, H.; Ur-Rahman, A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.C. A method for testing for synergy with any number of agents. J. Infect. Dis. 1978, 137, 122–130. [Google Scholar] [CrossRef]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic review and meta-analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouton, J.W. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection 1999, 27 (Suppl. 2), S24–S28. [Google Scholar] [CrossRef]
- Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med. 2007, 13, 260–267. [Google Scholar] [CrossRef]
- Botelho, M.G. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenic organisms. J. Dent. 2000, 28, 565–570. [Google Scholar] [CrossRef]
- Wozniak, A.; Grinholc, M. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials-State of the Art. Front. Microbiol. 2018, 9, 930. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, S.G.; Schuetz, A.N. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin. Proc. 2012, 87, 290–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawis, M.A.; Isenberg, H.D.; France, K.A.; Jenkins, S.G. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. J. Antimicrob. Chemother. 2003, 51, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.-L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward Chlorhexidine in Oral Bacteria—Is There Cause for Concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Auer, D.L.; Buchalla, W.; Hiller, K.-A.; Maisch, T.; Hellwig, E.; Al-Ahmad, A.; Cieplik, F. Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrob. Agents Chemother. 2020, 64, e00576-20. [Google Scholar] [CrossRef]
- Pereira, B.M.P.; Tagkopoulos, I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl. Environ. Microbiol. 2019, 85, e00377-19. [Google Scholar] [CrossRef] [Green Version]
- Muehler, D.; Sommer, K.; Wennige, S.; Hiller, K.-A.; Cieplik, F.; Maisch, T.; Späth, A. Light-activated phenalen-1-one bactericides: Efficacy, toxicity and mechanism compared with benzalkonium chloride. Future Microbiol. 2017, 12, 1297–1310. [Google Scholar] [CrossRef]
- Schramm, S.; Hiller, K.-A.; Cantzler, S.; Weilemann, H.; Cantzler, M.; Zimmermann, J.L.; Cieplik, F.; Maisch, T. The Latest Time Point of Retreatment (LTPR) as a Novel Method to Determine Antibacterial Effects for Binary Use of Cold Atmospheric Plasma and Conventional Agents. Front. Microbiol. 2020, 11, 576500. [Google Scholar] [CrossRef]
- Pons, J.L.; Bonnaveiro, N.; Chevalier, J.; Crémieux, A. Evaluation of antimicrobial interactions between chlorhexidine, quaternary ammonium compounds, preservatives and excipients. J. Appl. Bacteriol. 1992, 73, 395–400. [Google Scholar] [CrossRef]
- Pearson, R.D.; Steigbigel, R.T.; Davis, H.T.; Chapman, S.W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob. Agents Chemother. 1980, 18, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.C.; Schoenknecht, F.D.; Sherris, J.C.; Linner, E.C. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: Influence and significance of technical factors. Antimicrob. Agents Chemother. 1983, 23, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, P.; Bernabè, G.; Marchiori, C.; Scarpa, M.; Zuin, M.; Cavazzana, R.; Zaniol, B.; Martines, E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: Membrane permeability, biofilm penetration and antimicrobial sensitization. J. Appl. Microbiol. 2018, 125, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Ball, A.P. Overview of clinical experience with ciprofloxacin. Eur. J. Clin. Microbiol. 1986, 5, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Thongrueang, N.; Liu, S.-S.; Hsu, H.-Y.; Lee, H.-H. An in vitro comparison of antimicrobial efficacy and cytotoxicity between povidone-iodine and chlorhexidine for treating clinical endometritis in dairy cows. PLoS ONE 2022, 17, e0271274. [Google Scholar] [CrossRef]
- Roedel, A.; Dieckmann, R.; Makarewicz, O.; Hartung, A.; Noll, M.; Pletz, M.W.; Dahouk, S.A.; Vincze, S. Evaluation of a Newly Developed Vacuum Dried Microtiter Plate for Rapid Biocide Susceptibility Testing of Clinical Enterococcus Faecium Isolates. Microorganisms 2020, 8, 551. [Google Scholar] [CrossRef]
- Schwarz, S.R.; Hirsch, S.; Hiergeist, A.; Kirschneck, C.; Muehler, D.; Hiller, K.-A.; Maisch, T.; Al-Ahmad, A.; Gessner, A.; Buchalla, W.; et al. Limited antimicrobial efficacy of oral care antiseptics in microcosm biofilms and phenotypic adaptation of bacteria upon repeated exposure. Clin. Oral Investig. 2021, 25, 2939–2950. [Google Scholar] [CrossRef]
- Ronqui, M.R.; de Coletti, T.M.S.F.A.; de Freitas, L.M.; Miranda, E.T.; Fontana, C.R. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin. J. Photochem. Photobiol. B 2016, 158, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Iluz, N.; Maor, Y.; Keller, N.; Malik, Z. The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus. Lasers Surg. Med. 2018, 50, 535–551. [Google Scholar] [CrossRef] [PubMed]
Berenbaum [7] | Botelho, The American Society of Microbiology [11] | Dawis et al. [14] |
---|---|---|
|
|
|
Sublethal Concentration (µg/mL) | ||
---|---|---|
Compound | AUC Method | Classical Empirical Method |
BAC | 2.5 (2.1; 2.8) * | 4 |
CPC | 6.1 (5.2; 7.0) | 4 |
CHX | 0.9 (0.8; 1.2) | 0.8 |
CIP | 0.035 (0.031; 0.058) | 0.03 |
OPECC # (µg/mL) | |||||
---|---|---|---|---|---|
Compound 1 | Compound 2 | ||||
Compound 1 | Compound 2 | Concentration | 95% Conf § | Concentration | 95% Conf |
CPC | BAC | −9 * | −9 | ||
CHX | BAC | −9 | −9 | ||
CHX | CPC | 1.11 | 1.10; 1.11 | 2.19 | 1.96; 2.42 |
CHX | CIP | 0.93 | 0.92; 0.935 | 0.108 | 0.0105; 0.111 |
CIP | BAC | 0.069 | 0.068; 0.0699 | 2.2633 | 2.214; 2.313 |
CIP | CPC | 0.018 | 0.017; 0.0197 | 20.4 | 19.2; 21.5 |
ƩFIC * | ||||||
---|---|---|---|---|---|---|
Compound 1 | Compound 2 | Median | Range | Assessment | Sample Size | OPECC Exists § |
CPC | BAC | 0.31 | 0.19–0.56 | synergism | 3 | no |
CHX | BAC | 0.66 | 0.52–0.75 | indifference | 3 | no |
CHX | CPC | 0.50 | 0.39–0.52 | synergism | 3 | yes |
CHX | CIP | 0.50 | 0.18–0.78 | synergism | 3 | yes |
CIP | BAC | 0.63 | 0.38–0.75 | indifference | 3 | yes |
CIP | CPC | 1.00 | 1.00–1.00 | indifference | 1 | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiller, K.-A.; Wenzl, V.; Forster, E.-M.; Cieplik, F.; Maisch, T. The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds. Microorganisms 2023, 11, 830. https://doi.org/10.3390/microorganisms11040830
Hiller K-A, Wenzl V, Forster E-M, Cieplik F, Maisch T. The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds. Microorganisms. 2023; 11(4):830. https://doi.org/10.3390/microorganisms11040830
Chicago/Turabian StyleHiller, Karl-Anton, Verena Wenzl, Eva-Maria Forster, Fabian Cieplik, and Tim Maisch. 2023. "The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds" Microorganisms 11, no. 4: 830. https://doi.org/10.3390/microorganisms11040830
APA StyleHiller, K. -A., Wenzl, V., Forster, E. -M., Cieplik, F., & Maisch, T. (2023). The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds. Microorganisms, 11(4), 830. https://doi.org/10.3390/microorganisms11040830