DNA Capture and Enrichment: A Culture-Independent Approach for Characterizing the Genomic Diversity of Pathogenic Leptospira Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Capture and Enrichment Probe Design
2.2. Samples Utilized for DNA Capture and Enrichment
2.3. Validation Set
2.4. Unknown Set
2.5. DNA Extraction
2.6. DNA Capture and Enrichment
2.7. DNA Sequencing
2.8. Bioinformatic Methods
2.9. Subsampling of Reads
2.10. Read Classification
2.11. De Novo Assembly of Sequencing Reads
2.12. Hybrid Assemblies
2.13. Species Identification and Determination of Mixtures
2.14. Read Mapping and Calculations of Breadth and Depth of Coverage
2.15. Phylogenetic Comparisons between Isolates and Enrichments in the Validation Set
2.16. Direct Whole-Genome Comparisons between Isolates and Enrichments in the Validation Set
2.17. Characterization and Phylogenetic Analysis of Enriched Genomes in the Unknown Set
2.18. Pooling
2.19. One vs. Two Rounds of Enrichment
2.20. Depth of Coverage
2.21. De Novo Assembly Size
2.22. Leptospira DNA Capture Probes Version 1 vs. Version 2
3. Results
3.1. Validation Set
3.1.1. Species Identification and Determination of Mixtures
3.1.2. Enrichment Results
3.1.3. Phylogenetic Analysis
3.1.4. Direct Whole-Genome Comparisons among Paired Isolates and Enrichments
3.2. Unknown Set
3.2.1. Species Identification and Determination of Mixtures
3.2.2. Enrichment Results
3.2.3. Phylogenetic Analysis
3.3. DNA Capture and Enrichment Decision Points
4. Discussion
4.1. SNP Calling: Potential Sources of Error
4.2. Interpretation of Validated SNPs
4.3. Mixed Infections
4.4. Best Practices for Cost Savings, Different Analysis Goals, and Sample Types
4.5. Other Considerations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, B.; de la Pena Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 2010, 140, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [PubMed]
- Feigin, R.D.; Anderson, D.C. Human leptospirosis. CRC Crit. Rev. Clin. Lab. Sci. 1975, 5, 413–467. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef]
- Musso, D.; La Scola, B. Laboratory diagnosis of leptospirosis: A challenge. J. Microbiol. Immunol. Infect 2013, 46, 245–252. [Google Scholar] [CrossRef]
- Goarant, C. Leptospirosis: Risk factors and management challenges in developing countries. Res. Rep. Trop. Med. 2016, 7, 49–62. [Google Scholar] [CrossRef]
- Dupouey, J.; Faucher, B.; Edouard, S.; Richet, H.; Kodjo, A.; Drancourt, M.; Davoust, B. Human leptospirosis: An emerging risk in Europe? Comp. Immunol. Microbiol. Infect Dis. 2014, 37, 77–83. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F.; Fratini, F. Leptospira Infections in Domestic and Wild Animals. Pathogens 2020, 9, 573. [Google Scholar] [CrossRef]
- Ko, A.I.; Goarant, C.; Picardeau, M. Leptospira: The dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 2009, 7, 736–747. [Google Scholar] [CrossRef]
- Leonard, F.C.; Quinn, P.J.; Ellis, W.A.; O’Farrell, K. Duration of urinary excretion of leptospires by cattle naturally or experimentally infected with Leptospira interrogans serovar hardjo. Vet. Rec. 1992, 131, 435–439. [Google Scholar] [CrossRef]
- Martins, G.; Lilenbaum, W. Control of bovine leptospirosis: Aspects for consideration in a tropical environment. Res. Vet. Sci. 2017, 112, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Boey, K.; Shiokawa, K.; Rajeev, S. Leptospira infection in rats: A literature review of global prevalence and distribution. PLoS Negl. Trop. Dis. 2019, 13, e0007499. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Khalid, M.K.N.M.; Amran, F.; Masuzawa, T.; et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef]
- Mwachui, M.A.; Crump, L.; Hartskeerl, R.A.; Zinsstag, J.; Hattendorf, J. Environmental and Behavioural Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003843. [Google Scholar] [CrossRef] [PubMed]
- Hacker, K.P.; Sacramento, G.A.; Cruz, J.S.; de Oliveira, D.; Nery, N.; Lindow, J.C.; Carvalho, M.; Hagan, J.; Diggle, P.J.; Begon, M.; et al. Influence of Rainfall on Leptospira Infection and Disease in a Tropical Urban Setting, Brazil. Emerg. Infect Dis. 2020, 26, 311–314. [Google Scholar] [CrossRef]
- Cunha, M.; Costa, F.; Ribeiro, G.S.; Carvalho, M.S.; Reis, R.B.; Jr, N.N.; Pischel, L.; Gouveia, E.L.; Santos, A.C.; Queiroz, A.; et al. Rainfall and other meteorological factors as drivers of urban transmission of leptospirosis. PLoS Negl. Trop. Dis. 2022, 16, e0007507. [Google Scholar] [CrossRef] [PubMed]
- Picardeau, M. Diagnosis and epidemiology of leptospirosis. Med. Mal. Infect. 2013, 43, 1–9. [Google Scholar] [CrossRef]
- Grassmann, A.A.; da Cunha, C.E.P.; Bettin, E.B.; McBride, A.J.A. Overview of Leptospirosis. In Neglected Tropical Diseases—South Asia; Springer: Berlin/Heidelberg, Germany, 2017; pp. 245–275. [Google Scholar]
- Lilenbaum, W.; Martins, G. Leptospirosis in cattle: A challenging scenario for the understanding of the epidemiology. Transbound. Emerg. Dis. 2014, 61 (Suppl. S1), 63–68. [Google Scholar] [CrossRef]
- Jayasundara, D.; Gamage, C.; Senavirathna, I.; Warnasekara, J.; Matthias, M.A.; Vinetz, J.M.; Agampodi, S. Optimizing the microscopic agglutination test (MAT) panel for the diagnosis of Leptospirosis in a low resource, hyper-endemic setting with varied microgeographic variation in reactivity. PLoS Negl. Trop. Dis. 2021, 15, e0009565. [Google Scholar] [CrossRef]
- Dietrich, M.; Mühldorfer, K.; Tortosa, P.; Markotter, W. Leptospira and Bats: Story of an Emerging Friendshi. PLoS Pathog. 2015, 11, e1005176. [Google Scholar] [CrossRef]
- Nally, J.E.; Arent, Z.; Bayles, D.O.; Hornsby, R.L.; Gilmore, C.; Regan, S.; McDevitt, A.D.; Yearsley, J.; Fanning, S.; McMahon, B.J. Emerging Infectious Disease Implications of Invasive Mammalian Species: The Greater White-Toothed Shrew (Crocidura russula) Is Associated with a Novel Serovar of Pathogenic Leptospira in Ireland. PLoS. Negl. Trop. Dis. 2016, 10, e0005174. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; De Vries, S.G.; Ahmed, A.; Visser, B.J.; Nagel, I.M.; Spijker, R.; Grobusch, M.P.; Hartskeerl, R.A.; Goris, M.G.; Leeflang, M.M. Nucleic acid and antigen detection tests for leptospirosis. Cochrane Database Syst. Rev. 2019, 8, CD011871. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, R.A.; Gee, J.E.; Wilkins, P.P.; McCaustland, K.; Hoffmaster, A.R. Detection of pathogenic Leptospira sp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn. Microbiol. Infect. Dis. 2009, 64, 247–255. [Google Scholar] [CrossRef]
- Ahmed, A.; Engelberts, M.F.M.; Boer, K.R.; Ahmed, N.; Hartskeerl, R.A. Development and validation of a real-time PCR for detection of pathogenic Leptospira species in clinical materials. PLoS ONE 2009, 4, e7093. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.E.; Hall, C.M.; Ortiz, M.; Hutton, S.M.; Santana-Propper, E.; Celona, K.R.; Williamson, C.H.D.; Bratsch, N.; Fernandes, L.G.V.; Busch, J.D.; et al. Diverse lineages of pathogenic Leptospira species are widespread in the environment in Puerto Rico, USA. PLoS Negl. Trop. Dis. 2022, 16, e0009959. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, Y.; Wang, Y.; Chang, Y.-F.; Zhang, Y.; Jiang, X.; Zhuang, X.; Zhu, Y.; Zhang, J.; Zeng, L.; et al. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira. Sci. Rep. 2016, 6, 20020. [Google Scholar] [CrossRef]
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E.; et al. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef]
- Wagner, D.M.; Birdsell, D.N.; McDonough, R.F.; Nottingham, R.; Kocos, K.; Celona, K.; Özsürekci, Y.; Öhrman, C.; Karlsson, L.; Myrtennäs, K.; et al. Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples. PLoS ONE 2022, 17, e0273273. [Google Scholar] [CrossRef]
- Fernandes, L.G.V.; Stone, N.E.; Roe, C.C.; Goris, M.G.A.; van der Linden, H.; Sahl, J.W.; Wagner, D.M.; Nally, J.E. Leptospira sanjuanensis s nov., a pathogenic species of the genus Leptospira isolated from soil in Puerto Rico. Int. J. Syst. Evol. Microbiol. 2022, 72, 005560. [Google Scholar] [CrossRef]
- Hamond, C.; LeCount, K.; Putz, E.J.; Bayles, D.O.; Camp, P.; Goris, M.G.A.; van der Linden, H.; Stone, N.E.; Schlater, L.K.; Sahl, J.W.; et al. Bovine Leptospirosis Due to Persistent Renal Carriage of Leptospira borgpetersenii Serovar Tarassovi. Front. Vet. Sci. 2022, 9, 848664. [Google Scholar] [CrossRef]
- Hamond, C.; Dirsmith, K.L.; LeCount, K.; Soltero, F.V.; Rivera-Garcia, S.; Camp, P.; Anderson, T.; Hicks, J.A.; Galloway, R.; Sutherland, G.; et al. Leptospira borgpetersenii serovar Hardjo and Leptospira santarosai serogroup Pyrogenes isolated from bovine dairy herds in Puerto Rico. Front. Vet. Sci. 2022, 9, 1025282. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Costa, P.; Rocha, T.; Amaro, A.; Vieira, M.L.; Ahmed, A.; Thompson, G.; Hartskeerl, R.A.; Inácio, J. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach. PLoS ONE 2014, 9, e112312. [Google Scholar] [CrossRef]
- Merien, F.; Amouriaux, P.; Perolat, P.; Baranton, G.; Girons, I.S. Polymerase chain reaction for detection of Leptospira sp. in clinical samples. J. Clin. Microbiol. 1992, 30, 2219–2224. [Google Scholar] [CrossRef]
- Galloway, R.L.; Hoffmaster, A.R. Optimization of LipL32 PCR assay for increased sensitivity in diagnosing leptospirosis. Diagn. Microbiol. Infect. Dis. 2015, 82, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Thibeaux, R.; Girault, D.; Bierque, E.; Soupé-Gilbert, M.-E.; Rettinger, A.; Douyère, A.; Meyer, M.; Iraola, G.; Picardeau, M.; Goarant, C. Biodiversity of Environmental Leptospira: Improving Identification and Revisiting the Diagnosis. Front. Microbiol. 2018, 9, 816. [Google Scholar] [CrossRef]
- Kozarewa, I.; Turner, D.J. 96-plex molecular barcoding for the Illumina Genome Analyzer. Methods Mol. Biol. 2011, 733, 279–298. [Google Scholar] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013, 14, 193–202. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Marcais, G.; Delcher, A.L.; Phillippy, A.; Coston, R.; Salzberg, S.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [PubMed]
- Sahl, J.W.; Lemmer, D.; Travis, J.; Schupp, J.M.; Gillece, J.D.; Aziz, M.; Driebe, E.M.; Drees, K.P.; Hicks, N.D.; Williamson, C.H.D.; et al. NASP: An accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2016, 2, e000074. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Farouni, R.; Djambazian, H.; Ferri, L.E.; Ragoussis, J.; Najafabadi, H.S. Model-based analysis of sample index hopping reveals its widespread artifacts in multiplexed single-cell RNA-sequencing. Nat. Commun. 2020, 11, 2704. [Google Scholar] [CrossRef]
- Furtwangler, A.; Neukamm, J.; Böhme, L.; Reiter, E.; Vollstedt, M.; Arora, N.; Singh, P.; Cole, S.T.; Knauf, S.; Calvignac-Spencer, S.; et al. Comparison of target enrichment strategies for ancient pathogen DNA. Biotechniques 2020, 69, 455–459. [Google Scholar] [CrossRef]
- Piepho, H.P. An algorithm for a letter-based representation of all-pairwise comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Jorge, S.; Kremer, F.S.; de Oliveira, N.R.; Navarro, G.D.O.S.V.; Guimarães, A.M.; Sanchez, C.D.; Woloski, R.D.D.S.; Ridieri, K.F.; Campos, V.F.; Pinto, L.D.S.; et al. Whole-genome sequencing of Leptospira interrogans from southern Brazil: Genetic features of a highly virulent strain. Mem. Inst. Oswaldo Cruz. 2018, 113, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lenski, R.E.; Keim, P. CHAPTER 16—Population Genetics of Bacteria in a Forensic Context. In Microbial Forensics; Breeze, R.G., Budowle, B., Schutzer, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 355–369. [Google Scholar]
- Grillova, L.; Cokelaer, T.; Mariet, J.F.; da Fonseca, J.P.; Picardeau, M. Core genome sequencing and genotyping of Leptospira interrogans in clinical samples by target capture sequencing. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, R.L.; Alt, D.P.; Nally, J.E. Isolation and propagation of leptospires at 37 °C directly from the mammalian host. Sci. Rep. 2020, 10, 9620. [Google Scholar] [CrossRef]
- Kircher, M.; Sawyer, S.; Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012, 40, e3. [Google Scholar] [CrossRef] [PubMed]
- Aymee, L.; Gregg, W.R.R.; Louretiro, A.P.; Di Azevedo, M.I.N.; Pedrosa, J.D.S.; Melo, J.D.S.L.D.; Carvalho-Costa, F.A.; de Souza, G.N.; Lilenbaum, W. Bovine Genital Leptospirosis and reproductive disorders of live subfertile cows under field conditions. Vet. Microbiol. 2021, 261, 109213. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Host | Sample Type | lipL32 PCR | Comparative Isolate? | Sample Set | Analyses | ||||
---|---|---|---|---|---|---|---|---|---|---|
Post Capture % Increase | Number of Enrichments | Pooling | Avg. Seq. Depth | De Novo Assembly | ||||||
Mock1 | Human * | Urine | Positive | L1-130 | Validation | x | x | x | ||
Mock2 | Human * | Urine | Positive | L1-130 | Validation | x | x | x | ||
Void1 12/9 | Bovine | Urine | Positive | MN900 | Validation | x | x | |||
Void2 12/9 | Bovine | Urine | Undetermined | MN900 | Validation | x | ||||
DCP009 | Bovine | Urine | Positive | DCP009 | Validation | x | x | x | ||
DCP017 | Bovine | Urine | Positive | DCP017 | Validation | x | x | |||
DCP041 | Bovine | Urine | Positive | DCP041 | Validation | x | x | x | ||
16S-27 | Environment | Soil | Positive | LGVF02 | Validation | |||||
PCRpos02 | Human | Blood | Positive | No | Unknown | x | x | x | ||
PCRpos05 | Human | Urine | Positive | No | Unknown | x | x | x | ||
KY74 | Bovine | Urine | Positive | No | Unknown | x | x | |||
KYcalf | Bovine | Urine | Positive | No | Unknown | |||||
WI878 | Bovine | Urine | Undetermined | No | Unknown |
Sample ID | Enrichment ID a | Probe Set Version | Rounds of Enrichment | Pooled | Total Sequencing Reads | Percent Classified Reads | Percent Leptospira Reads | secY Consensus Sequence ID (Accession) | Reference Genome Used for Analyses | Average Breadth (>3x) | Average Sequencing Depth (x) |
---|---|---|---|---|---|---|---|---|---|---|---|
Mock1 | Mock1-v1-R2 | v1 | 2 | No | 1,766,654 | 99.6 | 96.4 | L. interrogans (AE016823.1) | L1-130_assembly.fasta | 86.9 | 54.3 |
Mock1 | Mock1-v1-R2-P | v1 | 2 | Yes | 5,057,074 | 99.3 | 91.4 | L. interrogans (AE016823.1) | L1-130_assembly.fasta | 90.5 | 212.4 |
Mock2 | Mock2-v1-R2 | v1 | 2 | No | 1,194,836 | 99.6 | 95.1 | L. interrogans (AE016823.1) | L1-130_assembly.fasta | 78.2 | 35.6 |
Mock2 | Mock2-v1-R2-P | v1 | 2 | Yes | 686,126 | 98.2 | 79.3 | L. interrogans (AE016823.1) | L1-130_assembly.fasta | 72.6 | 22.4 |
Void1 12/9 | Void1129-v1-R2 | v1 | 2 | No | 1,394,238 | 97.2 | 96.0 | L. borgpetersenii (CP084914.1) | MN900_closed.fasta | 86.3 | 48.5 |
Void1 12/9 | Void1129-v2-R1 | v2 | 1 | No | 6,399,124 | 95.7 | 93.4 | L. borgpetersenii (CP084914.1) | MN900_closed.fasta | 98.5 | 216.1 |
Void1 12/9 | Void1129-v2-R2 | v2 | 2 | No | 1,657,708 | 96.7 | 95.6 | L. borgpetersenii (CP084914.1) | MN900_closed.fasta | 85.7 | 57.6 |
DCP009 | DCP009-v2-R1 | v2 | 1 | No | 9,328,054 | 96.6 | 95.2 | L. borgpetersenii (CP033440.1) | DCP009_closed.fasta | 99.8 | 333.4 |
DCP009 | DCP009-v2-R2 | v2 | 2 | No | 2,507,792 | 97.0 | 96.2 | L. borgpetersenii (CP033440.1) | DCP009_closed.fasta | 90.3 | 87.4 |
DCP017 | DCP017-v2-R1 | v2 | 1 | No | 3,378,920 | 85.5 | 79.5 | L. santarosai (CP097245.1) | DCP017_closed.fasta | 98.4 | 92.0 |
DCP017 | DCP017-v2-R2 | v2 | 2 | No | 2,213,726 | 95.5 | 94.4 | L. borgpetersenii (CP033440.1) | DCP017_closed.fasta | 89.4 | 70.0 |
DCP041 | DCP041-v2-R1 | v2 | 1 | No | 4,420,192 | 91.1 | 86.6 | L. borgpetersenii (CP033440.1) | DCP041_closed.fasta | 99.9 | 145.4 |
DCP041 | DCP041-v2-R2 | v2 | 2 | No | 1,539,874 | 96.5 | 95.3 | L. borgpetersenii (CP033440.1) | DCP041_closed.fasta | 91.7 | 54.3 |
KY74 | KY74-v2-R1 | v2 | 1 | No | 6,964,590 | 95.6 | 93.74 | L. borgpetersenii (CP033440.1) | MN900_closed.fasta | 93.1 | 222.1 |
KY74 | KY74-v2-R2 | v2 | 2 | No | 2,306,432 | 96.9 | 96.0 | L. borgpetersenii (CP033440.1) | MN900_closed.fasta | 82.9 | 72.2 |
KYcalf | KYcalf-v2-R2 | v2 | 2 | No | 3,190,066 | 83.7 | 78.9 | L. borgpetersenii (CP047516.1) | MN900_closed.fasta | 57.59 | 33.78 |
PCRpos02 | PCRpos02-v1-R2 | v1 | 2 | No | 1,317,502 | 99.6 | 89.7 | L. interrogans (CP048830.1) | L1-130_closed.fasta | 82.1 | 37.6 |
PCRpos02 | PCRpos02-v1-R2-P | v1 | 2 | Yes | 4,633,188 | 99.3 | 90.3 | L. interrogans (CP048830.1) | L1-130_closed.fasta | 87.5 | 182.0 |
PCRpos05 | PCRpos05-v1-R2 | v1 | 2 | No | 964,960 | 86.2 | 79.6 | L. kirschneri (CP112976.1) | RedPanda1_assembly.fasta | 78.1 | 28.1 |
PCRpos05 | PCRpos05-v1-R2-P | v1 | 2 | Yes | 1,692,194 | 95.3 | 74.6 | L. kirschneri (CP112976.1) | RedPanda1_assembly.fasta | 82.3 | 57.3 |
16S-27 | 16s-27-v1-R2 | v1 | 2 | No | 2,916,802 | 62.2 | 1.1 | L. kmetyi (CP033614.1) | LGVF01_closed.fasta | 4.9 | 0.7 |
WI878 | WI878-v1-R2 | v1 | 2 | No | 4,048,476 | 70.9 | 2.7 | na | na | na | na |
WI878 | WI878-v2-R2 | v2 | 2 | No | 1,472,710 | 36.0 | 1.1 | na | na | na | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, N.E.; McDonough, R.F.; Hamond, C.; LeCount, K.; Busch, J.D.; Dirsmith, K.L.; Rivera-Garcia, S.; Soltero, F.; Arnold, L.M.; Weiner, Z.; et al. DNA Capture and Enrichment: A Culture-Independent Approach for Characterizing the Genomic Diversity of Pathogenic Leptospira Species. Microorganisms 2023, 11, 1282. https://doi.org/10.3390/microorganisms11051282
Stone NE, McDonough RF, Hamond C, LeCount K, Busch JD, Dirsmith KL, Rivera-Garcia S, Soltero F, Arnold LM, Weiner Z, et al. DNA Capture and Enrichment: A Culture-Independent Approach for Characterizing the Genomic Diversity of Pathogenic Leptospira Species. Microorganisms. 2023; 11(5):1282. https://doi.org/10.3390/microorganisms11051282
Chicago/Turabian StyleStone, Nathan E., Ryelan F. McDonough, Camila Hamond, Karen LeCount, Joseph D. Busch, Katherine L. Dirsmith, Sarai Rivera-Garcia, Fred Soltero, Laura M. Arnold, Zachary Weiner, and et al. 2023. "DNA Capture and Enrichment: A Culture-Independent Approach for Characterizing the Genomic Diversity of Pathogenic Leptospira Species" Microorganisms 11, no. 5: 1282. https://doi.org/10.3390/microorganisms11051282
APA StyleStone, N. E., McDonough, R. F., Hamond, C., LeCount, K., Busch, J. D., Dirsmith, K. L., Rivera-Garcia, S., Soltero, F., Arnold, L. M., Weiner, Z., Galloway, R. L., Schlater, L. K., Nally, J. E., Sahl, J. W., & Wagner, D. M. (2023). DNA Capture and Enrichment: A Culture-Independent Approach for Characterizing the Genomic Diversity of Pathogenic Leptospira Species. Microorganisms, 11(5), 1282. https://doi.org/10.3390/microorganisms11051282