High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review
Abstract
:1. Introduction
2. CMS—Formed Colistin Characteristics
3. Potential Benefits of Nebulized CMS
4. Dosage and Administration
5. Nebulizers and Nebulization Technique
6. Pharmacokinetics of Nebulized Colistimethate Sodium
6.1. The Backbone Studies on PK of Nebulized Colistin
6.2. ELF Formed Colistin Concentrations—Overstepping the Boundaries of Low Doses
6.3. Plasma-Formed Colistin Concentrations
6.4. The Quandary of the Optimal Nebulizer. PK Data Resolves the Dilemma
7. Clinical Studies of High-Dose Nebulized CMS
8. Toxicity—Adverse Events
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, J.; Panigada, M.; Klompas, M.; Berra, L. Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients. Curr. Opin. Crit. Care 2022, 28, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Cawcutt, K.A. Is Ventilator-Associated Pneumonia More Frequent in Patients with Coronavirus Disease 2019? Crit. Care Med. 2022, 50, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Khanna, P.; Sarkar, S. Comparative evaluation of ventilator-associated pneumonia in critically ill COVID-19 and patients infected with other corona viruses: A systematic review and meta-analysis. Monaldi Arch. Chest Dis. 2021, 92. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Vacheron, C.H.; Lepape, A.; Savey, A.; Machut, A.; Timsit, J.F.; Comparot, S.; Courno, G.; Vanhems, P.; Landel, V.; Lavigne, T.; et al. REA-REZO Study Group. Attributable Mortality of Ventilator-associated Pneumonia Among Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2022, 206, 161–169. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients With COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef]
- Howatt, M.; Klompas, M.; Kalil, A.C.; Metersky, M.L.; Muscedere, J. Carbapenem Antibiotics for the Empiric Treatment of Nosocomial Pneumonia: A Systematic Review and Meta-analysis. Chest 2021, 159, 1041–1054. [Google Scholar] [CrossRef]
- Brink, A.J.; Richards, G.; Tootla, H.; Prentice, E. Epidemiology of Gram-negative bacteria during coronavirus disease 2019. What is the real pandemic? Curr. Opin. Infect. Dis. 2022, 35, 595–604. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar]
- Karaiskos, I.; Galani, I.; Souli, M.; Giamarellou, H. Novel β-lactam-β-lactamase inhibitor combinations: Expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin. Drug Metab. Toxicol. 2019, 15, 133–149. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef]
- Poulakou, G.; Siakallis, G.; Tsiodras, S.; Arfaras-Melainis, A.; Dimopoulos, G. Nebulized antibiotics in mechanically ventilated patients: Roadmap and challenges. Expert Rev. Anti-Infect. Ther. 2017, 15, 211–229. [Google Scholar] [CrossRef]
- Rouby, J.J.; Bouhemad, B.; Monsel, A.; Brisson, H.; Arbelot, C.; Lu, Q.; Nebulized Antibiotics Study Group. Aerosolized antibiotics for ventilator-associated pneumonia: Lessons from experimental studies. Anesthesiology 2012, 117, 1364–1380. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Mavroudis, A.D.; Georgiou, M.; Falagas, M.E. Intravenous plus inhaled versus intravenous colistin monotherapy for lower respiratory tract infections: A systematic review and meta-analysis. J. Infect. 2018, 76, 321–327. [Google Scholar] [CrossRef]
- Rello, J.; Solé-Lleonart, C.; Rouby, J.J.; Chastre, J.; Blot, S.; Poulakou, G.; Luyt, C.E.; Riera, J.; Palmer, L.B.; Pereira, J.M.; et al. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2017, 23, 629–639. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar]
- European Medicines Agency Completes Review of Polymyxin-Based Medicines. Recommendations Issued for Safe Use in Patients with Serious Infections Resistant to Standard Antibiotics. 2014. Available online: https://www.ema.europa.eu/en/documents/referral/polymyxin-article-31-referral-european-medicines-agency-completes-review-polymyxin-based-medicines_en.pdf (accessed on 22 April 2023).
- Gkoufa, A.; Sou, T.; Karaiskos, I.; Routsi, C.; Lin, Y.W.; Psichogiou, M.; Zakynthinos, S.; Giamarellou, H.; Li, J.; Friberg, L.E. Pulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and formed colistin following nebulisation of CMS among patients with ventilator-associated pneumonia. Int. J. Antimicrob. Agents 2022, 59, 106588. [Google Scholar] [CrossRef]
- Benítez-Cano, A.; de Antonio-Cuscó, M.; Luque, S.; Sorlí, L.; Carazo, J.; Ramos, I.; Grau, S. Systemic pharmacokinetics and safety of high doses of nebulized colistimethate sodium in critically ill patients with hospital-acquired and ventilator-associated pneumonia. J. Antimicrob. Chemother. 2019, 74, 3268–3273. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, R.; Bodin, L.; Yang, J.; Zahr, N.; Aubry, A.; Golmard, J.L.; Rouby, J.J. The Nebulized Antibiotics Study Group. Efficacy of High-dose Nebulized Colistin in Ventilator-associated Pneumonia Caused by Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012, 117, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Pintaudi, G.; Lisi, L.; De Maio, F.; Cutuli, S.L.; Tanzarella, E.S.; Carelli, S.; Lombardi, G.; Cesarano, M.; Gennenzi, V.; et al. Use of High-Dose Nebulized Colistimethate in Patients with Colistin-Only Susceptible Acinetobacter baumannii VAP: Clinical, Pharmacokinetic and Microbiome Features. Antibiotics 2023, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Souli, M.; Galani, I.; Giamarellou, H. Colistin: Still a lifesaver for the 21st century? Expert Opin. Drug Metab. Toxicol. 2017, 13, 59–71. [Google Scholar] [CrossRef]
- Kiratisin, P.; Kazmierczak, K.; Stone, G.G. In vitro activity of ceftazidime/avibactam and comparators against carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa isolates collected globally between 2016 and 2018. J. Glob. Antimicrob. Resist. 2021, 27, 132–141. [Google Scholar] [CrossRef]
- Nation, R.L.; Forrest, A. Clinical Pharmacokinetics, Pharmacodynamics and Toxicodynamics of Polymyxins: Implications for Therapeutic Use. Adv. Exp. Med. Biol. 2019, 1145, 219–249. [Google Scholar]
- Boisson, M.; Jacobs, M.; Grégoire, N.; Gobin, P.; Marchand, S.; Couet, W.; Mimoz, O. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob. Agents Chemother. 2014, 58, 7331–7339. [Google Scholar] [CrossRef]
- Miano, T.A.; Lautenbach, E.; Wilson, F.P.; Guo, W.; Borovskiy, Y.; Hennessy, S. Attributable Risk and Time Course of Colistin-Associated Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2018, 13, 542–550. [Google Scholar] [CrossRef]
- Imberti, R.; Cusato, M.; Villani, P.; Carnevale, L.; Iotti, G.A.; Langer, M.; Regazzi, M. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest 2010, 138, 1333–1339. [Google Scholar] [CrossRef]
- Tran, T.B.; Velkov, T.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Bergen, P.J.; Li, J. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? Int. J. Antimicrob. Agents 2016, 48, 592–597. [Google Scholar] [CrossRef]
- Athanassa, Z.E.; Markantonis, S.L.; Fousteri, M.Z.; Myrianthefs, P.M.; Boutzouka, E.G.; Tsakris, A.; Baltopoulos, G.J. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012, 38, 1779–1786. [Google Scholar] [CrossRef]
- Rouby, J.J.; Sole-Lleonart, C.; Rello, J.; European Investigators Network for Nebulized Antibiotics in Ventilator-associated Pneumonia. Ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: Understanding nebulization of aminoglycosides and colistin. Intensive Care Med. 2020, 46, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Girardi, C.; Zhang, M.; Bouhemad, B.; Louchahi, K.; Petitjean, O.; Wallet, F.; Becquemin, M.H.; Le Naour, G.; Marquette, C.H.; et al. Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intensive Care Med. 2010, 36, 1147–1155. [Google Scholar] [CrossRef]
- Bergen, P.J.; Forrest, A.; Bulitta, J.B.; Tsuji, B.T.; Sidjabat, H.E.; Paterson, D.L.; Li, J.; Nation, R.L. Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant pseudomonas aeruginosa at multiple innocula. Antimicrob. Agents Chemother. 2011, 55, 5134–5142. [Google Scholar] [CrossRef] [PubMed]
- Monsel, A.; Torres, A.; Zhu, Y.; Pugin, J.; Rello, J.; Rouby, J.J.; on behalf of the European Investigators Network for Nebulized Antibiotics in Ventilator-associated Pneumonia (ENAVAP). Nebulized antibiotics for ventilator-associated pneumonia: Methodological framework for future multicenter randomized controlled trials. Curr. Opin. Infect. Dis. 2021, 34, 156–168. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Samonis, G.; Falagas, M.E. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 1–9. [Google Scholar] [CrossRef]
- Zhu, Y.; Monsel, A.; Roberts, J.A.; Pontikis, K.; Mimoz, O.; Rello, J.; Qu, J.; Rouby, J.J.; European Investigator Network for Nebulized Antibiotics in Ventilator-Associated Pneumonia (ENAVAP). Nebulized Colistin in Ventilator-Associated Pneumonia and Tracheobronchitis: Historical Background, Pharmacokinetics and Perspectives. Microorganisms 2021, 9, 1154. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000-2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Bihan, K.; Zahr, N.; Becquemin, M.H.; Lu, X.; Bertholon, J.F.; Vezinet, C.; Arbelot, C.; Monsel, A.; Rouby, J.J.; Langeron, O.; et al. Influence of diluent volume of colistimethate sodium on aerosol characteristics and pharmacokinetics in ventilator-associated pneumonia caused by MDR bacteria. J. Antimicrob. Chemother. 2018, 73, 1639–1646. [Google Scholar] [CrossRef]
- Li, J.; Milne, R.W.; Nation, R.L.; Turnidge, J.D.; Coulthard, K. Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrob. Agents Chemother. 2003, 47, 1364–1370. [Google Scholar] [CrossRef]
- McCoy, K.S. Compounded colistimethate as possible cause of fatal acute respiratory distress syndrome. N. Engl. J. Med. 2007, 357, 2310–2311. [Google Scholar] [CrossRef]
- Rello, J.; Rouby, J.J.; Sole-Lleonart, C.; Chastre, J.; Blot, S.; Luyt, C.E.; Riera, J.; Vos, M.C.; Monsel, A.; Dhanani, J.; et al. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin. Microbiol. Infect. 2017, 23, 640–646. [Google Scholar] [CrossRef]
- Lin, H.L.; Fink, J.B.; Ge, H. Aerosol delivery via invasive ventilation. A narrative review. Ann. Transl. Med. 2021, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Ari, A.; Areabi, H.; Fink, J.B. Evaluation of aerosol generator devices at 3 locations in humidified and non humidified circuits during adult mechanical ventilation. Respir. Care 2010, 55, 837–844. [Google Scholar] [PubMed]
- Ari, A.; Atalay, O.T.; Harwood, R.; Sheard, M.M.; Aljamhan, E.A.; Fink, J.B. Influence of ventilator type, position and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respir. Care 2010, 55, 845–851. [Google Scholar] [PubMed]
- Kim, Y.K.; Lee, J.H.; Lee, H.K.; Chung, B.C.; Yu, S.J.; Lee, H.Y.; Park, J.H.; Kim, S.; Kim, H.K.; Kiem, S.; et al. Efficacy of nebulized colistin-based therapy without concurrent intravenous colistin for ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii. J. Thorac. Dis. 2017, 9, 555–567. [Google Scholar] [CrossRef]
- Casarotta, E.; Bottari, E.; Vannicola, S.; Giorgetti, R.; Domizi, R.; Carsetti, A.; Damiani, E.; Scorcella, C.; Gabbanelli, V.; Pantanetti, S.; et al. Antibiotic Treatment of Acinetobacter baumannii Superinfection in Patients With SARS-CoV-2 Infection Admitted to Intensive Care Unit: An Observational Retrospective Study. Front. Med. 2022, 9, 910031. [Google Scholar] [CrossRef]
- Feng, J.Y.; Huang, J.R.; Lee, C.C.; Tseng, Y.H.; Pan, S.W.; Chen, Y.M.; Yang, K.Y. Role of nebulized colistin as a substitutive strategy against nosocomial pneumonia caused by CR-GNB in intensive care units: A retrospective cohort study. Ann. Intensive Care 2023, 13, 1. [Google Scholar] [CrossRef]
- Harvey, C.J.; O’Doherty, M.J.; Page, C.J.; Thomas, S.H.; Nunan, T.O.; Treacher, D.F. Comparison of jet and ultrasonic nebulizer pulmonary aerosol deposition during mechanical ventilation. Eur. Respir. J. 1997, 10, 905–909. [Google Scholar] [CrossRef]
- Choe, J.; Sohn, Y.M.; Jeong, S.H.; Park, H.J.; Na, S.J.; Huh, K.; Suh, G.Y.; Jeon, K. Inhalation with intravenous loading dose of colistin in critically ill patients with pneumonia caused by carbapenem-resistant gram-negative bacteria. Ther. Adv. Respir. Dis. 2019, 13, 1753466619885529. [Google Scholar] [CrossRef]
- Liu, C.Y.; Ko, H.S.; Fink, J.B. Size Distribution of colistin delivery by different type nebulizers and concentrations during mechanical ventilation. Pharmaceutics 2019, 11, 459–468. [Google Scholar] [CrossRef]
- Abdellatif, S.; Trifi, A.; Daly, F.; Mahjoub, K.; Nasri, R.; Ben Lakhal, S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: A prospective, randomised trial. Ann. Intensive Care 2016, 6, 26. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kwon, H.Y.; Choi, E.H.; Lee, W.-Y.; Shim, H.; Bae, K.S. Efficacy and toxicity of high-dose nebulized colistin for critically ill surgical patients with ventilator-associated pneumonia caused by multidrug-resistant Acinetobacter baumannii. J. Crit. Care 2017, 40, 251–256. [Google Scholar] [CrossRef]
- Hu, H.; Xu, D.; Dai, B. Position of different nebulizer types for aerosol delivery in an adult model of mechanical ventilation. Front. Med. 2022, 9, 950569. [Google Scholar] [CrossRef]
- Luyt, C.E.; Hékimian, G.; Bréchot, N.; Chastre, J. Aerosol Therapy for Pneumonia in the Intensive Care Unit. Clin. Chest Med. 2018, 39, 823–836. [Google Scholar] [CrossRef]
- Li, J.; Milne, R.W.; Nation, R.L.; Turnidge, J.D.; Smeaton, T.C.; Coulthard, K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob. Agents Chemother. 2003, 47, 1766–1770. [Google Scholar] [CrossRef]
- Poulakou, G.; Matthaiou, D.K.; Nicolau, D.P.; Siakallis, G.; Dimopoulos, G. Inhaled Antimicrobials for Ventilator-Associated Pneumonia: Practical Aspects. Drugs 2017, 77, 1399–1412. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Sorlí, L.; Luque, S.; Benito, N.; Segura, C.; Campillo, N.; Montero, M.; Esteve, E.; Mirelis, B.; Pomar, V.; et al. Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int. J. Antimicrob. Agents 2016, 48, 725–727. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Pontikis, K.; Valsami, G.; Avgeropoulou, S.; Neroutsos, E.; Christodoulou, E.; Moraitou, E.; Markantonis, S.L.; Dokoumetzidis, A.; Rello, J.; et al. Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections. Antibiotics 2022, 11, 1528. [Google Scholar] [CrossRef]
- Grégoire, N.; Aranzana-Climent, V.; Magréault, S.; Marchand, S.; Couet, W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin. Pharmacokinet. 2017, 56, 1441–1460. [Google Scholar] [CrossRef]
- Rychlíčková, J.; Kubíčková, V.; Suk, P.; Urbánek, K. Challenges of Colistin Use in ICU and Therapeutic Drug Monitoring: A Literature Review. Antibiotics 2023, 12, 437. [Google Scholar] [CrossRef]
- Valachis, A.; Samonis, G.; Kofteridis, D.P. The Role of Aerosolized Colistin in the Treatment of Ventilator-Associated Pneumonia: A Systematic Review and Meta-analysis. Crit. Care Med. 2015, 43, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, J.; Liu, H.X.; Zhu, Y.G.; Qu, J.M. Intravenous combined with aerosolised polymyxin versus intravenous polymyxin alone in the treatment of pneumonia caused by multidrug-resistant pathogens: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2015, 46, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Montrucchio, G.; Corcione, S.; Lupia, T.; Shbaklo, N.; Olivieri, C.; Poggioli, M.; Pagni, A.; Colombo, D.; Roasio, A.; Bosso, S.; et al. The Burden of Carbapenem-Resistant Acinetobacter baumannii in ICU COVID-19 Patients: A Regional Experience. J. Clin. Med. 2022, 11, 5208. [Google Scholar] [CrossRef] [PubMed]
- Ordooei Javan, A.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Xiao, X.; Li, J.; Ciccotosto, G.D.; Cappai, R.; Tang, S.; Schneider-Futschik, E.K.; Hoyer, D.; Velkov, T.; Shen, J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS. Chem. Neurosci. 2019, 10, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Luo, R.; Wu, B.; Wang, F.; Song, H.; Chen, X. Effectiveness and safety of adjunctive inhaled antibiotics for ventilator-associated pneumonia: A systematic review and meta-analysis of randomized controlled trials. J. Crit. Care 2021, 65, 133–139. [Google Scholar] [CrossRef]
- Alothman, G.A.; Ho, B.; Alsaadi, M.M.; Ho, S.L.; O’Drowsky, L.; Louca, E.; Coates, A.L. Bronchial constriction and inhaled colistin in cystic fibrosis. Chest 2005, 127, 522–529. [Google Scholar] [CrossRef]
- Mentzelopoulos, S.D.; Pratikaki, M.; Platsouka, E.; Kraniotaki, H.; Zervakis, D.; Koutsoukou, A.; Nanas, S.; Paniara, O.; Roussos, C.; Giamarellos-Bourboulis, E.; et al. Prolonged use of carbapenems and colistin predisposes to ventilator-associated pneumonia by pandrug-resistant Pseudomonas aeruginosa. Intensive Care Med. 2007, 33, 1524–1532. [Google Scholar] [CrossRef]
- Matthaiou, D.K.; Michalopoulos, A.; Rafailidis, P.I.; Karageorgopoulos, D.E.; Papaioannou, V.; Ntani, G.; Samonis, G.; Falagas, M.E. Risk factors associated with the isolation of colistin-resistant gram-negative bacteria: A matched case-control study. Crit. Care Med. 2008, 36, 807–811. [Google Scholar] [CrossRef]
- Kempf, M.; Djouhri-Bouktab, L.; Brunel, J.M.; Raoult, D.; Rolain, J.M. Synergistic activity of sulbactam combined with colistin against colistin-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2012, 39, 180–181. [Google Scholar] [CrossRef]
- Gu, W.J.; Wang, F.; Tang, L.; Bakker, J.; Liu, J.C. Colistin for the treatment of ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2014, 44, 477–485. [Google Scholar] [CrossRef]
- Ioannidou, E.; Siempos, I.I.; Falagas, M.E. Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: A meta-analysis. J. Antimicrob. Chemother. 2007, 60, 1216–1226. [Google Scholar] [CrossRef]
Nebulizer | Advantages | Drawbacks | % Dose Delivered |
---|---|---|---|
Jet nebulizer |
|
| 1–15 |
Ultrasonic nebulizer |
|
| 30–40 |
Vibrating mesh nebulizer |
|
| 40–60 |
Author, Date | Type of Study | Subjects’ Neb Group | Control iv Group | Type of Infection/ Pathogen | Type of Nebulizer | Dose of Neb CMS/ Duration (Days, Range) | Dose of iv CMS/Duration (Days, Range) | N, Concomitant Antibiotics | Toxicity | Outcome | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
Lu et al., 2012 [21] | PCS, clinical efficacy | 43 pts, neb mono: 28 neb + 3-day iv aminoglycoside: 15 | 122 pts, iv β-lactam + 3-day iv aminoglycoside | VAP/ 145, PA 20, AB (MDR and susceptible strains) | vibrating plate nebulizer | 5 MU q8h/ 12 (7–19) | - | 137, Aminoglycoside 122, β-lactam | No increase of risk of AKI with neb CMS | 29/43 (67%) vs. 81/122 (66%) clinical cure. 19/28 of neb mono and 10/15 of neb + 3-day iv aminoglycoside clinical cure | Low risk of CMS resistance after neb. Neb CMS effective for MDR-GNB VAP with non-inferior clinical cure rate to that of VAP caused by susceptible GNB. Similar all-cause ICU mortality between groups. |
Abdellatif et al., 2016 [52] | PCS, clinical efficacy | 73 pts, neb mono:13 | 76, iv mono: 12 | VAP/ AB, PA, KP (number of pathogens not defined) | ultrasonic vibrating plate nebulizer | 4 MU q8h/ At least 14 | LD 9 MU, MD 4.5 MU q12h/ At least 14 | 69, β-lactams 23, Aminoglycosides 11, Quinolones/macrolides 16, Tigecycline 14, Glycopeptides | Lower incidence of nephrotoxicity in neb vs. iv group (17.8 vs. 39.4%, p = 0.004) Moderate bronchospasm in 2.7% in the neb group | 67.1% clinical cure rate in neb group and 72% in iv group, p = 0.59. TBE: neb vs. iv group 9.89 ± 2.7 vs. 11.26 ± 3 days, p = 0.023. Improvement of P/F ratio 349 vs. 316 at day 14, p = 0.012. | After extubating, 7 MU of neb CMS in the nebulizer chamber. No difference in the length of stay and the 28-day mortality |
Jang et al., 2017 [53] | RCS, clinical efficacy | 51 | 44 | VAP/ AB | vibrating plate nebulizer | 4.5 MU q8h/ 11.8 ± 5.4 | LD: 9 MU MD: 4.5 MU q12h/ 10.9 ± 4.5 | 16, iv vancomycin 41, iv teicoplanin | Higher nephrotoxicity in the iv vs. neb group (60.5% vs. 15.7%, p < 0.0001) | 79.6% clinical cure/improvement in the iv group vs. 76.5 in the neb group--65% microbiological eradication in the iv group vs. 66% in the neb group. Μortality rate 13.6% in the iv group vs. 19.6% in the neb group, p = 0.15. | Susceptibility to colistin using BMD method. Both groups had similar clinical and microbiological outcomes |
Kim et al., 2017 [46] | RCS, clinical efficacy, PSM | 126, neb mono: 22 | 93, iv mono: 36 | VAP/ CR-AB | jet nebulizer | 2.25 MU q12h to 4.5 MU q8 (median dose: 9 MU)/ 17 (10–25) | No LD, median daily dose 7.5 MU (4.5–9)/ 10 (7–16) | 102, Carbapenems 25, Tigecycline 34, Minocycline 15, Ampicillin/sulbactam 45, Amikacin | AKI significantly more common in the iv vs. neb group (38% vs. 16%; p < 0.001) No cases of bronchospasm | 57% clinical failure in the iv group vs. 39% in the neb group, p = 0.008. 59% ICU mortality in the iv group vs. 40% in the neb group, p = 0.006. | Susceptibility to colistin using BMD method. Neb CMS, without iv, effective and safe. |
Bihan et al., 2018 [39] | PCS, PK, clinical efficacy | 8 | None | VAP/ PA, AB | vibrating-mesh nebulizer | 4 MU q8h/ 9 (8–11) | - | - | NA | 63% clinical cure rate 13% ICU mortality | 6 mL of saline the preferred diluent volume over 12 mL due to shorter nebulization time, improved colistin stability, optimal particle size with no influence on plasma PK |
Benitez-Cano et al., 2019 [20] | PCS, PK, clinical efficacy | 27 | None | 21, HAP 6, VAP/ PA, ESBL Enterobacteriaceae | vibrating-mesh nebulizer in 17 patients jet nebulizer in 10 patients | 3 MU q8h/ 7 (5–11) 5 MU q8h/ 5 (4–6) | - | - | No cases of neurotoxicity or bronchospasm AKI in six patients who were receiving other nephrotoxic drugs | 19/27 (70%) clinical cure. 8/27 (29.6%) 30-day all-cause mortality. | Higher colistin concentrations with vibrating-mesh vs. jet nebulizer. Minimal systemic exposure and good tolerability of high doses of CMS. |
Choe et al., 2019 [50] | RCS, clinical efficacy | 35 (neb + LD iv) | 156 (-non- LD iv: 70, -LD iv: 86) | 140, VAP 51, HAP/ AB, PA, KP | ultrasonic nebulizer for intubated patients jet nebulizer for extubated patients | 4.5 MU q8h/ 12 (6–16) | Median daily dose (mg/kg/day) in the non-LD iv group: 2.9 (2.1–4.3)/ 14 (10–15), in the LD iv group: 3.9 (2.9–5)/ 14 (9–15) in the neb LD iv group: 3.1 (2.2–4.1)/ 14 (12–17) | 64, Carbapenem 21, Piperacillin/tazobactam 10, Minocycline 9, Tigecycline | No significant differences in nephrotoxicity between the non-LD iv group and the LD iv group Neb colistin did not increase the risk of nephrotoxicity | 49% clinical cure rate in the neb–LD group vs. 46% in the non-LD iv vs. 42% in the LD iv group, p = 0.76–60% rate of microbiological eradication in the neb–LD group vs. 31% in the non-LD iv vs. 33% in the LD iv group, p = 0.010 | No difference in clinical response between the three groups. Neb–LD group was significantly associated with lower mortality (adjusted OR 0.338, CI 95% 0.132–0.864, p = 0.024) |
Casarotta et al., 2022 [47] | RCS, clinical efficacy | 10 (iv CMS+ iv tigecycline +iv ampicillin/sulbactam + neb CMS) | 22 (neb+ iv colistin alone or combined with another antibiotic) | Respiratory/ PDR AB | NA | 3 MU q6h/ NA | LD 9 MU, MD 4.5 MU q12h/ NA | 10, Tigecycline 10, Ampicillin/sulbactam 8, fosfomycin NA antibiotics of control group | 40% (95% CI: [12, 73]%) AKI in the protocol vs. 4.5% (95% CI: [0.1, 22]%) in the control group, p = 0.01 | 100% vs. 36.4% microbiological negativization in the protocol vs. control group, p < 0.01. 100% (95% CI: [69, 100]%) vs. 36.4% (95% CI: [17, 59]%) survival from ICU in the protocol vs. control group, p < 0.01. | Susceptibility to colistin using BMD method |
Feng et al., 2023 [48] | RCS, clinical efficacy | 343, 165 > 6 MU q24h 178 ≤ 6 MU q24h | 214, did not receive any form of CMS | 395, HAP 162, VAP/ 454, CR-AB 48, CRE 55, CR-PA | jet nebulizer | 2 MU to 15 MU q12h or 8h/ 7 (6–14) | - | 276, Carbapenem 196, Sulbactam 156, Tigecycline | Similar dialysis rates with and without neb CMS | Clinical failure rate on days 7, 14, and 28, with and without substitutive neb CMS: 22.6% vs. 42.6%, p = 0.001, 27% vs. 42.6%, p = 0.013, and 27.8% vs. 41.7%, p = 0.027, respectively | High-dose neb CMS defined as >6 MU of CMS. Susceptibility to colistin using BMD method. No differences in clinical failure and mortality rates in patients receiving high and low dose of neb CMS. Microbiological eradication rates on day 14, and 28 significantly higher in patients with neb CMS |
De Pascale et al., 2023 [22] | PCS, clinical efficacy, and PK | 134 (neb + iv) | None | VAP/ COS-AB | vibrating mesh nebulizer | 5 MU q8h/ 10 (5–13) | LD 9 MU, MD 5.5 MU q12h, 6.75 MU q12h during CRRT/ 8 (3–11) | 25% of patients received cefiderocol, or fosfomycin | No drug-related adverse events | 60.4% clinical cure from VAP. 40.3% microbiological eradication. 28- and 90-day mortality rates of 50.7% and 58.2%, respectively | High ELF concentrations in almost all samples at 1 and 12 h after neb delivery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaiskos, I.; Gkoufa, A.; Polyzou, E.; Schinas, G.; Athanassa, Z.; Akinosoglou, K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023, 11, 1459. https://doi.org/10.3390/microorganisms11061459
Karaiskos I, Gkoufa A, Polyzou E, Schinas G, Athanassa Z, Akinosoglou K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms. 2023; 11(6):1459. https://doi.org/10.3390/microorganisms11061459
Chicago/Turabian StyleKaraiskos, Ilias, Aikaterini Gkoufa, Elena Polyzou, Georgios Schinas, Zoe Athanassa, and Karolina Akinosoglou. 2023. "High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review" Microorganisms 11, no. 6: 1459. https://doi.org/10.3390/microorganisms11061459
APA StyleKaraiskos, I., Gkoufa, A., Polyzou, E., Schinas, G., Athanassa, Z., & Akinosoglou, K. (2023). High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms, 11(6), 1459. https://doi.org/10.3390/microorganisms11061459