One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties
Abstract
:1. Introduction
1.1. Africa Is Particularly Exposed to Arboviral Diseases
1.2. Need for Integrated Surveillance of Emerging Viruses
1.3. Methodology
2. Key Examples of Arboviruses Requiring One-Health-Type Surveillance in Africa
2.1. Rift Valley Fever (RVF)
2.2. Crimean–Congo Hemorrhagic Fever (CCHF)
2.3. Dengue (DEN)
3. Challenges and Difficulties of One Health Approaches in Africa
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Outammassine, A.; Zouhair, S.; Loqman, S. Global potential distribution of three underappreciated arboviruses vectors (Aedes japonicus, Aedes vexans and Aedes vittatus) under current and future climate conditions. Transbound. Emerg. Dis. 2022, 69, e1160–e1171. [Google Scholar] [CrossRef]
- Otte, J.; Pica-Ciamarra, U. Emerging infectious zoonotic diseases: The neglected role of food animals. One Health 2021, 13, 100323. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasina, F.O.; Bett, B.; Dione, M.; Mutua, F.; Roesel, K.; Thomas, L.; Kwoba, E.; Ayebazibwe, C.; Mtika, N.; Gebeyehu, D.T.; et al. One Health gains momentum in Africa but room exists for improvement. One Health 2022, 15, 100428. [Google Scholar] [CrossRef] [PubMed]
- Ohimain, E.I.; Silas-Olu, D. The 2013–2016 Ebola virus disease outbreak in West Africa. Curr. Opin. Pharmacol. 2021, 60, 360–365. [Google Scholar] [CrossRef]
- Kamorudeen, R.T.; Adedokun, K.A.; Olarinmoye, A.O. Ebola outbreak in West Africa, 2014–2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response. J. Infect. Public Health 2020, 13, 956–962. [Google Scholar] [CrossRef]
- Al-Tammemi, A.B.; Sallam, M.; Rebhi, A.; Soliman, L.; Sarayrih, L.A.; Tarhini, Z.; Abutaima, R.; Aljaberi, M.A.; Barakat, M. The outbreak of Ebola virus disease in 2022: A spotlight on a re-emerging global health menace. Narra J. 2022, 2, e97. [Google Scholar] [CrossRef]
- Black, P.; Nunn, M. Conséquences du changement climatique et des modifications environnementales sur les maladies animales émergentes ou ré-émergentes et sur la production animale. In Conférence; OIE: Paris, France, 2009. [Google Scholar]
- Struckmann, C. The politics of global health. In Handbook on the Politics of International Development; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 286–300. [Google Scholar]
- Hama, M.A.; Ibrahim, A.I.; Alassane, A.; Gagara, H.; Alambedji, R.B. Séroprévalence de la fièvre de la vallée du Rift chez les ruminants domestiques dans la région de Tahoua/Niger. Int. J. Biol. Chem. Sci. 2019, 13, 3023–3031. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Im, J.; Balasubramanian, R.; Ouedraogo, M.; Wandji Nana, L.R.; Mogeni, O.D.; Jeon, H.J.; van Pomeren, T.; Haselbeck, A.; Lim, J.K.; Prifti, K.; et al. The epidemiology of dengue outbreaks in 2016 and 2017 in Ouagadougou, Burkina Faso. Heliyon 2020, 6, e04389. [Google Scholar] [CrossRef]
- Eltom, K.; Enan, K.; El Hussein, A.R.M.; Elkhidir, I.M. Dengue Virus Infection in Sub-Saharan Africa Between 2010 and 2020: A Systematic Review and Meta-Analysis. Front. Cell Infect. Microbiol. 2021, 11, 678945. [Google Scholar] [CrossRef] [PubMed]
- Glancey, M.M.; Anyamba, A.; Linthicum, K.J. Epidemiologic and Environmental Risk Factors of Rift Valley Fever in Southern Africa from 2008 to 2011. Vector Borne Zoonotic Dis. 2015, 15, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soilemetzidou, E.S.; De Bruin, E.; Franz, M.; Aschenborn, O.H.K.; Rimmelzwaan, G.F.; van Beek, R.; Koopmans, M.; Greenwood, A.D.; Czirják, G. Diet May Drive Influenza A Virus Exposure in African Mammals. J. Infect. Dis. 2020, 221, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douno, M.; Asampong, E.; Magassouba, N.; Fichet-Calvet, E.; Almudena, M.S. Hunting and consumption of rodents by children in the Lassa fever endemic area of Faranah, Guinea. PLoS Negl. Trop. Dis. 2021, 15, e0009212. [Google Scholar] [CrossRef]
- Gortázar, C.; Barroso, P.; Nova, R.; Cáceres, G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. Transbound. Emerg. Dis. 2022, 69, 2462–2473. [Google Scholar] [CrossRef]
- Ossebi, W.; Ndjoug Ndour, A.P.; Dieng, S.D.; Bedekelabou, A.P.; Kalandi, M.; Diop, F.N.; Alambedji, R.B.; Kaboret, Y.Y.; Faye, A.; Sambou, B. One health training needs for Senegalese professionals to manage emerging public health threats. Sci. One Health 2022, 1, 100005. [Google Scholar] [CrossRef]
- Simonin, Y. Usutu, West Nile, and Tick-Borne Encephalitis Viruses. Viruses 2022, 14, 2120. [Google Scholar] [CrossRef]
- Comité régional de l’Afrique, 69. Cadre de mise en œuvre de l’action mondiale pour lutter contre les vecteurs dans la Région africaine de l’OMS: Rapport du Secrétariat. Organisation mondiale de la Santé. Bureau régional de l’Afrique. 2019. Report No.: AFR/RC69/9. Available online: https://apps.who.int/iris/handle/10665/331517 (accessed on 22 February 2023).
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Chala, B.; Hamde, F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef]
- Valentine, M.J.; Murdock, C.C.; Kelly, P.J. Sylvatic cycles of arboviruses in non-human primates. Parasit Vectors 2019, 12, 463. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Temur, A.I.; Kuhn, J.H.; Pecor, D.B.; Apanaskevich, D.A.; Keshtkar-Jahromi, M. Epidemiology of Crimean-Congo Hemorrhagic Fever (CCHF) in Africa—Underestimated for Decades. Am. J. Trop. Med. Hyg. 2021, 104, 1978–1990. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annu. Rev. Entomol. 2016, 61, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Fillâtre, P.; Revest, M.; Tattevin, P. Crimean-Congo hemorrhagic fever: An update. Med. Mal. Infect. 2019, 49, 574–585. [Google Scholar] [CrossRef]
- Morris, L.D.; Grimmer, K.A.; Twizeyemariya, A.; Coetzee, M.; Leibbrandt, D.C.; Louw, Q.A. Health system challenges affecting rehabilitation services in South Africa. Disabil. Rehabil. 2021, 43, 877–883. [Google Scholar] [CrossRef]
- Vearey, J.; Luginaah, I.; Magitta, N.F.; Shilla, D.J.; Oni, T. Urban health in Africa: A critical global public health priority. BMC Public Health 2019, 19, 340. [Google Scholar] [CrossRef] [Green Version]
- Ogden, N.; Gachon, P. Climate change and infectious diseases: What can we expect? Can. Commun. Dis. Rep. 2019, 45, 76–80. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Ecological effects on arbovirus-mosquito cycles of transmission. Curr. Opin. Virol. 2016, 21, 124–131. [Google Scholar] [CrossRef]
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar]
- Evans, B.R.; Leighton, F.A. A history of One Health. Rev. Sci. Tech. OIE 2014, 33, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, V. One planet, one health, one future: The environmental perspective. Water Environ. Res. 2021, 93, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Theobald, S.; Brandes, N.; Gyapong, M.; El-Saharty, S.; Proctor, E.; Diaz, T.; Wanji, S.; Elloker, S.; Raven, J.; Elsey, H.; et al. Implementation research: New imperatives and opportunities in global health. Lancet 2018, 392, 2214–2228. [Google Scholar] [CrossRef]
- Jain, V. Financing global health emergency response: Outbreaks, not agencies. J. Public Health Policy 2020, 41, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Rwego, I.B.; Babalobi, O.O.; Musotsi, P.; Nzietchueng, S.; Tiambo, C.K.; Kabasa, J.D.; Naigaga, I.; Kalema-Zikusoka, G.; Pelican, K. One Health capacity building in sub-Saharan Africa. Infect. Ecol. Epidemiol. 2016, 6, 34032. [Google Scholar] [CrossRef] [Green Version]
- Tinto, B.; Kaboré, D.P.A.; Kagoné, T.S.; Constant, O.; Barthelemy, J.; Kiba-Koumaré, A.; Van de Perre, P.; Dabiré, R.K.; Baldet, T.; Gutierrez, S.; et al. Screening of Circulation of Usutu and West Nile Viruses: A One Health Approach in Humans, Domestic Animals and Mosquitoes in Burkina Faso, West Africa. Microorganisms 2022, 10, 2016. [Google Scholar] [CrossRef]
- Monday, B.; Gitta, S.N.; Wasswa, P.; Namusisi, O.; Bingi, A.; Musenero, M.; Mukanga, D. Paradigm shift: Contribution of field epidemiology training in advancing the “One Health” approach to strengthen disease surveillance and outbreak investigations in Africa. Pan. Afr. Med. J. 2011, 10 (Suppl. S1), 13. [Google Scholar]
- Meseko, C.A.; Egbetade, A.O.; Fagbo, S. Ebola virus disease control in West Africa: An ecological, one health approach. Pan. Afr. Med. J. 2015, 21, 6. [Google Scholar] [CrossRef]
- Irving, A.T.; Ahn, M.; Goh, G.; Anderson, D.E.; Wang, L.F. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021, 589, 363–370. [Google Scholar] [CrossRef]
- Tian, J.; Sun, J.; Li, D.; Wang, N.; Wang, L.; Zhang, C.; Meng, X.; Ji, X.; Suchard, M.A.; Zhang, X.; et al. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep. 2022, 39, 110969. [Google Scholar] [CrossRef]
- ECA in West Africa Engages with Key Partners on Financing Africa’s Recovery|United Nations Economic Commission for Africa. Available online: https://www.uneca.org/stories/eca-in-west-africa-engages-with-key-partners-on-financing-africa%27s-recovery (accessed on 4 April 2023).
- Reinforcing the Franco-Ivorian Partnership through the Creation of an International Research Platform in Global Health (PRISME)|Site Web IRD. Available online: https://en.ird.fr/reinforcing-franco-ivorian-partnership-through-creation-international-research-platform-global (accessed on 4 April 2023).
- On World NTD Day, over US $7 Million New Funding Announced to Expand Efforts towards Sleeping Sickness Elimination in nine African Nations|Site Web IRD 2020. Available online: https://en.ird.fr/world-ntd-day-over-us7-million-new-funding-announced-expand-efforts-towards-sleeping-sickness (accessed on 4 April 2023).
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Waiswa, C.; Azuba, R.; Makeba, J.; Waiswa, I.C.; Wangoola, R.M. Experiences of the one-health approach by the Uganda Trypanosomiasis Control Council and its secretariat in the control of zoonotic sleeping sickness in Uganda. Parasite Epidemiol. Control 2020, 11, e00185. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.J. How Did International Agencies Perceive the Avian Influenza Problem? The Adoption and Manufacture of the ‘One World, One Health’ Framework. In Pandemics and Emerging Infectious Diseases; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 46–58. [Google Scholar]
- Okello, A.L.; Gibbs, E.P.J.; Vandersmissen, A.; Welburn, S.C. One Health and the neglected zoonoses: Turning rhetoric into reality. Vet. Rec. 2011, 169, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Travis, D.A.; Chapman, D.W.; Craft, M.E.; Deen, J.; Farnham, M.W.; Garcia, C.; Hueston, W.D.; Kock, R.; Mahero, M.; Mugisha, L.; et al. One Health: Lessons Learned from East Africa. In One Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 285–302. [Google Scholar]
- Killewo, J.; Bazeyo, W.; Mdegela, R. One Health Central and Eastern Africa: Historical and Future Perspectives. Int. Encycl. Public Health 2017, 5, 342–347. [Google Scholar]
- Jo, E.K. Interplay between host and pathogen: Immune defense and beyond. Exp. Mol. Med. 2019, 51, 149. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Dai, S.; Deng, F.; Wang, H.; Ning, Y. Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies. Viruses 2021, 13, 1195. [Google Scholar] [CrossRef]
- Duscher, G.G.; Kienberger, S.; Haslinger, K.; Holzer, B.; Zimpernik, I.; Fuchs, R.; Schwarz, M.; Hufnagl, P.; Schiefer, P.; Schmoll, F. Hyalomma spp. in Austria—The Tick, the Climate, the Diseases and the Risk for Humans and Animals. Microorganisms 2022, 10, 1761. [Google Scholar] [CrossRef]
- Golden, J.W.; Zeng, X.; Cline, C.R.; Smith, J.M.; Daye, S.P.; Carey, B.D.; Blancett, C.D.; Shoemaker, C.J.; Liu, J.; Fitzpatrick, C.J.; et al. The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathog. 2022, 18, e1010485. [Google Scholar] [CrossRef]
- Bente, D.A.; Forrester, N.L.; Watts, D.M.; McAuley, A.J.; Whitehouse, C.A.; Bray, M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir. Res. 2013, 100, 159–189. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, O.; Jafari, M.M.; Zoobinparan, R.; Yasamineh, S.; Tabatabaie, R.; Akbarzadeh, S.; Amini, P.; Eslami, M.; Yousefi, B.; Dadashpour, M. Recent advances in treatment Crimean-Congo hemorrhagic fever virus: A concise overview. Microb. Pathog. 2022, 169, 105657. [Google Scholar] [CrossRef] [PubMed]
- Dzikwi-Emennaa, A.A.; Meseko, C.; Emennaa, P.; Adeyinka, A.J.; Adamu, A.M.; Adegboye, O.A. Detection of Crimean-Congo Hemorrhagic Fever Virus Antibodies in Cattle in Plateau State, Nigeria. Viruses 2022, 14, 2618. [Google Scholar] [CrossRef] [PubMed]
- Belhadi, D.; El Baied, M.; Mulier, G.; Malvy, D.; Mentré, F.; Laouénan, C. The number of cases, mortality and treatments of viral hemorrhagic fevers: A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010889. [Google Scholar] [CrossRef] [PubMed]
- WHO|Regional Office for Africa. Weekly Bulletins on Outbreaks and Other Emergencies. 2023. Available online: https://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-emergencies-updates (accessed on 24 April 2023).
- Sorvillo, T.E.; Rodriguez, S.E.; Hudson, P.; Carey, M.; Rodriguez, L.L.; Spiropoulou, C.F.; Bird, B.H.; Spengler, J.R.; Bente, D.A. Towards a Sustainable One Health Approach to Crimean-Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Trop. Med. Infect. Dis. 2020, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Diallo, D.; Diouf, B.; Gaye, A.; NDiaye E hadji Sene, N.M.; Dia, I.; Diallo, M. Dengue vectors in Africa: A review. Heliyon 2022, 8, e09459. [Google Scholar] [CrossRef] [PubMed]
- Manu, S.K.; Bonney, J.H.K.; Pratt, D.; Abdulai, F.N.; Agbosu, E.E.; Frimpong, P.O.; Adiku, T.K. Arbovirus circulation among febrile patients at the greater Accra Regional Hospital, Ghana. BMC Res. Notes 2019, 12, 332. [Google Scholar] [CrossRef]
- Carver, S.; Bestall, A.; Jardine, A.; Ostfeld, R.S. Influence of hosts on the ecology of arboviral transmission: Potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector Borne Zoonotic Dis. 2009, 9, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.V.; Ant, T.H.; Herd, C.S.; Martinez, J.; Murdochy, S.M.; Gingell, D.D.; Mararo, E.; Johnson, P.C.D.; Sinkins, S.P. High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Wolbachia Strains in Aedes aegypti. mBio 2021, 12, e0025021. [Google Scholar] [CrossRef]
- Tchibozo, C.; Hounkanrin, G.; Yadouleton, A.; Bialonski, A.; Agboli, E.; Lühken, R.; Chanasit, J.-S.; Jöst, H. Surveillance of arthropod-borne viruses in Benin, West Africa 2020–2021: Detection of dengue virus 3 in Aedes aegypti (Diptera: Culicidae). Mil. Med. Res. 2022, 9, 64. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Oke, G.I.; Ademola, P.S.; Chinemelum, I.G.; Ogunkola, I.O.; Lucero-Prisno Iii, D.E. SARS-CoV-2 diagnostic testing in Africa: Needs and challenges. Pan. Afr. Med. J. 2020, 35 (Suppl. S2), 4. [Google Scholar] [CrossRef]
- Fasina, F.O.; Fasanmi, O.G.; Makonnen, Y.J.; Bebay, C.; Bett, B.; Roesel, K. The one health landscape in Sub-Saharan African countries. One Health 2021, 13, 100325. [Google Scholar] [CrossRef] [PubMed]
- FAO; UNEP; WHO; World Organization for Animal Health (WOAH) (Founded as OIE). One Health Joint Plan of Action, 2022–2026. 2022. Available online: http://www.fao.org/documents/card/en/c/cc2289en (accessed on 20 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massengo, N.R.B.; Tinto, B.; Simonin, Y. One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties. Microorganisms 2023, 11, 1496. https://doi.org/10.3390/microorganisms11061496
Massengo NRB, Tinto B, Simonin Y. One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties. Microorganisms. 2023; 11(6):1496. https://doi.org/10.3390/microorganisms11061496
Chicago/Turabian StyleMassengo, Norvi Rigobert Bienvenu, Bachirou Tinto, and Yannick Simonin. 2023. "One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties" Microorganisms 11, no. 6: 1496. https://doi.org/10.3390/microorganisms11061496
APA StyleMassengo, N. R. B., Tinto, B., & Simonin, Y. (2023). One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties. Microorganisms, 11(6), 1496. https://doi.org/10.3390/microorganisms11061496