Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Irrigation Geometries
2.2. Biofilm Growth
2.3. Biofilm Photoacoustic Treatments
2.4. Determination of Bacterial Viability
2.5. Microscopy
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Vallé, Q.; Hancock, R.E. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Gašperšič, R.; Petelin, M.; Skalerič, U. Vzroki in zdravljenje periimplantitisa. Zobozdrav. Vestn. 2010, 65, 127–132. [Google Scholar]
- Hussain, R.A.; Miloro, M.; Cohen, J.B. An Update on the Treatment of Periimplantitis. Dent. Clin. N. Am. 2021, 65, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, P.; Ronay, V.; Hofer, D.; Attin, T.; Jung, R.E.; Schmidlin, P.R. In vitro cleaning potential of three different implant debridement methods. Clin. Oral Implants Res. 2015, 26, 314–319. [Google Scholar] [CrossRef]
- Ronay, V.; Merlini, A.; Attin, T.; Schmidlin, P.R.; Sahrmann, P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin. Oral Implants Res. 2017, 28, 151–155. [Google Scholar] [CrossRef]
- Ntrouka, V.I.; Slot, D.E.; Louropoulou, A.; Van der Weijden, F. The effect of chemotherapeutic agents on contaminated titanium surfaces: A systematic review. Clin. Oral Implants Res. 2011, 22, 681–690. [Google Scholar] [CrossRef]
- Yan, S.; Li, M.; Komasa, S.; Agariguchi, A.; Yang, Y.; Zeng, Y.; Takao, S.; Zhang, H.; Tashiro, Y.; Kusumoto, T.; et al. Decontamination of Titanium Surface Using Different Methods: An In Vitro Study. Materials 2020, 13, 2287. [Google Scholar] [CrossRef]
- Barootchi, S.; Wang, H.L. Peri-implant diseases: Current understanding and management. Int. J. Oral Implantol. 2021, 14, 263–282. [Google Scholar]
- Schlee, M.; Rathe, F.; Brodbeck, U.; Ratka, C.; Weigl, P.; Zipprich, H. Treatment of Peri-implantitis-Electrolytic Cleaning Versus Mechanical and Electrolytic Cleaning-A Randomized Controlled Clinical Trial-Six-Month Results. J. Clin. Med. 2019, 8, 1909. [Google Scholar] [CrossRef]
- Polyzois, I. Treatment Planning for Periimplant Mucositis and Periimplantitis. Implant Dent. 2019, 28, 150–154. [Google Scholar] [CrossRef]
- Alshehri, F.A. The role of lasers in the treatment of peri-implant diseases: A review. Saudi Dent. J. 2016, 28, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Stubinger, S.; Etter, C.; Miskiewicz, M.; Homann, F.; Saldamli, B.; Wieland, M.; Sader, R. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int. J. Oral Maxillofac. Implants 2010, 25, 104–111. [Google Scholar]
- Park, J.H.; Heo, S.J.; Koak, J.Y.; Kim, S.K.; Han, C.H.; Lee, J.H. Effects of laser irradiation on machined and anodized titanium disks. Int. J. Oral Maxillofac. Implants 2012, 27, 265–272. [Google Scholar] [PubMed]
- Natto, Z.S.; Aladmawy, M.; Levi, P.A., Jr.; Wang, H.L. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: A systematic review. Int. J. Oral Maxillofac. Implants 2015, 30, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Gentil, R.J.; De Moor, R.; Meire, M. Laser activated irrigation Part I: The power of the bubble. Laser 2014, 2, 12–17. [Google Scholar]
- DiVito, E.; Crippa, R.; Iaria, G.; Kaitsas, V.; Benedicenti, S.; Olivi, G. Lasers in endodontics. In Scientific Background and Clinical Applications; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lukac, N.; Tasic Muc, B.; Jezersek, M.; Lukac, M. Photoacoustic Endodontics Using the Novel SWEEPS Er:YAG Laser Modality. J. Laser Health Acad. 2017, 1, 1–7. [Google Scholar]
- Lukač, N.; Jezeršek, M. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses. Lasers Med. Sci. 2018, 33, 823–833. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef]
- Yamazaki, R.; Goya, C.; Yu, D.G.; Kimura, Y.; Koukichi Matsumoto, K. Effects of erbium,chromium:YSGG laser irradiation on root canal walls: A scanning electron microscopic and ther- mographic study. J. Endod. 2001, 27, 9–12. [Google Scholar] [CrossRef]
- Diaci, J.; Gašpirc, B. Comparison of Er: YAG and Er,Cr:YSGG lasers used in dentistry. LAHA 2012, 1, 1–13. [Google Scholar]
- Hympanova, M.; Terlep, S.; Markova, A.; Prchal, L.; Dogsa, I.; Pulkrabkova, L.; Benkova, M.; Marek, J.; Stopar, D. The Antibacterial Effects of New N-Alkylpyridinium Salts on Planktonic and Biofilm Bacteria. Front. Microbiol. 2020, 20, 573951. [Google Scholar] [CrossRef]
- Terlep, S.; Hympanova, M.; Dogsa, I.; Pajk, F.; Stopar, D. Photoacoustic removal of Enterococcus faecalis biofilms from titanium surface with an Er:YAG laser using super short pulses. Lasers Med. Sci. 2022, 37, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Kurzmann, C.; Meire, M.A.; Lettner, S.; Farmakis, E.T.R.; Moritz, A.; De Moor, R.J.G. The efficacy of ultrasonic and PIPS (photon-induced acoustic streaming) irrigation to remove artificially placed dentine debris plugs out of an artificial and natural root model. Lasers Med. Sci. 2020, 35, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Von Eiff, C.; Overbeck, J.; Haupt, G.; Herrmann, M.; Winckler, S.; Richter, K.D.; Peters, G.; Spiegel, H.U. Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J. Med. Microbiol. 2000, 49, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Arrojo, S.; Benito, Y.; Tarifa, A.M. A parametrical study of disinfection with hydrodynamic cavitation. Ultrason. Sonochem. 2008, 15, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Pandur, Ž.; Dogsa, I.; Dular, M.; Stopar, D. Liposome destruction by hydrodynamic cavitation in comparison to chemical, physical and mechanical treatments. Ultrason. Sonochem. 2020, 61, 104826. [Google Scholar] [CrossRef]
- Lukač, M.; Olivi, G.; Constantin, M.; Lukač, N.; Jezeršek, M. Determination of Optimal Separation Times for Dual-Pulse SWEEPS Laser-Assisted Irrigation in Different Endodontic Access Cavities. Lasers Surg. Med. 2020, 53, 998–1004. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, M.W.; Zhu, L.X.; Peng, B. Micro-CT study on the removal of accumulated hard-tissue debris from the root canal system of mandibular molars when using a novel laser-activated irrigation approach. Int. Endod. J. 2020, 53, 529–538. [Google Scholar] [CrossRef]
- Koch, J.D.; Jaramillo, D.E.; DiVito, E.; Peters, O.A. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV). Clin. Oral Investig. 2016, 20, 381–386. [Google Scholar] [CrossRef]
- Deleu, E.; Meire, M.A.; De Moor, R.J. Efficacy of laser-based irrigant activation methods in removing debris from simulated root canal irregularities. Lasers Med. Sci. 2015, 30, 831–835. [Google Scholar] [CrossRef]
- Al Shahrani, M.; DiVito, E.; Hughes, C.V.; Nathanson, D.; Huang, G.T. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: An in vitro study. Photomed. Laser Surg. 2014, 32, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Cerroni, L.; Palopoli, P.; Olivi, G.; Olivi, M.; Buoni, C.; Cianconi, L. FESEM evaluation of smear layer removal from conservatively shaped canals: Laser activated irrigation (PIPS and SWEEPS) compared to sonic and passive ultrasonic activation-an ex vivo study. BMC Oral Health 2021, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Passalidou, S.; Calberson, F.; De Bruyne, M.; De Moor, R.; Meire, M.A. Debris Removal from the Mesial Root Canal System of Mandibular Molars with Laser-activated Irrigation. J. Endod. 2018, 44, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Golob, B.S.; Olivi, G.; Vrabec, M.; El Feghali, R.; Parker, S.; Benedicenti, S. Efficacy of Photon-induced Photoacoustic Streaming in the Reduction of Enterococcus faecalis within the Root Canal: Different Settings and Different Sodium Hypochlorite Concentrations. J. Endod. 2017, 43, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, S.; Parker, S.; Chiniforush, N. Synergistic Antimicrobial Effect of Photodynamic Inactivation and SWEEPS in Combined Treatment against Enterococcus faecalis in a Root Canal Biofilm Model: An In Vitro Study. Appl. Sci. 2023, 13, 5668. [Google Scholar] [CrossRef]
- Wen, C.; Yan, L.; Kong, Y.; Zhao, J.; Li, Y.; Jiang, Q. The antibacterial efficacy of photon-initiated photoacoustic streaming in root canals with different diameters or tapers. BMC Oral Health 2021, 21, 542. [Google Scholar] [CrossRef] [PubMed]
- Rostami, G.; Afrasiabi, S.; Benedicenti, S.; Signore, A.; Chiniforush, N. The Evaluation of SWEEPS Plus Antimicrobial Photodynamic Therapy with Indocyanine Green in Eliminating Enterococcus faecalis Biofilm from Infected Root Canals: An In Vitro Study. Biomedicines 2023, 11, 1850. [Google Scholar] [CrossRef]
- Seghayer, I.; Lee, A.H.C.; Cheung, G.S.P.; Zhang, C. Effect of Passive Ultrasonic Irrigation, Er,Cr:YSGG Laser, and Photon-Induced Photoacoustic Streaming against Enterococcus faecalis Biofilms in the Apical Third of Root Canals. Bioengineering 2023, 10, 490. [Google Scholar] [CrossRef]
- Fintová, S.; Dlhý, P.; Mertová, K.; Chlup, Z.; Duchek, M.; Procházka, R.; Hutař, P. Fatigue properties of UFG Ti grade 2 dental implant vs. conventionally tested smooth specimens. J. Mech. Behav. Biomed. Mater. 2021, 123, 104715. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, S.W.; Leesungbok, R.; Ahn, S.J. Influence of the connection design and titanium grades of the implant complex on resistance under static loading. J. Adv. Prosthodont. 2016, 8, 388–395. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Auty, M.A.; Gardiner, G.E.; McBrearty, S.J.; O’Sullivan, E.O.; Mulvihill, D.M.; Collins, J.K.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 2001, 67, 420–425. [Google Scholar] [CrossRef]
- Li, D.; Jiang, S.; Yin, X.; Chang, J.W.; Ke, J.; Zhang, C. Efficacy of Needle, Ultrasonic, and Endoactivator Irrigation and Photon-Induced Photoacoustic Streaming in Removing Calcium Hydroxide from the Main Canal and Isthmus: An In Vitro Micro-Computed Tomography and Scanning Electron Microscopy Study. Photomed. Laser Surg. 2015, 33, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Akcay, M.; Capar, I.D.; Ertas, H.; Ok, E.; Uysal, B. Efficacy of needle irrigation, EndoActivator, and photon-initiated photoacoustic streaming technique on removal of double and triple antibiotic pastes. J. Endod. 2014, 40, 1439–1442. [Google Scholar] [CrossRef]
- Jezeršek, M.; Lukač, N.; Lukač, M. Measurement of Simulated Debris Removal Rates in an Artificial Root Canal to Optimize Laser-Activated Irrigation Parameters. Lasers Surg. Med. 2021, 53, 411–417. [Google Scholar] [CrossRef]
- Su, Z.; Li, Z.; Shen, Y.; Bai, Y.; Zheng, Y.; Pan, C.; Hou, B. Characteristics of the Irrigant Flow in a Simulated Lateral Canal Under Two Typical Laser-Activated Irrigation Regimens. Lasers Surg. Med. 2020, 53, 587–594. [Google Scholar] [CrossRef]
- Noiri, Y.; Katsumoto, T.; Azakami, H.; Ebisu, S. Effects of Er:YAG laser irradiation on biofilm-forming bacteria associated with endodontic pathogens in vitro. J. Endod. 2008, 34, 826–829. [Google Scholar] [CrossRef]
- Monje, A.; Pons, R.; Insua, A.; Nart, J.; Wang, H.L.; Schwarz, F. Morphology and severity of peri-implantitis bone defects. Clin. Implant Dent. Relat. Res. 2019, 21, 635–643. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, Y.K.; Yun, P.Y.; Yi, Y.J.; Lee, H.J.; Kim, S.G.; Son, J.S. Evaluation of peri-implant tissue response according to the presence of keratinized mucosa. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, e24–e28. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Hieu, T.; Borghetti, A.; Aboudharam, G. Peri-implantitis: From diagnosis to therapeutics. J. Investig. Clin. Dent. 2012, 3, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Jezeršek, M.; Molan, K.; Terlep, S.; Levičnik-Höfferle, Š.; Gašpirc, B.; Lukač, M.; Stopar, D. The evolution of cavitation in narrow soft-solid wedge geometry mimicking periodontal and peri-implant pockets. Ultrason Sonochem. 2023, 94, 106329. [Google Scholar] [CrossRef]
- Azzola, F.; Ionescu, A.C.; Ottobelli, M.; Cavalli, N.; Brambilla, E.; Corbella, S.; Francetti, L. Biofilm Formation on Dental Implant Surface Treated by Implantoplasty: An In Situ Study. Dent. J. 2020, 8, 40. [Google Scholar] [CrossRef]
- Toma, S.; Brecx, M.C.; Lasserre, J.F. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J. Clin. Med. 2019, 8, 966. [Google Scholar] [CrossRef]
- Sun, F.; Li, S.Q.; Wei, Y.P.; Zhong, J.S.; Wang, C.; Hu, W.J. Efficacy of combined application of glycine powder air-polishing in non-surgical treatment of peri-implant diseases. J. Peking Univ. (Health Sci.) 2022, 54, 119–125. (In Chinese) [Google Scholar] [CrossRef]
- Persson, L.G.; Berglundh, T.; Lindhe, J.; Sennerby, L. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin. Oral Implants Res. 2001, 12, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Feist, I.S.; De Micheli, G.; Carneiro, S.R.; Eduardo, C.P.; Miyagi, S.; Marques, M.M. Adhesion and growth of cultured human gingival fibroblasts on periodontally involved root surfaces treated by Er:YAG laser. J. Periodontol. 2003, 74, 1368–1375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terlep, S.; Dogsa, I.; Pajk, F.; Stopar, D. Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation. Microorganisms 2023, 11, 2102. https://doi.org/10.3390/microorganisms11082102
Terlep S, Dogsa I, Pajk F, Stopar D. Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation. Microorganisms. 2023; 11(8):2102. https://doi.org/10.3390/microorganisms11082102
Chicago/Turabian StyleTerlep, Saša, Iztok Dogsa, Franja Pajk, and David Stopar. 2023. "Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation" Microorganisms 11, no. 8: 2102. https://doi.org/10.3390/microorganisms11082102
APA StyleTerlep, S., Dogsa, I., Pajk, F., & Stopar, D. (2023). Biofilm Removal from In Vitro Narrow Geometries Using Single and Dual Pulse Er:YAG Laser Photoacoustic Irrigation. Microorganisms, 11(8), 2102. https://doi.org/10.3390/microorganisms11082102