Listeria Occurrence in Conventional and Alternative Egg Production Systems
Abstract
:1. Introduction
2. Egg Production and Food Safety: General Concepts
3. Listeria in Poultry Production
4. Layer Hens and Egg Production Systems
5. Listeria Presence in Layer Hens and the Environment
6. Listeria’s Presence in Egg-Processing Facilities
7. Listeria and Retail Shell Eggs
8. Recent Developments for Interventions for Listeria on Shell Eggs
9. Listeria and Liquid Egg Products
10. L. monocytogenes in Ready-to-Eat (RTE) Egg Products
11. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albrecht, J.A. Listeria Monocytogenes. 2019. Available online: https://food.unl.edu/listeria-monocytogenes (accessed on 24 June 2019).
- Conner, D.E.; Scott, V.N.; Bernard, D.T. Growth, inhibition, and survival of Listeria monocytogenes as affected by acidic conditions. J. Food Prot. 1990, 53, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.J.; Archer, P.; Banks, J.G. Growth of Listeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol. 1990, 68, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308. [Google Scholar] [CrossRef] [PubMed]
- Rothrock, M.J., Jr.; Davis, M.L.; Locatelli, A.; Bodie, A.; McIntosh, T.G.; Donaldson, J.R.; Ricke, S.C. Listeria occurrence in poultry flocks: Detection and potential implications. Front. Vet. Sci. 2017, 4, 125. [Google Scholar] [CrossRef] [PubMed]
- Jeffers, G.T.; Bruce, J.L.; McDonough, P.L.; Scarlett, J.; Boor, K.J.; Wiedmann, M. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 2001, 147, 1095–1104. [Google Scholar] [CrossRef]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Lianou, A.; Stopforth, J.D.; Yoon, Y.; Wiedmann, M.; Sofos, J.N. Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins. J. Food Protect. 2006, 69, 2640–2647. [Google Scholar] [CrossRef]
- Berzins, A.; Terentjeva, M.; Korkeala, H. Prevalence and genetic diversity of Listeria monocytogenes in vacuum-packaged ready-to-eat meat products at retail markets in Latvia. J. Food Protect. 2009, 72, 1283–1287. [Google Scholar] [CrossRef]
- Kramarenko, T.; Roasto, M.; Meremäe, K.; Kuningas, M.; Põltsama, P.; Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30, 24–29. [Google Scholar] [CrossRef]
- Gilbreth, S.E.; Call, J.E.; Wallace, F.M.; Scott, V.N.; Chen, Y.; Luchansky, J.B. Relatedness of Listeria monocytogenes isolates recovered from selected ready-to-eat foods and listeriosis patients in the United States. Appl. Environ. Microbiol. 2005, 71, 8115–8122. [Google Scholar] [CrossRef]
- Ryser, E.T.; Marth, H.E. Listeria, Listeriosis, and Food Safety, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 405–503. [Google Scholar]
- Tsai, Y.H.; Maron, S.B.; McGann, P.; Nightingale, K.K.; Wiedmann, M.; Orsi, R.H. Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. Infect. Genet. Evol. 2011, 11, 1881–1890. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention. Information for Health Professionals and Laboratories | Listeria | CDC. 2016. Available online: https://www.cdc.gov/Listeria/technical.html (accessed on 6 March 2019).
- European Center for Disease Prevention and Control. Listeriosis—Annual Epidemiological Report for 2021. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/listeriosis-annual-epidemiological-report-2021 (accessed on 14 August 2023).
- Healthy People 2030. Reduce Infections Caused by Listeria—FS-03. Available online: https://health.gov/healthypeople/objectives-and-data/browse-objectives/foodborne-illness/reduce-infections-caused-listeria-fs-03/data?tab=data-table#data-table (accessed on 14 August 2023).
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef]
- Pouillot, R.; Klontz, K.C.; Chen, Y.; Burall, L.S.; Macarisin, D.; Doyle, M.; Bally, K.M.; Strain, E.; Datta, A.R.; Hammack, T.S.; et al. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerg. Infect. Dis. 2016, 22, 2113. [Google Scholar] [CrossRef]
- Archer, D.L. The evolution of FDA’s policy on Listeria monocytogenes in ready-to-eat foods in the United States. Curr. Opin. Food Sci. 2018, 20, 64–68. [Google Scholar] [CrossRef]
- Calderón-Miranda, M.L.; Barbosa-Cánovas, G.V.; Swanson, B.G. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Internat. J. Food Microbiol. 1999, 51, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Hung, Y.C.; Lin, C.S.; Brackett, R.E. Efficacy of electrolyzed water in inactivating Salmonella enteritidis and Listeria monocytogenes on shell eggs. J. Food Protect. 2005, 68, 986–990. [Google Scholar] [CrossRef]
- Zaheer, K. An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health. Food Nutr. Sci. 2015, 6, 1208–1220. [Google Scholar] [CrossRef]
- ChickenFans.com. Poultry Industry Statistics (2023): Meat & Egg Production. 2023. Available online: https://www.chickenfans.com/poultry-industry-statistics/#Global-Egg-Production (accessed on 14 June 2023).
- Bitter, A. Why Organic Eggs Are Suddenly Cheaper than Conventional Ones. Available online: https://uk.news.yahoo.com/why-organic-eggs-suddenly-cheaper-182324110.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAACaVG_ZMnM9qjbJuR0tGDj-siLSA_XXhgj9-rjnNSNWMz_vgc8YjdUFFA0YPvfGzc_LmvYw3Qdpb5ELGn9VTnjvaSp_UyCadJTvu4jJ4yQR2O5O4w2AmTv1xSVXglMilIX-r0cRzvV6UMZsdFloLF05PGsd8XVRMUTiaLFFdNdLF (accessed on 16 August 2023).
- United Egg Producers. Facts & Stats. 2022. Available online: https://unitedegg.com/facts-stats/ (accessed on 14 June 2023).
- Walmart. Animal Welfare. 2023. Available online: https://corporate.walmart.com/esgreport/esg-issues/animal-welfare#resources (accessed on 14 August 2023).
- Sumner, D.A.; Rosen-Molina, J.T.; Matthews, W.A.; Mench, J.A.; Richter, K.R. Economic Effects of Proposed Restrictions on Egg-Laying Hen Housing in California; University of California Agricultural Issues Center: Davis, CA, USA, 2008. [Google Scholar]
- Sumner, D.A.; Gow, H.; Hayes, D.; Matthews, W.; Norwood, B.; Rosen-Molina, J.T.; Thurman, W. Economic and market issues on the sustainability of egg production in the United States: Analysis of alternative production systems. Poult. Sci. 2011, 90, 241–250. [Google Scholar] [CrossRef]
- Holt, P.S.; Davies, R.H.; Dewulf, J.; Gast, R.K.; Huwe, J.K.; Jones, D.R.; Waltman, D.; Willian, K.R. The impact of different housing systems on egg safety and quality. Poult. Sci. 2011, 90, 251–262. [Google Scholar] [CrossRef]
- Palcynski, L.; Buller, H.J.; Lambton, S.; Weeks, C.A. Farmer attitudes to injurious pecking in laying hens and to potential control strategies. Anim. Welf. 2016, 25, 29–38. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Egg Safety Final Rule. 26 January 2018. Available online: https://www.fda.gov/food/eggs-guidance-documents-regulatory-information/egg-safety-final-rule (accessed on 24 June 2019).
- Dubois, S. Is Raw Egg in a Protein Shake Unhealthy? 27 November 2018. Available online: https://healthyeating.sfgate.com/raw-egg-protein-shake-unhealthy-1090.html (accessed on 24 June 2019).
- USDA. United States Depart of Agriculture (USDA). Egg Products Inspection Act. 21 January 2016. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/rulemaking/egg-products-inspection-act/EPIA (accessed on 24 June 2019).
- Sossidou, E.N.; Dal Bosco, A.; Elson, H.A.; Fontes, C.M.G.A. Pasture-based systems for poultry production: Implications and perspectives. World’s Poult. Sci. J. 2011, 67, 47–58. [Google Scholar] [CrossRef]
- USDA. Shell Eggs from Farm to Table. 2019. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/eggs/shell-eggs-farm-table (accessed on 14 August 2023).
- Rothrock, M.J.; Micciche, A.C.; Bodie, A.; Ricke, S.C. Listeria occurrence and potential control strategies in alternative and conventional poultry processing and retail. Front. Sustain. Food Syst. 2019, 3, 33. [Google Scholar] [CrossRef]
- Cox, N.A.; Bailey, J.S.; Berrang, M.E. The presence of Listeria monocytogenes in the integrated poultry industry. J. Appl. Poult. Res. 1997, 6, 116–119. [Google Scholar] [CrossRef]
- Petersen, L.; Madsen, M. Listeria spp. in broiler flocks: Recovery rates and species distribution investigated by conventional culture and the EiaFoss method. Int. J. Food Microbiol. 2000, 58, 113–116. [Google Scholar] [CrossRef]
- Iida, T.; Kanzaki, M.; Maruyama, T.; Inoue, S.; Kaneuchi, C. Prevalence of Listeria monocytogenes in intestinal contents of healthy animals in Japan. J. Vet. Med. Sci. 1991, 53, 873–875. [Google Scholar] [CrossRef]
- Milillo, S.R.; Stout, J.C.; Hanning, I.B.; Clement, A.; Fortes, E.D.; Den Bakker, H.C.; Wiedmann, M.; Ricke, S. C Listeria monocytogenes and hemolytic Listeria innocua in poultry. Poult. Sci. 2012, 91, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Blackman, I.C.; Frank, J.F. Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Protect. 1996, 59, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Berrang, M.E.; Frank, J.F.; Meinersmann, R.J. Contamination of raw poultry meat by airborne Listeria originating from a floor drain. J. Appl. Poult. Res. 2013, 22, 132–136. [Google Scholar] [CrossRef]
- Chiarini, E.; Tyler, K.; Farber, J.M.; Pagotto, F.; Destro, M.T. Listeria monocytogenes in two different poultry facilities: Manual and automatic evisceration. Poult. Sci. 2009, 88, 791–797. [Google Scholar] [CrossRef]
- Miranda, J.M.; Vazquez, B.I.; Fente, C.A.; Calo-Mata, P.; Cepeda, A.; Franco, C.M. Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat. J. Food Prot. 2008, 71, 2537–2542. [Google Scholar] [CrossRef]
- Elmali, M.; Can, H.Y.; Yaman, H. Prevalence of Listeria monocytogenes in poultry meat. Food Sci. Technol. 2015, 35, 672–675. [Google Scholar] [CrossRef]
- Aury, K.; Le Bouquin, S.; Toquin, M.T.; Huneau-Salaün, A.; Le Nôtre, Y.; Allain, V.; Petetin, I.; Fravalo, P.; Chemaly, M. Risk factors for Listeria monocytogenes contamination in French laying hens and broiler flocks. Prev. Veterin. Med. 2011, 98, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Welshimer, H.J. Survival of Listeria monocytogenes in soil. J. Bacteriol. 1960, 80, 316. [Google Scholar] [CrossRef] [PubMed]
- Luque-Sastre, L.; Fox, E.M.; Jordan, K.; Fanning, S. A comparative study of the susceptibility of Listeria species to sanitizer treatments when grown under planktonic and biofilm conditions. J. Food Protect. 2018, 81, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Clauer, P. Modern Egg Industry. 5 July 2012. Available online: https://extension.psu.edu/modern-egg-industry (accessed on 9 July 2019).
- Gerzilov, V.; Datkova, V.; Mihaylova, S.; Bozakova, N. Effect of poultry housing systems on egg production. Bulg. J. Agric. Sci. 2012, 18, 953–957. [Google Scholar]
- Oguike, M.A.; Igboeli, G.; Ibe, S.N.; Ironkwe, M.O. Physiological and endocrinological mechanisms associated with ovulatory cycle and induced-moulting in the domestic chicken—A Review. World’s Poult. Sci. J. 2005, 61, 625–632. [Google Scholar] [CrossRef]
- Poole, T.E. Introduction to Developing a Free-Range Poultry Enterprise, 1st ed.; Ebook; University of Maryland: Frederick County, MA, USA, 2016; Available online: https://extension.umd.edu/sites/default/files/_docs/locations/frederick_county/Ag%20Pubs%20A%20Supplement%20to%20Free%20Range%20Poultry.pdf (accessed on 4 February 2016).
- Pitesky, M. Free-Range vs. Pastured Poultry: What’s the Difference? October 2017. Available online: https://www.hobbyfarms.com/free-range-vs-pastured-poultry-whats-difference/ (accessed on 10 June 2019).
- USDA. United States Depart of Agriculture. Meat and Poultry Labeling Terms. 10 August 2015. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/food-labeling/meat-and-poultry-labeling-terms/meat-and-poultry-labeling-terms (accessed on 10 July 2019).
- Certified Humane. “Free Range” and “Pasture Raised” Officially Defined by HFAC for Certified Humane® Label. 9 October 2014. Available online: https://certifiedhumane.org/free-range-and-pasture-raised-officially-defined-by-hfac-for-certified-humane-label/ (accessed on 10 July 2019).
- Ferrante, V.; Lolli, S.; Vezzoli, G.; Cavalchini, L.G. Effects of two different rearing systems (organic and barn) on production performance, animal welfare traits and egg quality characteristics in laying hens. Ital. J. Anim. Sci. 2009, 8, 165–174. [Google Scholar] [CrossRef]
- Yakubu, A.; Salako, A.E.; Ige, A.O. Effects of genotype and housing system on the laying performance of chickens in different seasons in the semi-humid tropics. Int. J. Poult. Sci. 2007, 6, 434–439. [Google Scholar] [CrossRef]
- Castellini, C.; Perella, F.; Mugnai, C.; Dal Bosco, A. Welfare, productivity and qualitative traits of egg in laying hens reared under different rearing systems. In Proceedings of the XII European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Hanning, I.; Biswas, D.; Herrera, P.; Roesler, M.; Ricke, S.C. Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry. J. Food Sci. 2010, 75, M496–M502. [Google Scholar] [CrossRef]
- Berg, C. Health and welfare in organic poultry production. Acta Vet. Scand. 2001, 43, S37. [Google Scholar] [CrossRef]
- Dhama, K.; Verma, A.K.; Rajagunalan, S.; Kumar, A.; Tiwari, R.; Chakraborty, S.; Kumar, R. Listeria monocytogenes infection in poultry and its public health importance with special reference to food borne zoonoses. PJBSBI 2013, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Njagi, L.W.; Mbutha, P.G.; Bebora, L.C.; Nyaga, R.N.; Minga, U.; Olsend, J.E. Sensitivity of Listeria species recovered from indigenous chickens to antibiotics and disinfectants. East Afr. Med. J. 2004, 81, 534–537. [Google Scholar] [CrossRef]
- Bailey, J.S.; Fletcher, D.L.; Cox, N.A. Listeria monocytogenes colonization of broiler chickens. Poult. Sci. 1990, 69, 457–461. [Google Scholar] [CrossRef]
- Akanbi, O.B.; Breithaupt, A.; Polster, U.; Alter, T.; Quandt, A.; Bracke, A.; Teifke, J.P. Systemic listeriosis in caged canaries (Serinus canarius). Avian Pathol. 2008, 37, 329–332. [Google Scholar] [CrossRef]
- Gwida, M.; Lüth, S.; El-Ashker, M.; Zakaria, A.; El-Gohary, F.; Elsayed, M.; Kleta, S.; Al Dahouk, S. Contamination pathways can be traced along the poultry processing chain by whole genome sequencing of Listeria innocua. Microorganisms 2020, 8, 414. [Google Scholar] [CrossRef]
- Chemaly, M.; Toquin, M.T.; Le Nôtre, Y.; Fravalo, P. Prevalence of Listeria monocytogenes in poultry production in France. J. Food Prot. 2008, 71, 1996–2000. [Google Scholar] [CrossRef]
- Esteban, J.I.; Oporto, B.; Aduriz, G.; Juste, R.A.; Hurtado, A. A survey of foodborne pathogens in free-range poultry farms. Int. J. Food Microbiol. 2008, 123, 177–182. [Google Scholar] [CrossRef]
- Schwaiger, K.; Schmied, E.M.; Bauer, J. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health 2010, 57, 171–180. [Google Scholar] [CrossRef]
- Fenollar, A.; Doménech, E.; Ferrús, M.A.; Jiménez-Belenguer, A. Risk Characterization of antibiotic resistance in bacteria isolated from backyard, organic, and regular commercial eggs. J. Food Prot. 2019, 82, 422–428. [Google Scholar] [CrossRef]
- Jones, D.R.; Anderson, K.E.; Guard, J.Y. Prevalence of coliforms, Salmonella, Listeria, and Campylobacter associated with eggs and the environment of conventional cage and free-range egg production. Poult. Sci. 2012, 91, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Daley, E.; Coates, F. Presence of Listeria spp. in whole eggs and wash water samples from Ontario and Quebec. Food Res. Int. 1992, 25, 143–145. [Google Scholar] [CrossRef]
- Weber, A.; Potel, J.; Schäfer-Schmidt, R.; Prell, A.; Datzmann, C. Studies on the occurrence of Listeria monocytogenes in fecal samples of domestic and companion animals. Int. J. Hyg. Environ. Med. 1995, 198, 117–123. [Google Scholar]
- Skovgaard, N. The impact of the prevalence of Listeria monocytogenes in the environment on meat and milk hygiene. Microbiol. Aliment. Nutr. 1990, 8, 15–20. [Google Scholar]
- Blank, G.; Savoie, S.; Campbell, L.D. Microbiological decontamination of poultry feed—Evaluation of steam conditioners. J. Sci. Food Agric. 1996, 72, 299–305. [Google Scholar] [CrossRef]
- Sioutas, G.; Petridou, E.; Minoudi, S.; Papageorgiou, K.V.; Symeonidou, I.; Giantsis, I.A.; Triantafyllidis, A.; Papadopoulos, E. Isolation of Listeria monocytogenes from poultry red mite (Dermanyssus gallinae) infesting a backyard chicken farm in Greece. Sci. Rep. 2023, 13, 685. [Google Scholar] [CrossRef] [PubMed]
- Sparagano, O.; Giangaspero, A. Parasitism in egg production systems: The role of the red mite (Dermanyssus gallinae). In Improving the Safety and Quality of Eggs. Egg Products Egg Chemistry, Production and Consumption; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar]
- Garcia, J.S.; Anderson, K.E.; Guard, J.Y.; Gast, R.K.; Jones, D.R. Impact of paddock area stocking density of free-range laying hens on egg and environmental microbiology. J. Appl. Poult. Res. 2023, 32, 100338. [Google Scholar] [CrossRef]
- Garcia, J.S.; Anderson, K.E.; Guard, J.Y.; Gast, R.K.; Jones, D.R. Impact of organic dairy cattle manure on environmental and egg microbiology of organic free-range laying hens. J. Appl. Poult. Res. 2021, 30, 100189. [Google Scholar] [CrossRef]
- Crespo, R.; Garner, M.M.; Hopkins, S.G.; Shah, D.H. Outbreak of Listeria monocytogenes in an urban poultry flock. BMC Vet. Res. 2013, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Brackett, R.E.; Beuchat, L.R. Survival of Listeria monocytogenes on the surface of egg shells and during frying of whole and scrambled eggs. J. Food Protect. 1992, 55, 862–865. [Google Scholar] [CrossRef]
- Berrang, M.E.; Cox, N.A.; Frank, J.F.; Buhr, R.J. Bacterial penetration of the eggshell and shell membranes of the chicken hatching egg: A review. J. Appl. Poult. Res. 1999, 8, 499–504. [Google Scholar] [CrossRef]
- Lock, J.L.; Dolman, J.; Board, R.G. Observations on the mode of bacterial infection of hens’ eggs. FEMS Microbiol. Lett. 1992, 100, 71–73. [Google Scholar] [CrossRef]
- Bruce, J.; Drysdale, E.M. Trans-shell transmission. In Microbiology of the Avian Egg; Board, R.G., Fuller, R., Eds.; Springer: Boston, MA, USA, 1994; pp. 63–91. [Google Scholar]
- Gast, R.K. Food Safety Control in the Poultry Industry: Bacterial Infection of Eggs; Mead, G.C., Ed.; Woodhead Publishing Limited: Abington, PA, USA, 2005; Volume 49, pp. 1–20; 531–592. [Google Scholar]
- Padron, M. Salmonella typhimurium penetration through the eggshell of hatching eggs. Avian Dis. 1990, 34, 463–465. [Google Scholar]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Gast, R.; Humphrey, T.J.; Van Immerseel, F. Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiol. Rev. 2009, 33, 718–738. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C.; Birkhold, S.G.; Gast, R.K. Eggs and egg products, In Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; Downes, F.P., Ito, K., Eds.; American Public Health Association: Washington, DC, USA, 2001; pp. 473–479. [Google Scholar]
- Board, R.G.; Halls, N.A. The cuticle: A barrier to liquid and particle penetration of the shell of hen’s egg. Br. Poult. Sci. 1973, 14, 69–97. [Google Scholar] [CrossRef]
- Bain, M.M.; McDade, K.; Burchmore, R.; Law, A.; Wilson, P.W.; Schmutz, M.; Preisinger, R.; Dunn, I.C. Enhancing the egg’s natural defense against bacterial penetration by increasing cuticle deposition. Anim. Genet. 2013, 44, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Messens, W.; Grijspeerdt, K.; Herman, L. Eggshell penetration by Salmonella: A review. World’s Poult. Sci. J. 2005, 61, 71–86. [Google Scholar] [CrossRef]
- Nakazawa, K.; Hasegawa, H.; Nakagawa, Y.; Terao, M.; Matsuyama, T. Factors influencing the ability of Listeria monocytogenes to pass through a membrane filter by active infiltration. Appl. Environ. Microbiol. 2005, 71, 7571–7574. [Google Scholar] [CrossRef]
- La Scala Júnior, N.; Boleli, I.C.; Ribeiro, L.T.; Preitas, D.; Macari, M. Pore size distribution in chicken eggs as determined by mercury porosimetry. Rev. Bras. Cienc. Avícola 2000, 2, 177–181. [Google Scholar] [CrossRef]
- Board, R.G. Non-specific antimicrobial defenses of the avian egg, embryo, and neonate. Biol. Rev. 1974, 49, 15–49. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Patel, S.J.; Argüello, J.M.; Helmann, J.D. The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. Mol. Microbiol. 2016, 100, 1066–1079. [Google Scholar] [CrossRef]
- Pi, H.; Helmann, J.D. Ferrous iron efflux systems in bacteria. Metallomics 2017, 9, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Gründling, A.; Burrack, L.S.; Bouwer, H.A.; Higgins, D.E. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl. Acad. Sci. USA 2004, 101, 12318–12323. [Google Scholar] [CrossRef] [PubMed]
- Center for Food Safety and Public Health (CFSPH). Listeriosis. 2005. Available online: http://www.cfsph.iastate.edu/Factsheets/pdfs/listeriosis.pdf (accessed on 16 July 2019).
- USDA. United States Depart of Agriculture (USDA). Egg Products and Food Safety. 10 August 2015. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/eggs/egg-products-and-food-safety (accessed on 24 June 2019).
- Funk, E.M. The cooling of eggs. In Missouri Agriculture Experiment Station Bulletin; University of Missouri College of Agriculture, Agricultural Experiment Station: Columbia, MO, USA, 1935; Number 350. [Google Scholar]
- Anderson, K.E. Range Egg Production; Is It Better than in Cages? 2010. Available online: https://www.wattagnet.com/egg/cage-free-laying-systems/article/15500793/study-compares-range-cage-free-conventional-egg-production (accessed on 17 July 2023).
- Jones, D.R.; Tharrington, J.B.; Curtis, P.A.; Anderson, K.E.; Keener, K.M.; Jones, F.T. Effects of cryogenic cooling of shell eggs on egg quality. Poult. Sci. 2002, 81, 727–733. [Google Scholar] [CrossRef]
- Jones, D.M.; Caudill, A.; Curtis, P. Frequency of Salmonella, Campylobacter, Listeria and Enterobacteriaceae detection in commercially cool water-washed shell eggs. J. Food Saf. 2006, 26, 264–274. [Google Scholar] [CrossRef]
- Manfreda, G.; Cevoli, C.; Lucchi, A.; Pasquali, F.; Fabbri, A.; Franchini, A. Hot air treatment for surface decontamination of table eggs experimentally infected with Salmonella, Listeria, and Escherichia coli. Vet. Res. Commun. 2010, 34, 179–182. [Google Scholar] [CrossRef]
- Laird, J.M.; Bartlett, F.M.; McKellar, R.C. Survival of Listeria monocytogenes in egg washwater. Int. J. Food Microbiol. 1991, 12, 115–122. [Google Scholar] [CrossRef]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.A.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A review of the ecology, genomics and stress response of Listeria innocua and Listeria monocytogenes. Crit. Revs. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Sam Houston State University. Egg Processing. 2023. Available online: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CDgQw7AJahcKEwiYjN3Kl_j_AhUAAAAAHQAAAAAQAw&url=https%3A%2F%2Fwww.shsu.edu%2Facademics%2Fagricultural-sciences-and-engineering-technology%2Fdocuments%2FEggProcessing.ppt&psig=AOvVaw0hcQngwr9OrQlVBtsPjLSK&ust=1688667711474197&opi=89978449 (accessed on 5 July 2023).
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria-review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. 2007, 40, 4. [Google Scholar] [PubMed]
- Guzmán-Gómez, G.; Ayala Valdovinos, M.A.; Cabrera-Díaz, E.; Pérez-Montaño, J.A.; Muñoz-Valle, J.F.; Torres-Vitela, M.R.; Ruiz-Quezada, S.L. Frequency of Salmonella and Listeria monocytogenes in five commercial brands of chicken eggs using a combined method of enrichment and nested-PCR. J. Food Prot. 2013, 76, 429–434. [Google Scholar] [CrossRef]
- Jamali, H.; Chai, L.C.; Thong, K.L. Detection and isolation of Listeria spp. and Listeria monocytogenes in ready-to-eat foods with various selective culture media. Food Control 2013, 32, 19. [Google Scholar] [CrossRef]
- Ponniah, J.; Robin, T.; Paie, M.S.; Radu, S.; Ghazali, F.M.; Kqueen, C.Y.; Nishibuchi, M.; Nakaguchi, Y.; Malakar, P.K. Listeria monocytogenes in raw salad vegetables sold at retail level in Malaysia. Food Control 2010, 21, 774–778. [Google Scholar] [CrossRef]
- Erdoğrul, Ö. Listeria monocytogenes, Yersinia enterocolitica and Salmonella enteritidis in quail eggs. Turk. J. Vet. Anim. Sci. 2004, 28, 597–601. [Google Scholar]
- USDA. Voluntary Grading of Shell Eggs. Minimum Facility and Operating Requirements for Shell Egg Grading and Packing Plants. 7 CFR 57.76(f)(11). Shell Egg Cleaning Operations. 2004. Available online: https://www.govinfo.gov/content/pkg/CFR-2020-title7-vol3/pdf/CFR-2020-title7-vol3.pdf (accessed on 15 July 2023).
- Zhang, W.; Zheng, J.X.; Xu, G.Y. Toward better control of Salmonella contamination by taking advantage of the egg’s selfdefense system: A review. J. Food Sci. 2011, 76, R76–R81. [Google Scholar] [CrossRef]
- Koutchma, T.; Forney, L.J.; Moraru, C.I. Ultraviolet Light in Food Technology: Principles and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Kim, B.R.; Anderson, J.E.; Mueller, S.A.; Gaines, W.A.; Kendall, A.M. Literature review—Efficacy of various disinfectants against Legionella in water s ystems. Water Res. 2002, 36, 4433–4444. [Google Scholar] [CrossRef]
- Holck, A.L.; Liland, K.H.; Drømtorp, S.M.; Carlehög, M.; McLeod, A. Comparison of UV-C and Pulsed UV light treatments for reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs. J. Food Prot. 2018, 81, 6–16. [Google Scholar] [CrossRef]
- Law, S.E. Agricultural electrostatic spray application: A review of significant research and development during the 20th century. J. Electrost. 2001, 51, 25–42. [Google Scholar]
- Russell, S.M. The effect of electrolyzed oxidative water applied using electrostatic spraying on pathogenic and indicator bacteria on the surface of eggs. Poult. Sci. 2003, 82, 158–162. [Google Scholar] [CrossRef]
- Jiang, W.; Etienne, X.; Li, K.; Shen, C. Comparison of the efficacy of electrostatic versus conventional sprayer with commercial antimicrobials to inactivate Salmonella, Listeria monocytogenes, and Campylobacter jejuni for eggs and economic feasibility analysis. J. Food Prot. 2018, 81, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, J. Liquid Egg Processing Procedures, Key to Egg Market. 2019. Available online: https://www.wattagnet.com/egg/egg-processing/article/15527477/liquid-egg-processing-procedures-key-to-egg-market-wattagnet (accessed on 7 July 2023).
- Leasor, S.B.; Foegeding, P.M. Listeria species in commercially broken raw liquid whole egg. J. Food Protect. 1989, 52, 777–780. [Google Scholar] [CrossRef]
- Rivoal, K.; Quéguiner, S.; Boscher, E.; Bougeard, S.; Ermel, G.; Salvat, G.; Federighi, M.; Jugiau, F.; Protais, J. Detection of Listeria monocytogenes in raw and pasteurized liquid whole eggs and characterization by PFGE. Int. J. Food Microbiol. 2010, 138, 56–62. [Google Scholar] [CrossRef]
- Yang, S.C.; Baldwin, R.E. Functional Properties of Eggs in Foods. In Egg Science and Technology; Stadelman, W.J., Cotterill, O.J., Eds.; Food Products Press, Haworth Press: Binghamton, NY, USA, 1995; pp. 405–463. [Google Scholar]
- Li, X.; Sheldon, B.W.; Ball, H.R. Thermal resistance of Salmonella enterica serotypes, Listeria monocytogenes, and Staphylococcus aureus in high solids liquid egg mixes. J. Food Protect. 2005, 68, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, F.M.; Hawke, A.E. Heat resistance of Listeria monocytogenes Scott A and HAL 957E1 in various liquid egg products. J. Food Protect. 1995, 58, 1211–1214. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Erdmann, J.J.; Riemann, M.; Kroeger, K.; Juneja, V.K.; Brown, T. Ready-to-eat egg products formulated with nisin and organic acids to control Listeria monocytogenes. J. Food Prot. 2023, 86, 100081. [Google Scholar] [CrossRef] [PubMed]
- Mackey, B.M.; Bratchell, N. The heat resistance of Listeria monocytogenes. Lett. Appl. Microbiol. 1989, 9, 89–94. [Google Scholar] [CrossRef]
- Shute, N. Recall Reveals an Egg’s Long Path to the Deli Sandwich. 8 February 2012. Available online: https://www.npr.org/sections/thesalt/2012/02/07/146540839/recall-reveals-an-eggs-long-path-to-the-deli-sandwich (accessed on 24 June 2019).
- Powell, D. Listeria in Hard-Boiled Eggs Recall Widens to 34 States. 7 November 2012. Available online: https://www.barfblog.com/2012/02/listeria-in-hard-boiled-eggs-recall-widens-to-34-states/ (accessed on 27 June 2019).
- CDC. Centers for Disease Control and Prevention (CDC). Outbreak of Listeria Infections Linked to Hard-Boiled Eggs. 2020. Available online: https://www.cdc.gov/listeria/outbreaks/eggs-12-19/index.html (accessed on 10 July 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricke, S.C.; O’Bryan, C.A.; Rothrock, M.J., Jr. Listeria Occurrence in Conventional and Alternative Egg Production Systems. Microorganisms 2023, 11, 2164. https://doi.org/10.3390/microorganisms11092164
Ricke SC, O’Bryan CA, Rothrock MJ Jr. Listeria Occurrence in Conventional and Alternative Egg Production Systems. Microorganisms. 2023; 11(9):2164. https://doi.org/10.3390/microorganisms11092164
Chicago/Turabian StyleRicke, Steven C., Corliss A. O’Bryan, and Michael J. Rothrock, Jr. 2023. "Listeria Occurrence in Conventional and Alternative Egg Production Systems" Microorganisms 11, no. 9: 2164. https://doi.org/10.3390/microorganisms11092164
APA StyleRicke, S. C., O’Bryan, C. A., & Rothrock, M. J., Jr. (2023). Listeria Occurrence in Conventional and Alternative Egg Production Systems. Microorganisms, 11(9), 2164. https://doi.org/10.3390/microorganisms11092164