Propylene Glycol Potentiates the Inhibitory Action of CTZ Paste on Antibiotic-Resistant Enterococcus faecalis Isolated from the Root Canal: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. E. faecalis Characterization
2.3. Growth Kinetic of E. faecalis
2.4. Drug Preparations
2.5. Kirby–Bauer Disc Diffusion Method
2.6. Statistical Analysis
3. Results
3.1. E. faecalis Exhibit Resistance Behavior to Antibiotics
3.2. E. faecalis Has a Conventional Pattern of Growth
3.3. PG Potentiates CTZ Paste Effect on E. faecalis
3.4. GSE Has a Potential Antibacterial Effect Used Alone
3.5. GSE Extract Does Not Need Antibiotics to Improve Its Bactericidal Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazeminia, M.; Abdi, A.; Shohaimi, S.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med. 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Bagramian, R.A.; Garcia-Godoy, F.; Volpe, A.R. The global increase in dental caries. A pending public health crisis. Am. J. Dent. 2009, 22, 3–8. [Google Scholar] [PubMed]
- WHO. Sugars and Dental Caries; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Reddy, S.; Ramakrishna, Y. Evaluation of antimicrobial efficacy of various root canal filling materials used in primary teeth: A microbiological study. J. Clin. Pediatr. Dent. 2007, 31, 193–198. [Google Scholar] [CrossRef]
- Soto-Sainz, J.E.; Alarcón-Romero, P.; Gastélum-Rosales, G.; Castro-Salazar, Y.; Ramos-Payán, R.; Romero-Quintana, G.; Aguilar-Medina, M. Presence of red complex bacteria and Aggregatibacter actinomycetemcomitans in necrotic primary teeth with periapical abscess in children of Sinaloa, México. Rev. Biomédica 2020, 31, 76–83. [Google Scholar]
- Chouchene, F.; Masmoudi, F.; Baaziz, A.; Maatouk, F.; Ghedira, H. Antibiotic Mixtures in Noninstrumental Endodontic Treatment of Primary Teeth with Necrotic Pulps: A Systematic Review. Int. J. Dent. 2021, 2021, 5518599. [Google Scholar] [CrossRef]
- Nanda, R.; Koul, M.; Srivastava, S.; Upadhyay, V.; Dwivedi, R. Clinical evaluation of 3 Mix and Other Mix in non-instrumental endodontic treatment of necrosed primary teeth. J. Oral Biol. Craniofac. Res. 2014, 4, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fereira, J.; Ayala-Jimenez, S.; Carlos-Medrano, L.E.; Toscano-Garcia, I.; Anaya-Alvarez, M. Clinical and Radiographic Evaluation of Formocresol and Chloramphenicol, Tetracycline and Zinc Oxide-Eugenol Antibiotic Paste in Primary Teeth Pulpotomies: 24 month follow up. J. Clin. Pediatr. Dent. 2019, 43, 16–21. [Google Scholar] [CrossRef]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common dental diseases in children and malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef]
- Bhujel, N.; Duggal, M.S.; Saini, P.; Day, P.F. The effect of premature extraction of primary teeth on the subsequent need for orthodontic treatment. Eur. Arch. Paediatr. Dent. 2016, 17, 423–434. [Google Scholar] [CrossRef]
- Raslan, N.; Mansour, O.; Assfoura, L. Evaluation of antibiotic mix in Non-instrumentation Endodontic Treatment of necrotic primary molars. Eur. J. Paediatr. Dent. 2017, 18, 285–290. [Google Scholar]
- Sain, S.; Reshmi, J.; Anandaraj, S.; George, S.; Issac, J.S.; John, S.A. Lesion Sterilization and Tissue Repair-Current Concepts and Practices. Int. J. Clin. Pediatr. Dent. 2018, 11, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Albarrán, C.A.; Morales-Dorantes, V.; Ayala-Herrera, J.L.; Castillo-Aguillón, M.; Soto-Barreras, U.; Cabeza-Cabrera, C.V.; Domínguez-Pérez, R.A. Antibiotic Resistance Decreases the Efficacy of Endodontic Filling Pastes for Root Canal Treatment in Children’s Teeth. Children 2021, 8, 692. [Google Scholar] [CrossRef] [PubMed]
- Cappiello, J. Tratamientos pulpares en incisivos primarios. Rev. Asoc. Odontol. Argent 1964, 52, 139–145. [Google Scholar]
- de Oliveira, S.C.M.; de Omena, A.L.C.S.; de Lucena Lira, G.A.; Ferreira, I.A.; Imparato, J.C.P.; Calvo, A.F.B. Do Different Proportions of Antibiotics in the CTZ Paste Interfere with the Antimicrobial Action? In Vitro Study. Pesqui. Bras. Odontopediatria Clínica Integr. 2019, 19, 4801–4808. [Google Scholar] [CrossRef]
- Sanchez-Borges, M.; Thong, B.; Blanca, M.; Ensina, L.F.; Gonzalez-Diaz, S.; Greenberger, P.A.; Jares, E.; Jee, Y.K.; Kase-Tanno, L.; Khan, D.; et al. Hypersensitivity reactions to non beta-lactam antimicrobial agents, a statement of the WAO special committee on drug allergy. World Allergy Organ J. 2013, 6, 18. [Google Scholar] [CrossRef]
- Soares, G.M.; Figueiredo, L.C.; Faveri, M.; Cortelli, S.C.; Duarte, P.M.; Feres, M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J. Appl. Oral Sci. 2012, 20, 295–309. [Google Scholar] [CrossRef]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar]
- Harini Priya, M.; Bhat, S.S.; Sundeep Hegde, K. Comparative evaluation of bactericidal potential of four root canal filling materials against microflora of infected non-vital primary teeth. J. Clin. Pediatr. Dent. 2010, 35, 23–29. [Google Scholar] [CrossRef]
- Jaidka, S.; Somani, R.; Singh, D.J.; Sheikh, T.; Chaudhary, N.; Basheer, A. Herbal combat against E. faecalis—An in vitro study. J. Oral Biol. Craniofac. Res. 2017, 7, 178–181. [Google Scholar] [CrossRef]
- Sabrah, A.H.A.; Yassen, G.H.; Liu, W.-C.; Goebel, W.S.; Gregory, R.L.; Platt, J.A. The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clin. Oral Investig. 2015, 19, 2059–2066. [Google Scholar] [CrossRef]
- Tawfik, H.; Abu-Seida, A.M.; Hashem, A.A.; Nagy, M.M. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps. Int. Endod. J. 2013, 46, 910–922. [Google Scholar] [CrossRef]
- Leonardo, M.R.; Bezerra da Silva, L.A.; Leonardo, R.d.T.; Utrilla, L.S.; Assed, S. Histological evaluation of therapy using a calcium hydroxide dressing for teeth with incompletely formed apices and periapical lesions. J. Endod. 1993, 19, 348–352. [Google Scholar] [CrossRef]
- Nelson Filho, P.; Silva, L.A.; Leonardo, M.R.; Utrilla, L.S.; Figueiredo, F. Connective tissue responses to calcium hydroxide-based root canal medicaments. Int. Endod. J. 1999, 32, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.A.H.; Alves de Aguiar, K.; Zeferino, M.A.; Vivan, R.R.; Ordinola-Zapata, R.; Tanomaru-Filho, M.; Weckwerth, P.H.; Kuga, M.C. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. Int. Endod. J. 2012, 45, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Faria, G.; Rodrigues, E.M.; Coaguila-Llerena, H.; Gomes-Cornelio, A.L.; Neto Angeloco, R.R.; Swerts Pereira, M.S.; Tanomaru Filho, M. Influence of the Vehicle and Antibiotic Formulation on Cytotoxicity of Triple Antibiotic Paste. J. Endod. 2018, 44, 1812–1816. [Google Scholar] [CrossRef]
- Mandal, S.S.; Margasahayam, S.V.; Shenoy, V.U. A Comparative Evaluation of the Influence of Three Different Vehicles on the Antimicrobial Efficacy of Triple Antibiotic Paste against Enterococcus faecalis: An In vitro Study. Contemp. Clin. Dent. 2020, 11, 150–157. [Google Scholar] [CrossRef]
- Erausquin, J.; Muruzábal, M. Root canal fillings with zinc oxide-eugenol cement in the rat molar. Oral Surg. Oral Med. Oral Pathol. 1967, 24, 547–558. [Google Scholar] [CrossRef]
- Cruz, E.V.; Kota, K.; Huque, J.; Iwaku, M.; Hoshino, E. Penetration of propylene glycol into dentine. Int. Endod. J. 2002, 35, 330–336. [Google Scholar] [CrossRef]
- Nalawade, T.M.; Bhat, K.; Sogi, S.H. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. J. Int. Soc. Prev. Community Dent. 2015, 5, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.G.; Parolia, A.; Ahlawat, P.; Pau, A.; Amalraj, F.D. Antifungal effectiveness of various intracanal medicaments against Candida albicans: An ex-vivo study. BMC Oral Health 2014, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Tour Savadkouhi, S.; Mohtasham Maram, M.; Purhaji Bagher, M.; Afkar, M.; Fazlyab, M. In Vitro Activity of Superoxide Water on Viability of Enterococcus faecalis Biofilm on Root Canal Wall. Iran. Endod. J. 2021, 16, 189–192. [Google Scholar] [PubMed]
- Rossi-Fedele, G.; Figueiredo, J.A.; Steier, L.; Canullo, L.; Steier, G.; Roberts, A.P. Evaluation of the antimicrobial effect of super-oxidized water (Sterilox®) and sodium hypochlorite against Enterococcus faecalis in a bovine root canal model. J. Appl. Oral Sci. 2010, 18, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Zan, R.; Alacam, T.; Hubbezoglu, I.; Tunc, T.; Sumer, Z.; Alici, O. Antibacterial Efficacy of Super-Oxidized Water on Enterococcus faecalis Biofilms in Root Canal. Jundishapur J. Microbiol. 2016, 9, e30000. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2015, 6, 1529. [Google Scholar] [CrossRef]
- Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salam, A.M.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem. Rev. 2021, 121, 3495–3560. [Google Scholar] [CrossRef] [PubMed]
- Karobari, M.I.; Adil, A.H.; Assiry, A.A.; Basheer, S.N.; Noorani, T.Y.; Pawar, A.M.; Marya, A.; Messina, P.; Scardina, G.A. Herbal Medications in Endodontics and Its Application-A Review of Literature. Materials 2022, 15, 3111. [Google Scholar] [CrossRef] [PubMed]
- Divya, D.V.; Prasad, M.G.; Radhakrishna, A.N.; Sandeep, R.V.; Reddy, S.P.; Santosh Kumar, K.V.K. Triple antibiotic paste versus propolis: A clinical quest for the reliable treatment of periapical lesions in primary molars. Saudi Endod. J. 2019, 9, 34–39. [Google Scholar]
- Niculescu, A.G.; Grumezescu, A.M. Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. Plants 2021, 10, 1847. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Ficelo, S.; Corbo, M.R.; Sinigaglia, M. Bioactivity of Grapefruit Seed Extract against Pseudomonas spp. J. Food Process. Preserv. 2010, 34, 495–507. [Google Scholar] [CrossRef]
- Cvetnić, Z.; Vladimir-Knezević, S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004, 54, 243–250. [Google Scholar]
- Kanmani, P.; Rhim, J.W. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr. Polym. 2014, 102, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Basmaci, F.; Oztan, M.D.; Kiyan, M. Ex vivo evaluation of various instrumentation techniques and irrigants in reducing E. faecalis within root canals. Int. Endod. J. 2013, 46, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, M.; Eghbal, M.J.; Sahba Yaghmayi, A.; Shokri, M.; Azari-Marhabi, S. Comparison of Antibacterial Effects of Photodynamic Therapy, Modified Triple Antibiotic Paste and Calcium Hydroxide on Root Canals Infected With Enterococcus faecalis: An In Vitro Study. J. Lasers Med. Sci. 2019, 10 (Suppl. S1), S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7257. [Google Scholar] [CrossRef]
- Zhang, C.; Du, J.; Peng, Z. Correlation between Enterococcus faecalis and Persistent Intraradicular Infection Compared with Primary Intraradicular Infection: A Systematic Review. J. Endod. 2015, 41, 1207–1213. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Chiniforush, N.; Pourhajibagher, M.; Parker, S.; Benedicenti, S.; Shahabi, S.; Bahador, A. The effect of sublethal photodynamic therapy on the expression of Enterococcal surface protein (esp) encoding gene in Enterococcus faecalis: Quantitative real-time PCR assessment. Photodiagnosis Photodyn. Ther. 2018, 24, 311–317. [Google Scholar] [CrossRef]
- Prada, I.; Micó-Muñoz, P.; Giner-Lluesma, T.; Micó-Martínez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e364–e372. [Google Scholar] [CrossRef]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms Involved In The Resistance Of Enterococcus Faecalis To Calcium Hydroxide. Aust. Endod. J. 2001, 27, 115. [Google Scholar] [CrossRef]
- Jhajharia, K.; Parolia, A.; Shetty, K.V.; Mehta, L.K. Biofilm in endodontics: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penadés, J.R.; Lasa, I. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545. [Google Scholar] [CrossRef] [PubMed]
- Kayaoglu, G.; Ørstavik, D. Virulence factors of Enterococcus faecalis: Relationship to endodontic disease. Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 2004, 15, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Galván-Pacheco, J.; Vitales-Noyola, M.; González-Amaro, A.M.; Bujanda-Wong, H.; Aragón-Piña, A.; Méndez-González, V.; Pozos-Guillén, A. Evaluation of in vitro biofilm elimination of Enterococcus faecalis using a continuous ultrasonic irrigation device. J. Oral Sci. 2020, 62, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Cogulu, D.; Uzel, A.; Oncag, O.; Aksoy, S.C.; Eronat, C. Detection of Enterococcus faecalis in Necrotic Teeth Root Canals by Culture and Polymerase Chain Reaction Methods. Eur. J. Dent. 2007, 1, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Lokade, A.; Thakur, S.; Singhal, P.; Chauhan, D.; Jayam, C. Comparative evaluation of clinical and radiographic success of three different lesion sterilization and tissue repair techniques as treatment options in primary molars requiring pulpectomy: An in vivo study. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 185–191. [Google Scholar] [CrossRef]
- Piva, F.; Italo, F.; Estrela, C. Antimicrobial activity of different root canal filling pastes used in deciduous teeth. J. Mat. Res. 2008, 11, 171–173. [Google Scholar]
- de Sales Reis, B.; Barbosa, C.C.N.; de Castro Soares, L.; Brum, S.C.; Cecilio, O.L.; Marques, M. Análise “in vitro” da atividade antimicrobiana da pasta ctz utilizada como material obturador na terapia pulpar de dentes decíduos. Rev. Prouniversus 2016, 7, 39–42. [Google Scholar]
- Nalawade, T.M.; Bhat, K.G.; Sogi, S. Antimicrobial Activity of Endodontic Medicaments and Vehicles using Agar Well Diffusion Method on Facultative and Obligate Anaerobes. Int. J. Clin. Pediatr. Dent. 2016, 9, 335–341. [Google Scholar]
- Pazhouhnia, S.; Bouzari, M.; Arbabzadeh-Zavareh, F. Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Sci. Rep. 2022, 12, 13268. [Google Scholar] [CrossRef]
- Tantry, B.A.; Kumar, A.; Rahiman, S.; Tantry, M.N. Antibacterial evaluation and phytochemical screening of methanolic extract of Ocimum sanctum against some common microbial pathogens. Glob. Adv. Res. J. Microbiol. 2016, 5, 1–6. [Google Scholar]
- Thomas, P.A.; Bhat, K.S.; Kotian, K.M. Antibacterial properties of dilute formocresol and eugenol and propylene glycol. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 166–170. [Google Scholar] [PubMed]
- Pereira, T.C.; Vasconcelos, L.R.; Graeff, M.S.; Duarte, M.A.; Bramante, C.M.; Andrade, F.B. Intratubular disinfection with tri-antibiotic and calcium hydroxide pastes. Acta Odontol. Scand. 2017, 75, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, S.; Jibhkate, N.; Baranwal, R.; Avinash, A.; Rathi, S. Propylene glycol: A new alternative for an intracanal medicament. J. Int. Oral Health 2016, 8, 611. [Google Scholar]
- Huang, Y.-R.; Hung, Y.-C.; Hsu, S.-Y.; Huang, Y.-W.; Hwang, D.-F. Application of electrolyzed water in the food industry. Food Control 2008, 19, 329–345. [Google Scholar] [CrossRef]
- Reagor, L.; Gusman, J.; McCoy, L.; Carino, E.; Heggers, J.P. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. J. Altern. Complement. Med. 2002, 8, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Hayati, N.; Widyarman, A.S.; Roeslan, B.O. Effectiveness of Grapefruit (Citrus Paradisi) And Lime (Citrus Aurantifolia) Against Pathogenic Root Canal Biofilms. Int. J. Pharm. Res. 2020, 12, 3494–3502. [Google Scholar]
- Davoudi, A.; Razavi, S.A.; Mosaddeghmehrjardi, M.H.; Tabrizizadeh, M. The Effect of Fragaria vesca Extract on Smear Layer Removal: A Scanning Electron Microscopic Evaluation. Iran. Endod. J. 2015, 10, 204–207. [Google Scholar]
- Mavani, H.A.K.; Tew, I.M.; Wong, L.; Yew, H.Z.; Mahyuddin, A.; Ahmad Ghazali, R.; Pow, E.H.N. Antimicrobial Efficacy of Fruit Peels Eco-Enzyme against Enterococcus Faecalis: An In Vitro Study. Int. J. Environ. Res. Public Health 2020, 17, 5107. [Google Scholar] [CrossRef]
- Kumar, A.; Ajitha, P.; Raghu, S. Muralidaran, Comparative evaluation of antimicrobial activity of 3% sodium hypochlorite, 2% chlorhexidine, and 5% grape seed extract against Enterococcus faecalis and Candida albicans—An in vitro study. Drug Invent. Today 2019, 12, 53–56. [Google Scholar]
Vehicle | Amount | Concentration |
---|---|---|
Eugenol | 200 µL | 37.50% |
Electrolyzed super oxidation solution | 200 | 0.0015% |
Grapefruit-seed extract | 600 µL | 46% |
Propylene glycol | 400 µL | 99.50% |
Saline solution (S.S.) | 400 µL | 0.90% |
Substrates | Result |
---|---|
Crystal violet | + |
Micrococcus screen | + |
Nitrate | − |
Novobiocin | + |
PNP-β-D-Glucuronide | − |
Indoxyl phosphatase | − |
Voges-Proskaure | − |
Optochin | + |
Phosphatase | + |
40% Bils esculin | + |
L-Pyrrolidonyl-β-naphtothylamide | + |
Arginins | + |
PNP-β-D-galactopyranoside | + |
Urea | − |
Mannitol | + |
Lactose | + |
Trehalose | + |
Mannose | + |
Sodium Chloride 6.5% | + |
Sorbitol | + |
Arabinose | − |
Ribose | + |
Inulin | - |
Raffinose | − |
Bacitracin | + |
Pyruvate | + |
Antimicrobial Agent | MIC (µg/mL) | Interpretation |
---|---|---|
Amoxicillin clavulanic acid | ≤4/2 | * |
Ampicillin sulbactam | ≤8/4 | * |
Ampicillin | ≤2 | Sensitive |
Ceftriaxone | >32 | * |
Ciprofloxacin | ≤1 | Sensitive |
Clindamicina | >4 | * |
Daptomycin | 2 | Sensitive |
Erythromycin | >4 | Resistance |
Erythromycin synergy | >1000 | Resistance |
Gentamicin synergy | ≤500 | Sensitive |
Gentamicin | 8 | * |
Levofloxacin | 2 | Sensitive |
Linezolid | 4 | Intermediate |
Moxifloxacin | ≤0.5 | * |
Nitrofurantoin | ≤32 | * |
Oxacillin | >2 | * |
Penicillin | 2 | Sensitive |
Rifampicin | ≤1 | Sensitive |
Tetracycline | >8 | Resistance |
Trimethoprim sulfamethoxazole | >2/38 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayos-Verdugo, J.Y.; Rivera-Chaparro, F.; Castro-Salazar, G.Y.; Ramírez-Álvarez, M.; Romero-Quintana, J.G.; Loyola-Rodríguez, J.P.; Zavala-Alonso, N.V.; Avendaño-Félix, M.; Soto-Sainz, J.E.; Silva-Benítez, E.d.L. Propylene Glycol Potentiates the Inhibitory Action of CTZ Paste on Antibiotic-Resistant Enterococcus faecalis Isolated from the Root Canal: An In Vitro Study. Microorganisms 2023, 11, 2208. https://doi.org/10.3390/microorganisms11092208
Rayos-Verdugo JY, Rivera-Chaparro F, Castro-Salazar GY, Ramírez-Álvarez M, Romero-Quintana JG, Loyola-Rodríguez JP, Zavala-Alonso NV, Avendaño-Félix M, Soto-Sainz JE, Silva-Benítez EdL. Propylene Glycol Potentiates the Inhibitory Action of CTZ Paste on Antibiotic-Resistant Enterococcus faecalis Isolated from the Root Canal: An In Vitro Study. Microorganisms. 2023; 11(9):2208. https://doi.org/10.3390/microorganisms11092208
Chicago/Turabian StyleRayos-Verdugo, Jesús Yareli, Fernando Rivera-Chaparro, Gloria Yolanda Castro-Salazar, Maricela Ramírez-Álvarez, José Geovanni Romero-Quintana, Juan Pablo Loyola-Rodríguez, Norma Verónica Zavala-Alonso, Mariana Avendaño-Félix, Jesús Eduardo Soto-Sainz, and Erika de Lourdes Silva-Benítez. 2023. "Propylene Glycol Potentiates the Inhibitory Action of CTZ Paste on Antibiotic-Resistant Enterococcus faecalis Isolated from the Root Canal: An In Vitro Study" Microorganisms 11, no. 9: 2208. https://doi.org/10.3390/microorganisms11092208
APA StyleRayos-Verdugo, J. Y., Rivera-Chaparro, F., Castro-Salazar, G. Y., Ramírez-Álvarez, M., Romero-Quintana, J. G., Loyola-Rodríguez, J. P., Zavala-Alonso, N. V., Avendaño-Félix, M., Soto-Sainz, J. E., & Silva-Benítez, E. d. L. (2023). Propylene Glycol Potentiates the Inhibitory Action of CTZ Paste on Antibiotic-Resistant Enterococcus faecalis Isolated from the Root Canal: An In Vitro Study. Microorganisms, 11(9), 2208. https://doi.org/10.3390/microorganisms11092208