Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens and S. aureus Isolates
2.2. Cefoxitin Disk Diffusion Method (Kirby–Bauer Test)
2.3. DNA Extraction
2.4. Closed-Tube LAMP Using (HNB) Colorimetric Dye
2.5. Detection Limit of Closed-Tube LAMP Using HNB Colorimetric Dye
2.6. Conventional Polymerase Chain Reaction (PCR)
2.7. Data Analysis
3. Results
3.1. Clinical Isolates
3.1.1. Clinical Isolates Identification
3.1.2. Cefoxitin Disk Diffusion Method (Kirby–Bauer Test)
3.1.3. Closed-Tube LAMP Using (HNB) Colorimetric Dye
3.1.4. Conventional PCR
3.1.5. Detection limit of Closed-Tube LAMP Using HNB Colorimetric Dye
3.2. Clinical specimens
3.2.1. Clinical Specimen Identification
3.2.2. Closed-tube LAMP Results Using HNB Colorimetric Dye on Clinical Specimens
3.3. Comparison of All Identification Methods and Sample Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nii-Trebi, N.I. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges. BioMed Res. Int. 2017, 2017, 5245021. [Google Scholar] [CrossRef]
- Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents 2019, 53, 371–382. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Al Mana, H.; Sundararaju, S.; Tsui, C.K.; Perez-Lopez, A.; Yassine, H.; Al Thani, A.; Al-Ansari, K.; Eltai, N.O. Whole-genome sequencing for molecular characterization of carbapenem-resistant Enterobacteriaceae causing lower urinary tract infection among pediatric patients. Antibiotics 2021, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Alhababi, D.A.; Eltai, N.O.; Nasrallah, G.K.; Farg, E.A.; Al Thani, A.A.; Yassine, H.M. Antimicrobial resistance of commensal Escherichia coli isolated from food animals in Qatar. Microb. Drug Resist. 2020, 26, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Chen, E.Z.; Yang, L.; Peng, C.; Wang, Q.; Xu, Z.; Chen, D.Q. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb. Pathog. 2021, 156, 104915. [Google Scholar] [CrossRef]
- Lee, J.W.; Nguyen, V.D.; Seo, T.S. based molecular diagnostics for the amplification and detection of pathogenic bacteria from human whole blood and milk without a sample preparation step. BioChip J. 2019, 13, 243–250. [Google Scholar] [CrossRef]
- Kaur, D.C.; Chate, S.S. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 2015, 7, 78–84. [Google Scholar] [CrossRef]
- Otto, M. MRSA virulence and spread. Cell Microbiol. 2012, 14, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, T.S.; El-Ahmady, M.; Goering, R.V. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated over a 2-year period in a Qatari hospital from multinational patients. Clin. Microbiol. Infect. 2014, 20, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Alipour, F.; Ahmadi, M.; Javadi, S. Evaluation of different methods to detect methicillin resistance in Staphylococcus aureus (MRSA). J. Infect. Public Health 2014, 7, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, J.J. The use of molecular methods for the detection and identification of methicillin-resistant Staphylococcus aureus. Biomark. Med. 2014, 8, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Jassim, S.A.; Kandala, N.; Fakhry, S.S. Comparison of LAMP and PCR for the Diagnosis of Methicillin-Resistance Staphylococcus aureus (MRSA) Isolated from Different Food Sources. Iraqi J. Sci. 2021, 62, 1094–1102. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Mohamed, S.A.; Asiri, A.M.; Gomaa, A.-B.M.; Ibrahim, I.H.; Al-Talhi, H.A. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol. 2014, 14, 29. [Google Scholar] [CrossRef]
- Chaouch, M. Loop-mediated isothermal amplification (LAMP): An effective molecular point-of-care technique for the rapid diagnosis of coronavirus SARS-CoV-2. Rev. Med. Virol. 2021, 31, e2215. [Google Scholar] [CrossRef]
- Baek, Y.-H.; Jo, M.-Y.; Song, M.-S.; Hong, S.-B.; Shin, K.-S. Application of loop-mediated isothermal amplification (LAMP) assay to rapid detection of methicillin-resistant Staphylococcus aureus from blood cultures. Biomed. Sci. Lett. 2019, 25, 75–82. [Google Scholar] [CrossRef]
- Paule, S.M.; Mehta, M.; Hacek, D.M.; Gonzalzles, T.-M.; Robicsek, A.; Peterson, L.R. Chromogenic media vs real-time PCR for nasal surveillance of methicillin-resistant Staphylococcus aureus: Impact on detection of MRSA-positive persons. Am. J. Clin. Pathol. 2009, 131, 532–539. [Google Scholar] [CrossRef]
- Anderson, D.J.; Kaye, K.S.; Classen, D.; Arias, K.M.; Podgorny, K.; Burstin, H.; Calfee, D.P.; Coffin, S.E.; Dubberke, E.R.; Fraser, V. Strategies to prevent surgical site infections in acute care hospitals. Infect. Control Hosp. Epidemiol. 2008, 29, S51–S61. [Google Scholar] [CrossRef] [PubMed]
- Junkins, A.D.; Lockhart, S.R.; Heilmann, K.P.; Dohrn, C.L.; Von Stein, D.L.; Winokur, P.L.; Doern, G.V.; Richter, S.S. BD Phoenix and Vitek 2 detection of mecA-mediated resistance in Staphylococcus aureus with cefoxitin. J. Clin. Microbiol. 2009, 47, 2879–2882. [Google Scholar] [CrossRef] [PubMed]
- Zaczek-Moczydłowska, M.A.; Mohamed-Smith, L.; Toldrà, A.; Hooper, C.; Campàs, M.; Furones, M.D.; Bean, T.P.; Campbell, K. A single-tube HNB-based loop-mediated isothermal amplification for the robust detection of the ostreid herpesvirus 1. Int. J. Mol. Sci. 2020, 21, 6605. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef] [PubMed]
- Koide, Y.; Maeda, H.; Yamabe, K.; Naruishi, K.; Yamamoto, T.; Kokeguchi, S.; Takashiba, S. Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method. Lett. Appl. Microbiol. 2010, 50, 386–392. [Google Scholar] [CrossRef]
- Monaghan, T.F.; Rahman, S.N.; Agudelo, C.W.; Wein, A.J.; Lazar, J.M.; Everaert, K.; Dmochowski, R.R. Foundational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value. Medicina 2021, 57, 503. [Google Scholar] [CrossRef]
- Nair, D.; Shashindran, N.; Kumar, A.; Vinodh, V.; Biswas, L.; Biswas, R. Comparison of Phenotypic MRSA Detection Methods with PCR for mecA Gene in the Background of Emergence of Oxacillin-Susceptible MRSA. Microb. Drug Resist. 2021, 27, 1190–1194. [Google Scholar] [CrossRef]
- Madhavan, A.; Sachu, A.; Balakrishnan, A.; Vasudevan, A.; Balakrishnan, S.; Vasudevapanicker, J. Comparison of PCR and phenotypic methods for the detection of methicillin resistant Staphylococcus aureus. Iran. J. Microbiol. 2021, 13, 31–36. [Google Scholar] [CrossRef]
- Trevethan, R. Sensitivity, specificity, and predictive values: Foundations, pliabilities, and pitfalls in research and practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Craft, K.M.; Nguyen, J.M.; Berg, L.J.; Townsend, S.D. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. MedChemComm 2019, 10, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K. Incidence of bloodstream infection: A review of population-based studies. Clin. Microbiol. Infect. 2013, 19, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, E.; Lindholm, L.; Huttunen, R.; Huhtala, H.; Vuento, R.; Vuopio, J.; Syrjänen, J. Spa type distribution in MRSA and MSSA bacteremias and association of spa clonal complexes with the clinical characteristics of bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, R.F.; Dona, D.; Jacobs, M.B.; Gerber, J.S. Risk factors for complications in children with Staphylococcus aureus bacteremia. J. Pediatr. 2019, 208, 214–220.e2. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Montarelo, D.; Viedma, E.; Larrosa, N.; Gomez-Gonzalez, C.; Ruiz de Gopegui, E.; Munoz-Gallego, I.; San Juan, R.; Fernandez-Hidalgo, N.; Almirante, B.; Chaves, F. Molecular epidemiology of Staphylococcus aureus bacteremia: Association of molecular factors with the source of infection. Front. Microbiol. 2018, 9, 409666. [Google Scholar] [CrossRef]
- Metwally, L.; Gomaa, N.; Hassan, R. Detection of methicillin-resistant Staphylococcus aureus directly by loop-mediated isothermal amplification and direct cefoxitin disk diffusion tests. East. Mediterr. Health J. 2014, 20, 273–279. [Google Scholar] [CrossRef]
- Ahmed, F.; Hussain, W.; Mirza, I.A.; Ali, S.; Khurshid, U.; Sarwar, M. Diagnostic Accuracy of CHROMagar MRSA for Detection of Methicillin-Resistant Staphylococcus aureus (MRSA) from Screening Swab Specimens. Pak. Armed Forces Med. J. 2022, 72, 990–994. [Google Scholar] [CrossRef]
- DeBonville, D. The impact of incorrect MRSA diagnoses. MLO Med. Lab. Obs. 2012, 44, 26–27. [Google Scholar]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef]
- Bhatt, R.D.; Shrestha, C.; Risal, P. Factors affecting turnaround time in the clinical laboratory of the Kathmandu University Hospital, Nepal. EJIFCC 2019, 30, 14–24. [Google Scholar] [PubMed]
- Prusty, B.R.; Chaudhuri, P.; Chaturvedi, V.K.; Saini, M.; Mishra, B.P.; Gupta, P.K. Visual Detection of Brucella spp. in Spiked Bovine Semen Using Loop-Mediated Isothermal Amplification (LAMP) Assay. Indian J. Microbiol. 2016, 56, 142–147. [Google Scholar] [CrossRef]
- Karthik, K.; Rathore, R.; Thomas, P.; Arun, T.; Viswas, K.; Dhama, K.; Agarwal, R. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX 2014, 1, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hulme, J. Recent advances in the detection of methicillin resistant Staphylococcus aureus (MRSA). BioChip J. 2017, 11, 89–100. [Google Scholar] [CrossRef]
- Khosravi, A.D.; Khoshnood, S.; Abbasi Montazeri, E.; Jomehzadeh, N.; Moradi, M.; Shahi, F. The application of the loop-mediated isothermal amplification method for rapid detection of methicillin-resistant Staphylococcus aureus. New Microbes New Infect. 2022, 45, 100960. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.T.; Teh, C.S.; Thong, K.L. Loop-mediated isothermal amplification assay for the rapid detection of Staphylococcus aureus. BioMed Res. Int. 2013, 2013, 895816. [Google Scholar] [CrossRef]
- Anupama, K.P.; Nayak, A.; Karunasagar, I.; Maiti, B. Rapid visual detection of Vibrio parahaemolyticus in seafood samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J. Microbiol. Biotechnol. 2020, 36, 76. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bernalt Diego, J.; Fernandez-Soto, P.; Dominguez-Gil, M.; Belhassen-Garcia, M.; Bellido, J.L.M.; Muro, A. AS imple, A ffordable, R apid, S tabilized, Co lorimetric, V ersatile RT-LAMP Assay to Detect SARS-CoV-2. Diagnostics 2021, 11, 438. [Google Scholar] [CrossRef]
- Quoc, N.B.; Phuong, N.D.N.; Chau, N.N.B.; Linh, D.T.P. Closed tube loop-mediated isothermal amplification assay for rapid detection of hepatitis B virus in human blood. Heliyon 2018, 4, e00561. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X.; Zhang, T.; Zhang, X.; Jiang, M.; Lu, H.; Sui, G.; Zhao, Y.; Zhao, W.; Liu, X. A point-of-care test device for MRSA rapid detection. J. Pharm. Biomed. Anal. 2022, 209, 114464. [Google Scholar] [CrossRef]
Testing Measurements | Equation |
---|---|
Specificity | |
Sensitivity | |
Positive Predictive Value (PPV) | |
Negative Predictive Value (NPV) | |
Cohen’s Kappa |
Categories | Specimen Type | Total Specimens Number out of 93 | Specificity | Sensitivity | CK | PPV | NPV |
---|---|---|---|---|---|---|---|
Liquid | Blood | 22 | 100% | 81.81% | 0.8 | 100% | 91.43% |
Urine | 4 | 100% | 100% | 1 | |||
ETT | 14 | 100% | 100% | 1 | |||
Sputum | 6 | 100% | 100% | 1 | |||
Cyst fluid | 1 | 100% | 100% | 1 | |||
Ascitic fluid | 1 | 100% | 100% | 1 | |||
Joint fluid | 1 | 100% | 100% | 1 | |||
Swab | 3 | 100% | 100% | 1 | |||
Pus swab | 11 | 100% | 100% | 1 | |||
Abscess swab | 2 | 100% | 100% | 1 | |||
Wound swab | 12 | 100% | 85.71% | 0.82 | |||
Drain swab | 1 | 100% | 100% | 1 | |||
Episiotomy swab | 2 | 100% | 100% | 1 | |||
Tissue | Tissue | 13 | 100% | 75% | 0.7 | 100% | 71.43% |
Method | Detection | Sample Type | Specificity | Sensitivity | Cohen Kappa 1 | PPV 2 | NPV 3 | Time (h) |
---|---|---|---|---|---|---|---|---|
Closed-tube LAMP using HNB colorimetric dye | mecA and spa genes | Clinical specimens | 100% | 91.23% | 0.90 | 100% | 87.8% | <1 h |
Cefoxitin Disk diffusion test | ≥22 mm MSSA ≤21 mm MRSA | Clinical isolates | 100% | 100% | 1.00 | 100% | 100% | ≥24 h |
Closed-tube LAMP using (HNB) colorimetric dye | mecA and spa genes | 100% | 97% | 0.926 | 100% | 88.89% | <1 h | |
Conventional PCR | mecA and spa genes | <4 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abusheraida, N.S.A.; AlBaker, A.A.H.; Aljabri, A.S.A.; Abdelrahman, H.A.; Al-Mana, H.; Wilson, G.J.; Anan, K.A.; Eltai, N.O. Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes. Microorganisms 2024, 12, 157. https://doi.org/10.3390/microorganisms12010157
Abusheraida NSA, AlBaker AAH, Aljabri ASA, Abdelrahman HA, Al-Mana H, Wilson GJ, Anan KA, Eltai NO. Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes. Microorganisms. 2024; 12(1):157. https://doi.org/10.3390/microorganisms12010157
Chicago/Turabian StyleAbusheraida, Noora S. A., Asraa A. H. AlBaker, Asmaa S. A. Aljabri, Hana A. Abdelrahman, Hassan Al-Mana, Godwin J. Wilson, Khalid A. Anan, and Nahla O. Eltai. 2024. "Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes" Microorganisms 12, no. 1: 157. https://doi.org/10.3390/microorganisms12010157
APA StyleAbusheraida, N. S. A., AlBaker, A. A. H., Aljabri, A. S. A., Abdelrahman, H. A., Al-Mana, H., Wilson, G. J., Anan, K. A., & Eltai, N. O. (2024). Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes. Microorganisms, 12(1), 157. https://doi.org/10.3390/microorganisms12010157